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Lecture — 07
Implementation of TLBO in MATLAB

So, now let us see the Implementation of TLBO on MATLAB right.
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Before we start looking at the code of MATLAB, we will have to know some basic functions.
Some of you might already be knowing this, but for those of you who do not know. Let us
just quickly see some of the basic functions. So, if you recollect we will be using random

numbers multiple times right. So, the function tool generate random number in MATLAB is



rand. So, if you give rand it is going to give us random number between 0 and 1 right. So, if

we want let us say 10 random numbers 1 row 10 columns.

So, we can give rand of 1 comma 10. So, this will give us 1 row and 10 columns of random
numbers between 0 and 1 right. So, another function that we will be using is randi. So,
remember that for selecting the teaching factor the teaching factor has to be either 1 or 2 it has
to be randomly selected. We can either use this rand function to generate a random integer or

we can directly use this randi function right.

So, the syntax for randi function if a require random numbers between let us say 1 and 50
right 1 and 50 and let us say we require only 1 variable. So, what I what we are saying is
between the number 1 and 50 right give us 1 row 1 column that is we are looking for a scalar.
So, this will give us a random integer between 1 and 50 right. So, if we keep generating it we

will obviously, get a different values right.
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> randi((1 21,1,1)
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rand (4p,D);  § Gener, > randi((1 21,1,1)

> randi((1 21,1,1)

> randi(1 21,1,1)

So, for us in our case let me just clear the screen in our case we require random number
which has to be either 1 or 2. So, right I can give this. So, this will give us random number
which is random integer which is either 1 or 2 right. So, now, we know how to generate
random integers and how to generate random numbers between 0 and 1. However, when we

generate our initial population the random number has to be between a lower bound and

upper bound right.
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So, let me say my lower bound is 5 and the upper bound is let us say 10. So, now we are
looking to generate a random number not necessarily an integer right between 5 and 10. So,
we can use this relation lb plus ub minus Ib into random number right. So, this will give us a
random number between 5 and 10. So, ub minus Ib is a positive quantity right and random

number is between 0 and 1. So, the second term is always going to be positive.

So, since we are adding it to 1b this number whatever we will get will be greater than a lower
bound. Similarly, you can analyze that whatever number we will get from this relation will
always be lower than upper bound right lower than upper bound or equal to upper bound right

let me clear the screen.
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3= D= legth(ib);

emat (1b,Ng, 1) + ropnat ((3b-1b), ¥p,1) . *rand (¥p,D); % Genex

So, the same relation we can use over vectors also. So, let us say I have three decision
variables the lower bound is 3 7 9 the upper bound is let us say 5 8 10 right. So, now still we
can use the same relation right. Now, we require three random numbers because we have
three decision variables right and we will do a element by element multiplication. The first
value it will always be between 3 and 5 the second value will always be between 7 and 8 and
the third value will always be between 9 and 10 right. So, this is how we will be generating

our initial population right.
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So, there is another useful function in MATLAB called as repmat right. So obviously, for all
these functions you can just go and type help the name of the function to further read it right
here we are quickly showing you how to use this function. So, for example; now that I have
this lower bound let us say I want to replicate this lower bound multiple times. So, I can use
this function repmat Ib comma 5 times I want to replicate it right. So, 5 comma 1 will give us

the same row replicated 5 times.
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So, if we give 5 comma 2 right. So, our lower bound was 3 7 9. So, 3 7 9 has been replicated

as shown over here right there are 5 rows and 2 blocks of what you can consider as 2 blocks

of those columns.

27 = zandi([1 21,1,1);

Ynew = B(3.-) 4 rand (1,00 ¢(¥hest - TFémeant: 3 o
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So, that we can use this repmat function to generate the initial population. Apart from that we
will have to locate the minimum of the function. Let us see given a vector let us say x is equal
to right. So, if this is the vector right. So, if I want to locate the minimum value of this vector.

So, I can just give min of x right. So, min of x will tell us the minimum value in this vector

right; however, we are not only interested in the minimum value.

We are also located in the location of the minimum value because remember we will identify
the teacher from the fitness function value, but the we will also need the teacher which has to
be extracted from the population right. So, we were using two different variables one for
population one for fitness function value. So, first we will have to locate the minimum value

and then correspondingly we will how to extract that a set of decision variable from the

population right.



So, now we are also interested in the location of it right. So, if we want to identify the
location of it we can do this val comma ind right. So, these are two these two variable names
that I am specifying; you can specify any other name right. So, if I do min of x now I will get
the value minimum value in the first variable that is val and the location in the secondary
second variable i n d right. So, i n d; I use ind to denote this index you could have used any

other variable name right.

So, it now says that the minimum value in the vector x is 4 and it is located at the first
position. So, let us try it at some other vector where the minimum value is not at the first
location. So, we have revised the x and if we do this again so now, it says the minimum value
is 1 right 57 8 1 5 the minimum value is 1 and the index that is the position that it is located

is the fourth location right.
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So, that way we can identify the teacher and as well as extract the appropriate member right.
So, if I have this matrix let us say some random matrix of three rows and three columns. If I
want to extract the second row we can just give A of 2 comma colon. So, this will extract the
entire second row. Similarly, if you want to extract a particular column, we can say all rows
of let us say the third column right. So, this way we will be extracting the teacher from the
population member. So, let me just clear this screen command window I have this variable a

right.
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So, if I say mean of A right. So, remember in teaching learning based optimization we will
also be required to find out the mean of the population. So, we will be using this function

mean over there right. So, mean of A will give us the mean for every individual column. So,



the mean of 5 8 7 1s 6.66, 7 10 8 is 8.33, 8 17 19 is 11.33. So, this is a function which we will

use to find the mean of the population right.

So, one more important operation that we will require in TLBO is the bounding of the
decision variables right. The corner bounding strategy that if a variable is violating the lower
bound we will have to move the value to the lower bound and if a value of a variable happens
to violate the upper bound; we will have to move the value to the upper bound. So, obviously
we can implement if condition and then check whether it is violating or not or we can use the

max and min function.
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So, we will just see how to use the max and min function to implement the corner bonding
strategy. So, let us take a lower bound to be let us say 5 8 and 15. So, I have three variables

lower bound is 5 8 15 right. Let my upper bound be let us say 50 90 and 100. So, I have three



variables the upper bound of them are 50 90 and 100 respectively. Let us say I get a solution

in somewhere which is let us say 1 7 and 95 right.

So, this if we see first let us just check with the lower bound. So, the first variable violates its
lower bound because the lower bound is 5 the value that we have is 1. The second variable
the lower bound is 8 and the value that we have is 7 right. So, these two variables have to be
corner bounded the third variable is within the domain right. So, the lower bound is 15 the

value that we have is 95.

So, it is not violating the lower bound. So, what I can do is that my new x is max of my x
comma lower bound right. So, what it is what it will do is it will compare 1 and 5 right. It will
do a element to element comparison, whatever is maximum will be retained. So, in this case 5

is retained between 7 and 8; 8 will be retained between 95 and 15; 95 will be retained right.

So, which is what we want. So, this is our corner bounding this; this is our new solution
which has taken care about the violation in the lower bound. Similarly, I can take care of the
violation in upper bound. So, let us say the upper bound for the first variable is 50. So, let us
say it is 45; so it is not violating the upper bound for the second variable is 90 let us say it is
what I get is 98 and for the third variable let us say its 120 right. So, now I have this new
solution 45 98 120 and the upper bound of this were 50 90 and 100 right.

So, now if I want to implement the corner bounding strategy just like this max of b, I can do
X 1s equal to min of x comma ub right. So, it will compare this 45 to 50 right. So, 45 is less
than 50; so it will be retained. Since, it is not violating the upper bound the value is being
retained. 98 if we see it is actually violating the upper bound right, the upper bound is 90 and
the value that we have is 98 right. So, it is violating the upper bound. So, min of 90 comma

98 will be 90.

So, the value of that particular variable will be replaced with 90 and similarly the third
solution is also the third variable is also violating the upper bound right. The upper bound is a
100 and what we have is 120 right. So, what we will do is minimum of 100 comma 120 will

be a 100 right. So, if we execute this whichever variable is violating the upper bound it will



be brought back to its original upper bound right. So, this is also something that we will be

using while we are implementing the TLBO algorithm.
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So, I guess as of now, we are ready with whatever the functions which we are going to use
right. So, let us look at the code of TLBO rather than coding in real time we thought like we
would be able to save some time if we already have it coded and then walk you through the
code line by line right. So, this is the code in the editor what you say is the code of teaching
learning based optimization right. So, the first line is clc right. So, first what we will do is we
well just browse you through the code and then subsequently we will come through this code

again by in a debugging mode.

So, you will be able to better understand. So, what we are doing first is clearing the command

window using the clc command right and then we do not need any of the variables which are



already defined in the workspace. So, we are clearing the workspace with the clear command

right and then we need to define the problem the problem that we are going to solve right.

So, right now we have taken a two variable problem whose lower bounds are 0 0 and upper
bound are 10 comma 10 10. The problem that we are going to solve this we have written that
in a function file we hope that you know what is a function file. So, the name of the function
file is sphere new right. So, we have assigned that function to this name prob. So, prob is now

a function handle because it is defined with this at the rate symbol right.
So, sphere new is a function we will look into that function what is that function. So, we
include this function handle because we wanted to write a generic function right. So, we have

included it as a function handle.

(Refer Slide Time: 13:34)

L 10 T

00616 0.7590
07802 0.7343
0.3376  0.0513
06079 0.0129
07413 0.0885
0.1048  0.7584
01219 09430
0.5495  0.6837
0482 0.1%21
08305 0.7221




Now, let us just look into sphere new right. So, sphere new is the objective function file right.
So, here we expect that whenever this file is called we are given decision variable right. If
there are two decision variable let us say x 1 and x 2 it will do summation of x 1 square plus x
2 square. So, this x dot the power 2 will square each element and then the sum will sum the
entire vector right. So, that way this objective function is independent of the dimension. So,

instead of 2 variable if we send 10 variable right.

So, it will square each element we using this; this part and then it will sum all of that right.
So, this is the sphere function and it will return the fitness function value right. So, that is
what this sphere new function will be doing for us right. So, this these three lines complete
the definition of the problem. So, remember for most materialistic techniques what we require
from the problem definition is the lower bound, the upper bound and a procedure to evaluate
the fitness function. Now, that is done we will have to define the parameters related to the

algorithm.

So, TLBO as you know has two tuning parameters one is the population size. So, we are
using the variable Np to indicate the population size. So, initially we have taken a population
size of 10 and we want to perform 50 iterations. Since, we are doing it on a computer we will
be able to perform 50 iterations fairly quickly. So, this is what is the algorithm parameters.
So, with this line whatever was required to execute TLBO has been defined right. So, it has
been defined in the very beginning itself. So, the rest of the code is generic the it will be using

values from here.

So, since we have Np population numbers we are defining a variable f with the values as NaN
how many values of NaN will be there in f depends upon this Np. Since, we are going to store
the fitness function of every member we have defined f with NaN values and it has a
dimension of Np rows and 1 column right. So, that will give us of vector f which have which

will have Np elements it will be a column vector it will have Np rows right.

Right now we have not evaluated the fitness function. So, we are storing NaN into these

values as and when we evaluate the fitness we will plug in the corresponding values right. So,



since we do not know the dimension of the problem right we determine the dimension of the
problem by taking the length of Ib. So, if 1b has 10 values D will become 10. So, there is a
length is an in build function of MATLAB which will tell us the number of elements present
in the lower bound. So, for every decision variable we will have a lower bound we will have

to have a lower bound and an upper bound right.

So, by measuring this length of the lower bound we can find out the number of decision
variables right. So, the next step is to generate the initial population right. So, to generate
initial population we use the repmat function right. So, this part will replicate the lower bound
Np times right. So, this is the same relation which we have used 1b plus ub minus Ib into rand

right its just that we are generating the entire population in a one line.

So, that is why we have this use this repmat function right repmat 1b will be repeated Np
comma | times right. So, basically it is going to replicate the Ib row multiple Np times right
this ub minus Ib shows the range between the upper and lower bound the range will be
replicated because of this repmat will be replicated Np cross 1 times right. And then for each
population member and for each decision variable we require a random number which is
between 0 and 1. So, that is why we have this rand of Np comma D. So, since Np is 10 and D

is 2 it will give a 10 cross 2 matrix right.
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So, we can just try it out rand of 10 comma 2 if we give right. So, its going to give us 10 rows
and 2 columns all the values will be between 0 and 1 right and then we perform element to
element multiplication to determine the population. So, we have chose to determine
population in this you could have, if you are working with some other language which does

not have this repmat function you could have write a two loops.

So, you can say for i is equal to 1 to Np for j is equal to 1 to D P of i comma j is equal to 1b of
J plus ub of j minus lb of j multiplied by a random number and then execute that loop twice
so, that we will be able to get the population. So since MATLAB has this very useful
functions it becomes a little bit easier to generate them without necessarily using for loop. So,

once we have created the initial population over here the next step is to evaluate its fitness

right.
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So, to evaluate its fitness we can either call the function sphere new or we can use this
variable p r o b right. So, we will use this variable p r o b everywhere so that; if we have to
solve some other problem we merely need to define the new problem in line 7. We do not
need to individually figure out the calling of the function and replace it that is why we chose

to have a function handle right.

So, now what we are doing over here is we are sending the member one by one to the sphere;
to the sphere function using this prob variable and we are receiving its fitness value right. So,
this loop will be executed 10 times Np times because, we need to determine the fitness of
each member right. So, f of 1 fof 2 f of 3 it will go all the way up to 10 and every time when

we are calling prob function we are sending the P th member of the population.

So, first time we will be sending the first row all the columns because remember for us an
entire row constitutes one solution if there are 10 variables the first row and all the 10
columns will constitute the first solution. So, we need to send the entire solution to evaluate
the fitness function right. So, this loop will help us to determine the fitness of the initial
population right. So, these three steps are these four steps are going to be common across all

materialistic techniques that we are going to discuss as part of this course right.

We will have to an initial population which will generate randomly between the upper and
lower bounds and evaluate its; its fitness right here we have chose to send the population
member a one by one right. But, if you modify this objective function appropriately then we
could have sent all the members together and could have received all the fitness functions

together, but to begin with we have not taken as vectorized function.

This function is capable of receiving one member at a time and returning the fitness of one
member at a time if this function is appropriately modified we could have sent all the
population members and received the objective function values in a without the use of this for
loop right. So, that completes the initialization part right, so we have generated the initial

population and evaluated its fitness right.
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Then begins the iteration loop of TLBO. So, now, we need to do something repeatedly for t
times right what we are going to do repeatedly for t times that is what we discussed in the
previous session that we will execute the for each number we will execute the teacher phase

and for each number we will execute the learner phase right.

So, we define this exterior loop for t is equal to 1 to t right. So, the that loop ending in this
line 77 right from line 25 to 77 whatever is between the line 25 and 77 will be executed for t
times right. So, then we have to for in each iteration each member of the population is
supposed to undergo the teacher phase as well as the learner phase. So, we again use this for
loop at line 27 right. So, 27 that for loop is getting over at 74. So, whatever is between line 27
and 74 will be executed for Np times right and whatever is between line 25 and line 77 will

be executed for T times right.



So, we have these two loops. So, the iteration the outer iteration loop and the inner population
loop right. So, now that we have set the loops in motion the next step is to implement the
steps of teacher phase right. So, in teaching learning based optimization the way we discussed
was the first member undergoes teacher phase and then the subsequent member undergoes
that learner phase right. So, the for the first member to undergo teacher phase we need to find
out the mean of the population. So, mean function we have a seen a few minutes back right.
So, if you give mean P is our population. So, it will give us a row vector which we are

assigning to the variable x mean right.

So, x mean will contain the mean of the population right and then at in line 31 we are
determining the minimum value of f right we are not interested in the minimum value of f,
but what we are interested is in the location of it right because to extract the teacher we need
to know the location right. So, that is why we are not receiving the first value right we have
put our tilde symbol over there, and but we find out the index the location of it right. So, now
this is the location ind will tell us the location of location where in the minimum value of f is

present right.

So, once we have that from the population we need to extract that particular solution. So, we
had discussed how to extract a particular solution right. So, what we are doing is P because
the members are stored population P. So, for P we are extracting the corresponding row
indicated by the variable 1 n d right and all the columns because that constitutes the entire
solution. So, now we have determined X mean and Xbest right. The next step to in order to
employ teaching learning based optimization is to have a teaching factor. So, as we have
discussed earlier irrespective of any number of variable teaching factor is constant for all the

decision variable.

So, here we make use of the randi function which we discussed to generate a random number
which has to be 1 or 2 right this 1 comma 1 make sure that we get only one value. So, that is
stored in this variable TF right. So, to implement to generate the new solution and we have all
the required values right. So, we want the best value the best member the mean of the

population teaching factor and the current member. So, the current member we can extract of



P of i comma colon; i because it is the i th number which is currently undergoing the teacher

phase.

So, our new solution is going to be P of i comma colon. So, the current solution plus rand of 1
comma D because there are D decision variables we are generating D random numbers right.
So, we will get a row vector over here that we are doing elemental multiplication with this
term which is the difference of the best and the mean with the teaching factor in cooperate in

cooperator right.

So, this is the equation which we had seen while we were learning teaching learning based
optimization. So, this will give us our new solution right. So, this new solution may or may
not be in the bounds right. So, we need to bound it right. So, in order to bound it as we had
discussed in the beginning of this lecture what we will do is we will use this function min of
ub comma Xnew right. So, if it happens that the member is violating the upper bound right

since we are let us say we have 5 comma 10 let us say ub is 5 and Xnew is 10 right.

So, min of 5 comma 10 will be 5 right. So, that way we are pushing it to corner boundary. So,
line 38 takes care that the newly generated solution is brought back to the upper bound if it
violates right, if it is not violating it will not have any impact. Similarly, in line 39 and we are
making sure that the solution the variables which are violating the lower bound are brought

back to the lower bound.

So, line 38 and 39 will ensure that the solution is bounded. Now that the solution is bounded
the next step is to determine the fitness function of it right we need to determine the fitness
function of the newly generated solution because we need to subsequently employ a greedy
selection strategy. So, in the greedy selection strategy we will have to compare the solution of
the current member which is undergoing the teacher phase and the fitness function value of

the newly generated solution.

So, which one whichever is better will survive right. So, we need to find out the fitness
function of the newly generated solution. So, f new is the value of the fitness of the newly

generated solution prob as we know contains the fitness function which we are trying to



minimize right. So, we are sending this newly generated solution to this prob. So, then this
prob actually indicates the sphere function. So, this Xnew is sent to the sphere function it is

evaluated and the fitness is stored in fnew.

So, now we are ready to implement the greedy selection strategy and the greedy selection
strategy we are employing this f loop in line 43 right. So, fnew is fitness of the newly
generated solution and f 1 is the fitness of the i1 th solution which is undergoing the teacher
phase right. So, if fnew happens to be less than f of i that is we are solving a minimization
problem right. So, since we are solving a minimization problem a better fitness is the one

which has the lower fitness is better right.

So, if this condition is satisfied then we are overwriting the i th row of the population right.
So, we are overwriting the 1 th row of the population using the newly generated solution
Xnew. Once we have overwritten that we also need to overwrite the fitness function value.
So, since i th member has been replaced with a new solution we need to replace the fitness
function of i th solution with the fitness function value corresponding to this new solution

Xnew right.

So, this the this line 43 44 45 46 employs the greedy selection strategy and includes the new
member if it is better right. If this; if condition is not valid then the new solution is not used
right this overwriting will not happen that way the 1 th solution survives it that completes the

teacher phase right. So, now we will implement the learner phase.
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So, to implement the learner phase we need a random partner right. So, what we are doing is
we are again using the function randi right now this time we want a random number which is
between 1 to the population size. So, if you have a 10 members we need a random number

which is between 1 and 10 right. So, again 1 and 10 included right.

So, we give this randi of 1 comma 1 to Np within this square bracket and for each member we
are going to generate a partner right. So, for the i th member we just need 1 partner. So, we
give this 1 row comma 1 column. So, this p will written as 1 value 1 integer value which is
between 1 and Np right. So, it might happen we are getting the value of p to be the same as

the value of i right it can happen.

So, what we are doing is we are implementing this while loop that if i and p are equal. So, let

us say if the fifth member is undergoing the learner phase and the partner is also happens to



be 5 right. That can happen because we are generating a random number between 1 to

population size and the random number generated could also be 5.

So, the fifth member is undergoing the learner phase and line 51 may give us p equal to 5. So,
it is like fifth member is the partner of fifth member right. So, we want to avoid it; so we have
this while loop. So, if this condition happens then we generate another random number. So,
this while loop will ensure that we get a partner which is not equal to i right. So, now that we
have selected the partner the next step is to generate a new solution in the learner phase there

were two equations right.

So, depending upon the fitness of the partner and the fitness of the solution which is
undergoing the learner phase the appropriate equation has to be used. So, we here we
implement the if condition we check that if f of i is less than f of p then we generate the new

solution using this equation right else we generate the new solution using this equation.

So, this equation if you remember the new solution generated in the learner phases the current
solution which is p o f i comma colon right; colon because we are taking the entire solution
plus the difference between the 1 th member and the partner multiplied by a random number

which is between 0 and 1.

So, again here we will have to generate D random numbers because we have D decision
variables right. So, this Xnew will give us a new solution again we need to bound the
solution. So, we will skip the explanation of this because we have explained it earlier right
this is exactly similar to what we did in teacher phase that we are ensuring that if the lower
bound is violated the variable is brought back to the lower bound and if the variable is

violating the upper bound the value of the variable is brought back to the upper bound.

So, at the end of line 65 we have all we have now generated a solution which is within the
bounds right. So, once we have generated a feasible solution or a bounded solution we need
to evaluate the fitness function value. So, that is done in line 67. So, in line 67 we are again

evaluating the fitness of the newly generated solution. So, now, after evaluating the fitness of



the newly generated solution we are going to employ a greedy selection strategy, in line 69 to

72.

So, if the new solution happens to be better than the current number it is taken inside the
population and its fitness function is also taken inside the population right else the i th
number is retained it is not overwritten and it is retained. So, this completes the learner phase.
So, we have an exterior iteration loop and then we have a population loop and inside the

population loop we have implemented teacher phase and learner phase.

So, every member will first undergo teacher phase it will complete learner phase right and
then the second member will undergo teacher phase and the second member will undergo the
learner phase. So, this is going to happen for all the population members and this entire

procedure is going to be repeated t times ok.

So, that is the implementation of TLBO as you can see its a fairly simple code that we can
implement. So, TLBO as we had mentioned earlier the TLBO is not an in build function in
MATLAB. So, we can quickly develop this code and then we can use it right. So, let us say
we have executed the TLBO. So, what is that we are interested in after execution right we are
looking for the best fitness right. So, since we have this in line 79, we find the best solution

when we reach line 79 the TLBO procedure is over right.

So, now we have a population at the end of TLBO we have a population and a fitness f we are
locating the minimum value we are storing the value in best fitness in the variable best fitness
and we also require its location. The location where the best value is present right and then
again the we extract the population member corresponding to the best fitness. So, that we are
calling it a best sol. So, this best fitness and best sol is what we are interested in best sol
indicates what is what are the decision variables for which we are getting the best fitness

function value.

And best fitness the variable best fitness will tell us what is the actual value of the function at
the end of teaching learning based optimization. Let me now execute this program in the

debug mode and put a breakpoint at the very first line right. So, we would know what is



happening in each and every line we can see the execution right. So, let me execute this

program right. So, now if we see MATLAB is about to execute the first line right.
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So, if we say step it will execute the first line. So, the command window has got cleared. So,
right now if you see there are some variables present in the workspace right. So, after this line
2 is executed we expect that the variables are cleared right. So, if we do whos now all the

variables have been removed from the workspace right because of that second line clear right.

So, this line 5 is supposed to define the lower bound. So, lower bound is defined, line 6 will
define the upper bound for us, line 7 will define the variable prob which is a function handle.
So, here we can see that it displays that it is a function handle with the value sphere new right.

So, as and when this prob being called will be going go to the sphere new function right.
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So, the if we step in. So, Np is define to be 10, T is defined to be 50 and here if we see we
have defined 10 values we have defined the vector f which has 10 values all the values are
NaN right. So, the next step is to determine the length of 1b. So, in this case if it has two

values. So, d takes the value of two right so the next step is to generate the population.
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So, here if we see that repmat function has helped us to generate this 10 members right it has
10 rows 2 columns right and all these values are between our lower and upper bound. So, our
lower and upper bound 0 and 10. So, all these values are between 0 and 10 right. So, now this

loop will be executed for 10 times because Np is 10 right.



(Refer Slide Time: 35:54)

Nan

Wl
Han
™
Wl
Ny
™
Nl
Ha¥

- e Fowd Sy 2 @1

So, let me just do step in this time right. So, as we can see the where values x right the first
member which is 0.8667 and 1.0061 has been sent to the functions sphere new. It has been
sent to sphere new despite as calling prob, but we have defined that prob is nothing, but
sphere new. So, it comes into this right and if we say step it calculates the f value right,
value is 1.7633 and then if we say step in it comes back over here right. So, this loop is going

to be executed 10 times right. So, that we can see right.
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So, this loop will be executed 10 times every time a value is written right and it is stored in

the appropriate location of f right.
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So, this loop is now over right. So, as of now what we have done we have created 10
population numbers evaluated its fitness using the function x 1 square plus x 2 square. Now,
we will be executing this iteration loop right. So, initially t will be 1 right. So, the value of t

you can just place your cursor on the variable name and you can see the value.

So, tis 1 and this is going to be executed Np times right. So, let me step in over here right.
So, 1 is equal to 1 in this case right. So, mean of the population we need to determine the
mean of the population. So, let me see that. So, this is the mean of this particular population
right the population which we generated is here right. So, the mean of this population is
calculated and stored in the variable x mean right. So, that is done now if we see the

minimum value of f in this case is located at 1 right.
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So, what we will expect here is ind to be 1 let us say that is that is happening right, yes in this
one because the minimum value of f is located in that particular location right. So, let us do
this thing. So, the value the solution corresponding to 1.777633 is the first member and the
first member of the population is 0.8667 and 1.0061 right.

So, that is the teacher. So, we have been able to extract the teacher TF if we see we have
generated integer which is either 1 or 2 we are suppose to generate at integer which is 1 or 2,
so randomly we have selected TF to be 2 right. So, step again. So, the new solution which we

have generated is minus 6.5790 and minus 1.130 right.

So, now, we see both of these variables are violating the lower bound because the lower
bound is 0 right. So, line 38 actually takes care of only the upper bound right. So, after line 38

we do not expect Xnew to change because it is not violating the upper bound of 10, line 38 is



not going to have any impact on this particular solution. If it had violated a upper bound;
obviously, line 38 would have taken care of taken care and brought the variables value of the

variables back to the upper bound.

So, in this case line 38 will not change the decision variable the values of the decision
variable. So, line 39 we are checking with the lower bound. So, minus 6.5790 and 0 which is
the maximum. So, 0 is the maximum. So, both of these variables will be replaced with the

value of 0 right. So, Xnew is 0.
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So, now we have a new solution, we need to calculate the value of the objective function. So,
if we step in since I had clicked on step and not on step in it did not show us going into the

functions sphere new, but it did use that sphere new value of f new.



So, f of i is 1.7633 because i is 1. So, we are comparing the value of f new with the first
solution right. So, the new solution and i th solution i th solution in this case is the first
solution because it is the first solution which is undergoing the teacher phase right. So

obviously, we expect this condition to be satisfied because this is 0 and this is 1.7633 right.
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So, step; so now if we see the first member has been overwritten right. So, this member which
we had 0.8667 1.0061 has been discarded; discarded in the sense it has been removed from
here and we did not store it elsewhere. So, that is why we say it is discarded right. So, now if |
type fitness f is say 1.7633. So, the fitness of 0 0 is not 1.7633 because we have not
completed the execution of line 45 right. Line 45 will be executed only when this arrow

moves on to the next line right now it is ready to execute line 45 right.
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So, if we execute that. So, now it has been replaced right. So, this completes the greedy
selection. So, step right now coming to the learner phase we need to randomly generate a
integer between 1 and Np right. So, let us see what is the partner it selects so it has selected
the partner 7 right. So, the solution 1 and 7 so right now, this condition fails because i is equal

to 1 p is equal to 7. So, it does not enter this while loop right.

So, it will come over here. So, now we need to see is check the fitness of the i th solution that
is the 1st solution and 7th solution right. So, if we check the fitness of it; obviously, the 1 th

solution which is the 1st solution has a better fitness than the 7th solution right.
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So, if we step so it goes into this equation again it finds the difference between those two
members the i th member and the partner multiplies with the random number again D random
numbers and that value is added to the current member. So, that will be Xnew right. So,
Xnew; so Xnew happens to be minus 4.8665 and minus 0.4536 right. So, if we step in right.
So, again this line will not alter the solution because they are not violating the upper bound,
but the next line will bring it to the lower bound because it was violating the lower bounds it

again evaluate the fitness right.

So, let me just click on step in. So, since I have clicked on step in it is showing the solution
going into the sphere new function the value of the decision variable will be plugged in the

objective function which is x 1 square plus x 2 square and objective function value is



estimated right. So, step again now if you see the new solution and i th solution both are same

right. So, the Xnew solution is also 0 0 and the p th solution is also 0 0 right.

So, here this condition will not be satisfied because the new solution in this case it happens
that the new solution and the i th solution both are same right otherwise it would have done
the greedy selection and retained whichever is the better solution. So, so this completes the
teacher and learner phase for the first member write this has to be done for all the 10

members right.

So, if we; so if we see it has come to line 74 so the next step will go to this for loop right. So,
now, i is equal to now we need to do a teacher phase as well as a learner phase and then for i
equal to 3 i equal to 4 1 equal to 5 all the way up to equal to 10. So, now it is at i equal to 2
right. So, the procedure remains the same its going to automatically check everything and
then things are going to work out right. So, let me just click on here line 77 right and then just
click on this continue. So, now, it is going to continue till it encounters the another break

point right.

So, if I do this. So, now, I see the value of t it is 1. So, it complete it has completed one
iteration right. So, similarly I want it to complete all the iterations. So, if I just now do
continue again right it will come and stop again so it has completed two iterations now you
can complete all the iterations right. So, let me just click over remove these breakpoint and

then just say continue right.
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So, since we had removed the semicolon it ended up displaying each and every step right. So,
but it ended up displaying each and every step right. So, now at the end of it if you see this
three values. So, the best fitness is 0 right and the best solution is 0 0. So, in this case for the
sphere function and the optimal solution itself was at the end of execution right. So, we get
the best fitness to be 0 and that is located at first location right. And the best solution

corresponding to this best fitness function value of 0 is 0 0.
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So, this function we had written it in a generic way right. So, let us say if I have a four
variable problem 0 0 0 with a lower bound of 0, and a upper bound of 10 right. So, I just
merely need to change lower and upper bound. Because wherever I required the values of

lower and upper bound I never use the values as such I use the variable 1b and ub.
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So, for example; here if we see when we are generating a new solution we are not hard coding
these values we are just taking the value of the variable. So, if we change this it will

automatically get changed over here. So, I do not need to change the rest of the code.

Obviously for those of you who are doing reasonable programming these are trivial things
that you would know that you keep the data separate from the code right, but I believe some
of you are new to programming. So, that is why we are reinforcing on that particular point

right. So, now if I execute this right.
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So, the best fitness is 0 it is located again at the first index and the solution corresponding to
itis 0 0 0 0. If you see the search space is small as in like between 0 to 10 so let me just make
this as minus 100 minus 100 minus 100. Obviously, I could have used minus 100 into 1s of 1

comma 4 right, but let me just use this right.

So, now if we execute. So, now if you see the best solution is not exactly 0 right it is close to
0 best fitness is the value of best fitness is close to 0. So, at the end of 50 iterations right with
the population size of 10 right the solution that we are getting is this one. So, the decision
variables are minus 0.4046 into 10 power minus 6, minus 0.1678 into 10 power minus 6,
minus 0.6328 into 10 power minus 6, and minus 0.154 into 10 power minus 6 right and the

fitness function corresponding to that is this one.

So, these values are permissible right. So, previously the lower bound wave was 0 right. So,

any value less than 0 was not permissible, but right now bound is minus 100 right. So, all



these are within our domains right. So, one function again we have written this code in a

generic framework that we can also change the fitness function right.
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So, for example; we have here let me use the Rastrigin function right. So, the Rastrigin
function is given by this we have previously seen that Rastrigin function is also a scalable
function we can use it for two variable, problem three variable problem and four variable
problem. So, here we have written in such a way that it is scalable. So, we can just say instead

of sphere function if you had to solve Rastrigin function.

So, all that you need to change is this name of the function right again the population size if
you want to work with 10 and 50 you do not need to change, but if you want to change the
population size and the number of iterations that you want to perform you can obviously
change that. So, now if we execute this right so we have best fitness that it obtains after 50
iterations is 2.1014 with this as decision variables 0.0589 minus 0.0319, 1.0159 and 0.0264
right.
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So, if we convert this lower bound to 0 right and if we execute this right. So, in that case it is
able to find the best fitness function value right. So, that completes the implementation of
TLBO right. So, this is a basic code we have not kept track of what was happening in every
iteration. So, we will see that a little bit later, but right now what we have done this we have

just implemented the basic version of TLBO right.

So, after this we will see the performance of TLBO. So, it perform 50 iterations right now
what we did was, we just looked at the final solution. So, we can also look at what was the
best solution it obtained in every generation right. So, that will actually help us to see if

TLBO was able to improve progressively or if the convergence has been reached right.
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So, here are we have defined the new variable best fit iter right. So, the purpose of this
variable is to keep track of the best solution obtained in each generation or in each iteration.
So, since we are going to perform TLBO for 50 iterations. I am creating T plus 1 locations; T
plus 1 locations and not T locations because I also want to store the best value before we
began the iteration that is in the O th iteration or in the initial population what was the best

fitness value that also I intend to store it.

So, that is why I am giving T plus 1 and it will have one column because for every iteration
we will have only one value to be stored right. So, T plus 1 rows for T generation and the 0 th
generation T plus 1 and since only one value is to be stored every time. So, we have this 1
column just like fitness this will be a column vector fitness stores the fitness of the population
in the current iteration whereas, best fit iter stores the best fitness function value in every

iteration. So, that is the difference between this f and best fit iter right.

So, this line 25 will help us to determine the best fitness function value in the initial

population. So, after generating the initial population over here right we have this line min of



f. So, it will find out the minimum fitness function value and it will store in this best fit of iter
of 1 best fit iter of 1 because MATLAB starts indexing from 1 not from O right. So, that is
why the first location is use to store the best fitness in the 0 th iteration or the initial

population.
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@2- Knew = B(4,1) + rand(L, D).*(B(1,2) - Plp,i)); ® Generating the new solution  m
- else

- Xnew = B(4,2) - rand(1, D).*(B(1,2) - P(p,2)); % Generating the new solution

- end

&

- Xnew = min(ub, Ynew); % Bounding the violating variables to their upper bound

@8- Xnew = max(lb, ¥new): % Baunding the violating variables to their lower bound

&

- fnew = prob (Knew) ; % Evaluating the fitness of the newly generated solution

n

ik if (frew < £(1)) % Greedy selection

7- B(i,:) = Xnew; % Include the new solution in population

- £(i) = fnews % Include the fitness function value of the new solution in
75— end

%

7~ end

7

7~ OESUUSSIEESEIN)] ¢ Storing the best value of each iteration

)

8- disp([Iteration' numdstr(t) ': Best fitness = ' nundstr(BestFitIter(t+1))])

B2- lend

&

8- (bestfitness,ind] = min(f) _
85~ bestsol = P(ind,:) v
Qe >

m [seript tn 25 Col 1

£ Typehere tosearch
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21 %% Iteration locp
28- Tfm:c;l: T

> 1

39~ it :) + rand(1,D).* (Xbest - TF*Xmean); % Generating the new solution

- Xnew = min(ub, Xnew): % Bounding the violating variables to their upper bound
@2- Knew = max(lb, Xnew); % Bounding the violating variables to their lower bound

- fnew = prob (Knew) ; % Evaluating the fitness of the newly generated solution
46~ if (fnew < £(1)) % Greedy selection

% Include the new solution in population
% Include the fitness function value of the new solution in ||

[saipt tn 79 Col 31
G ! B

And then we have one more line over here right. So, at the end of this population loop right.

So, the population loop begins here and it ends over here.
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(2 Editor - C\Users\CET-ITG\Desktop\MOOC Jan 2020\Prakeshi2712TLOTLBOBestter2.m

| MBOBesttezm |+ - | Tteration Li Best fitness = 6,341 A
62- Xnew = P(i,:) + rand(1, D).*(B(i,:) - B(p,2))7 % Generating the new solution A | 1teration 2: Best fitness = 0.048021 I
6- else Iteration 3: Best fitness = 0.0011046
- Xnew = B(i,:) - rand(l, D).*(B(i,:) - P(p,2))7 % Generating the new solution Iteration 4: Best fitness = 0
- end Iteration 5: Best fitness = 0
P Tteration 6: Best fitness = 0
- Xnew = min(ub, Xnew); % B Tteration 7: Best fitness = 0
- Xnew = max(1b, ¥new); % B Tteration 8: Best fitness = 0
@ Tteration 9: Best fitness = 0
- fnew = prob (Xnew) ; 3 E it Tteration 10: Best fitness = 0
71 Iteration 11: Best fitness = 0
72- if (fnew < £(1)) Tteration 12: Best fitness = 0
- B(i,:) = Xnew; Tteration 13: Best fitness = 0
- £(1) = fnew: new solution in Tteration 14: Best fitness = 0
- end Iteration 15: Best fitness = 0
% Tteration 16: Best fitness = 0
- end Iteration 17: Best fitness = 0
7 Tteration 18: Best fitness = 0
79 - BestFitTter (t+1) = min(f); % Storing the best value of each iteration Tteration 19: Best fitness = 0
80 Tteration 20: Best fitness = 0
81~ disp(['Iteration ' num2str(t) ': Best fitness = ' num2str(BestFitIter(t+1))]) Tteration 21: Best fitness = 0
B Land Tteration 22: Best fitness = 0
o Tteration 23: Best fitness = 0
84~ ([bestfitness,ind] = min(f) _ || 1teration 24: Best fitness = 0
85~ bestsol = P(ind,:) v = | Tteration 25: Best fitness = 0

> |fe Iteration 26: Best fitness = 0

m.
H £ Typeheretosearch

So, at the end of the population loop we find out what is the minimum fitness function value
in that particular iteration right and store it in best fit iter of T plus 1 T plus 1. Because, we
have already consumed the first location over here right. We the 0 th population we have
done when we are in the first iteration we need to save the value in the second location of best

fit iter because the first location has already been occupied right.

So, even though if we run for 50 iterations best fit iter will have 51 values including the initial
population because it in it also includes the initial population. So, we find out the minimum
of the fitness function value and store it in this statement will help us display the progress in
every iteration right. So, disp is a inbuilt MATLAB function to display something on the

command window right whatever is there within the single quotes will be displayed as it is.

So, I want to I want MATLAB to display the word iteration right. So, iteration and then I
need I require it to display the iteration number the corresponding iteration number which is

actually T and then I wanted to display this full colon best fitness is equal to as it is right. So,



it is given in single colon and then again we use the num2string function right to convert this

value this number. So, best fit iter of T plus 1 is going to be a number.

So, I will convert it into a string so as to use it with the display statement. So, this value is
given to num2string right. So, it will convert into a string and since all of this are in between
the square brackets it will concatenate all the strings right and that is given to the display
statement. So, this will display the best fitness function value in every iteration. So, if [ now

run this we will be able to see the progress in each iteration.

So, iteration 1 the best fitness function value was 6.3941, in the second iteration itself it was
able to substantially improve 0.048027, in the third iteration the best fitness function value

was 0.0011046 and subsequently it obtained the value of fitness with 0.
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|| Twotesttem 3| 4 Tteration 37: Best fitness = 0 4
- Xnew = B(1,:) + rand(l, D).*(B(1,:) = B(p,:)); % Generating the new solution 3| Iteration 3i: Best fitness = 0
- else Iteration 39: Best fitness = 0
- ¥new = B(i,:) - rand(l, D).*(B(i,:) = P(p,:)); & Generating the new solution Tteration 40: Best fitness = 0
5= end Iteration 41: Best fitness = 0
P Tteration 42: Best fitness = 0
- Xnew = min(ub, Xnew): % Bounding the violating variables to their upper bound Iteration 43: Best fitness = 0
- Xnew = max(1b, ¥new): % Bounding the viclating variables to their lower bound Tteration 44: Best fitness = 0
€ Iteration 45: Best fitness = 0
70~ fnew = prob (Xnew) ; % Evaluating the fitness of the newly generated solution Tteration 46: Best fitness = 0
n Iteration 47: Best fitness = 0
72- 1£ (Enew < £(i)) s Tteration 46 Best fitness = 0
3= P(i,1) = Xnew; ude the new solution in population Iteration 49: Best fitness = 0
"- £(i) = fnew; % Include the fitness function value of the new solution in Tteration 50: Best |

- end

% bestfitness =

= end

1) 0

9= BestFitIter (t+1) = min(f); % Storing the best value of each iteration

80

81~ disp(['Iteration ' mum2str(t) ': Best fitness = ' mum2str (BestFitIter (t+1))]) ind =

82- ‘“end

8 1

84~  [bestfitness,ind] = min(f) |

85- bestsol = P(ind,:) Y[

I« > gbestsol = v




And then it remained at that particular solution right. So, this shows the progress of the

fitness function value with respect to the iteration right. So, this gives a better picture as to

what is happening in the algorithm right.
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| Ti8Otesttezm | +
yif-] cle
2= clear

% To clear the command window
% To clear the workspace

4 %% Problem settings

5-  1b= [-100 -100 -100 -100];
6= ub= [100 100 100 100];

7= prob = @SphereNew; % Fitness function
9 % Algorithm paraveters
Np = 10;

T =50;

% Population Size
% No. of iterations

13 %% Starting of TLBO
£ = NaN(p, 1);
BestFitlter = NaN(T+1,1);

D = length(lb);

P = repmat(lb,Np, 1) + repmat((ub-1b),Np,1).*rand(Np,D);

2

2~ forp=1:8p

== £(p) = prob(B(p,:));
23- lend

2

1<

m.
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% Lower bound
% Upper bound

% Vector to stors the fitness function value of the populat
% Vector to store the best fitness function value in every

% Determining the number of decision variables in the probl

% Generation of the initial populatio

% Evaluating the fitness function of the initial population

Search Documentation FES

o x [ 0|
PO 1 oot fitnoss - 3053, 6172} g
Tteration 2:

Iteration 3:
Tteration 4: Best fitness = 512.4485
Tteration 51 Best fitness = 75,1763
Iteration 6: Best fitness = 75.1783
Iteration 7: Best fitness 1.4648
Tteration 8: Best fitness = 7.9064
Tteration 9: Best fitness = 69921
Tteration 10 Best fitness = 1.386
Tteration 11: Best fitness = 1.2134
Tteration 12: Best fitness = 0.39324
Tteration 13: Best fitness = 0.1685
Tteration 14: Best fitness = 0.012615
Tteration 15 Best fitness = 0.012615
Iteration 16: Best fitness = 0.0019411
Tteration 17 Best fitness = 0.00091878
Iteration 18: Best fitness = 0.00074351
Tteration 19: Best fitness = 0.00026848
Tteration 20; Best fitness = 0.00020491
Tteration 21: Best fitness = 0.000134
Iteration 22 Best fitness = 1.528%-06
Tteration 23: Best fitness = 1.526%e-06
Tteration 24: Best fitness = 6.2803e-06
Tteration 26 Best fitness = 2.2814e-07
{ Tteration 26: Best fitness = 2.3814e-07 v

So, let us say the lower bound was minus 100 minus 100 and it was a four variable problem

right. And the upper bound was 100. So, if we run this here we can see that initially it started

with the solution of 3053.6172 in iteration 1 that was the best fitness obtained in iteration 1.
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1- cle % To clear the comnand window V| rteration 38: Best fitness = 1.1362e-12

TLOBestiter2m | + Iteration 37: Best fitness = 7.1382e-12 A

2-  clear % To clear the workspace Tteration 39 Best fitness = 1.13§2e-12
3 Iteration 40: Best fitness = 5.57¢8e-12
4 % Problem settings Tteration 41: Best fitness = 1.9786e-12
5= 1b= [-100 -100 -100 -100]; % Lower bound Iteration 42: Best fitness = 2.097%-13
6= ub= [100 100 100 100); % Upper bound Tteration 43: Best fitness = 2.097%-13
7~ prob = @SpheraNew; % Fitness function Tteration 44: Best fitness = 2.094%-13
8 Tteration 45 Best fitness = 1.3325e-13
9 %% Algorithn paramsters Iteration 46: Best fitness = 2.602e-14
0= Np=10; % Population Size Iteration 47: Best fitness = 2.602e-14
- 1=50 % No. of iterations Tteratioy 4z Best fitness = 1.0178e-14
12 Iteratioff 49 Best fitness = §.1966e-15
13 %1 Starting of TLBO - [ = Iter:

U-  f=Na(p,1); % Vector to store the fitness function value of the populat |

15-  BestFitlter = NaN(T+,1); % Vector to store the best fitness function vale in every bestfitness =

16

17- D= length(lb); % Deternining the number of decision variables in the probl 3.4788e-16

18

19- P = repmat(lb,Np,1) + repnat((ub-1b),Np,1).*rand(Np,D)s % Generation of the initial pepulatio

20 ind =

21- [lfor p = 1:Np

2- ‘ £(p) = prob(2(p,:))+ % Evaluating the fitness function of the initial population 8

el end

2 7

|< > [febestsol = v

H £ Typehere tosearch

And then progressively it decreased that till it reached 3.4788 into 10 power minus 16 and
that at that iteration we had exhausted the number of permissible iterations right. So, it had to
stop over there right. So, this way we can actually analyze the performance of the algorithm
right. So, now we can also plot this right. So, instead of having to every time look at this

values and analyze if we had plotted it our analysis would have been easier right.
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2.0979%-13
2.094%e-13
5 = 1.3325-13
= 2.602e-14
2.602e-1¢
1.0178e-14
ess = 5.1966e-15

8- BestFitlter (t+1) = min(f); % Storing the best value of each iteration
80~ disp(['Iteration : ' mum2str(t) ': Best fitness = ' mum2str(BestFitIter (t+1))])
82- ‘“end bestfitness =

4~ [bestfitness, ind] = min(f); 3.4798e-16
85~ bestsol = P(ind,:);

6 %% convergence with semilog plot ind =
8- subplot(l,2,1)
8- plot(0:T, BestFitIter); 8
9= xlabel('Tteration’);

S1-  ylabel('Best fitness value')
%2 bestsol =

9= subplot(1,2,2) 1.0e-07 *
55 - (0:7, BestFitTter) ;
9~ xlabel(‘Iteration’); -0.1161  0.0127 -0.1059  0.0997
57~ ylabel('Best fitness value') v

< > | fen
H B Typeheretosearch

saipt 1n 95 Gol 9

So, in this case in addition to displaying this we also plot right. So, you might have used the
function subplot weight if you have not used subplot right if you have not used subplot you
can quickly do a help subplot and learn the features of subplot. So, here what we are going to
do is we are going to divide the figure the plot window into 1 row and 2 columns right. So,
that particular figure is going to contain two plots right and the first plot is indicated by this
position 1 and the second plot will be indicated by the position 2.

So, what we are going to do is we are going to plot first time in the first position we are going
to plot right on the x axis we are going to have iterations right. So, and we also want to
include the initial population right. So, we give 0 to T right. If you had given 1 to T then we
would have only analyzed what is happening from the first iteration, we may not know what

was the best solution in the initial population right even before we began TLBO.

So, that is why we include this 0 and best fit iter as we knows has all the fitness function
value best fitness function value in every iteration. Then we add xlabel and ylabel right xlabel

is iteration and ylabel is best fitness value right. Similarly, in the second plot the x and y axis



are same it is just that it is a semi log plot with the y axis in the logarithmic scale right. So,

that will help us to better analyze the convergence right.
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So, if we run this now. So, these are the two plots right. So, the x axis is iteration let us just
analyze the first plot right. So, the x axis is iteration and the y axis is the best fitness value
and thus y axis is the normal scale right 0 24 6 8 10 12 and 12 and 14. So, initially when we
started we can see that it started somewhere close to somewhere above 12 right and its the
solution the best fitness function gradually improved right this should not be surprising
because TLBO as we discussed its monotonically converging because we have a greedy

selection mechanism.

A solution can enter the population only if it has a better fitness function value right this the
second plot shows the same convergence curve in a semi log plot. So, the x axis is iteration it
is in the usual scale the y axis if you see it is in a logarithmic scale right. So, from the first
plot it might seem that the algorithm has converged right that there is no improvement beyond

let us say 8 th or 9 th iteration right that is because of the scale of the graph, but when we plot



in a semi log plot we can actually see the performance in a much better way because even
small changes in the fitness function values have been captured because of the semi log plot

right.

So, here if we see the algorithm has not converged right it is still converging if we increase
the number of iterations it might converge at some point or we need to increase the number of
population. So, this is how we analyze the performance of the algorithm using the
convergence curve right if the values are drastically varying magnitudes then we choose to

plot the semi log graphs right else the normal graph should be sufficient right.

Now, that we have looked into the semi log plot right. So, every time we run we will get
different values right. So, this graph would be a different. So, here if you in the command
window right. So, this value if you see every time we run it will be different right that is
because its a stochastic algorithm. So, we need to run it multiple times and do a statistical

analysis which we have discussed earlier right.
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| | TibObestPlotiter3m Iteration : 26: Best fitness = 9.9175e-09
1- cle % To clear the comand window N fteration : 27: Best fitness = 2.88926-09
- clear % To clear the workspace Tteration : 26: Best fitness = 1.5575e-09
Tteration : 29: Best fitness = 7.0154e-10

%% Problen settings Tteration : 30: Best fitness = 4.5448e-10

Tteration : 31: Best fitness = 9.8875e-11
Tteration : 32: Best fitness = §.152le-11
Tteration : 33: Best fitness = 6.9393e-12
Tteration : 34: Best fitness = 3.0982e-12
9 % Algorithn parameters Tteration : 35: Best fitness = 2.8559e-12
1o-  Np=10; Iteration : 36: Best fitness = 1.7065e-13

- wb= (10 0]

2
3
4
5= b= [-10 -10];
3
7= prob = @SphereNew;
8

n=- T =50 % No. of it Tteration : 37: Best fitness = 6.6317e-14
12 Iteration : 38: Best fitness = 5.4675e-14
13 % starting of TLEO Tteration : 39: Best fitness = 4.7046e-14

U=~ f=NaN(Np,1);

15=  BestFitlter = NaN(T+1,1);
16

17= D = length(lb);

18

Iteration : 40: Best fitness = 1.2414e-15
Tteration : 41: Best fitness = 4.946e-1¢
Iteration : 42: Best fitness = 4.946e-16
Tteration : 43: Best fitness = 3.7962e-16

Iteration : 44: Best fitness = 3.7962e-16

19= P = repmat(lb,Np,1) + rag;;st((ub—].b},Np,l}."rand(Np,DH % Generation of the initial populatio Tteration : 45: Best fitness = 3.7962e-16
20 Iteration : 46: Best fitness = 3.2386e-16
21- Cfor p = 1:Np Tteration : 47: Best fitness = 3.0798e-17
B £(p) = prob(B(p,:))7 % Evaluating the fitness function of the initial population Tteration : 48: Best fitness = 2.3674e-17
23- ‘end Tteration : 49: Best fitness = 1.2016e-18
2 v Iteration : 50: Best fitness = 1.1581e-18
< > t>> v

In1 Col 1

m
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80! Tteration : 26: Best fitness = 9.9175e-09 2
1 [lfunction [bestsol,bestfitness,BestFitlter,[], ] = TLBO (prob, 1b,ub, Np,T) 7 Iteration : 21: Best fitness = 2.8892e-09
2 - 7| tteration : 28: Best fitness = 1.5575e-09
3 | *% starting of TLEO Iteration : 29: Best fitness = 7.0154e-10
4= £ = NaN(¥p,1); % Vector to store the fitness function value of the populati=| TIteration : 30: Best fitness = 4.5448e-10
5- | BestFitlter = NaN(T+1,1); % Vector to store the best fitness function value in every [M—| Iteration : 31: Best fitness = 9.8875e-11
6 Tteration : 32: Best fitness = 5.1521e-11
7- | D= length(lb); % Determining the mmber of decision variables in the probl Iteration : 33: Best fitness = 6.9393e-12
8 ~| Tteration : 34: Best fitness = 3.0982e-12
9~ | B = repnat(lb,Np,1) + repnat ((ub-Ib),Np,1). *rand(Np,D); % Generation of the initial populatio’ —| Iteration : 35: Best fitness = 2.8559e-12
10 ~| teration : 36: Best fitness = 1.7065e-13
- [for p = 1:Np Iteration : 37: Best fitness = 6.6377e-14
e £(p) = prob(B(®, )7 % Evaluating the fitness function of the initial population Tteration : 38: Best fitness = 5.4675e-14
18- fend Iteration : 39: Best fitness = 4.7046e-14
14 Tteration : 40: Best fitness = 1.2414e-15
15- | BestFitlter(l) = min(f); Iteration : 41: Best fitness = 4.946e-1¢
1% Tteration : d2: Best fitness = 4.946e-16
17 | % Iteration loop ~| Iteration : 43: Best fitness = 3.7962e-16
18- Cfort=1:1 =| Tteration : 44: Best fitness = 3.1962e-16
19 j Iteration : 45: Best fitness = 3.7962e-16
20~ for i = 1:Np Iteration : 46: Best fitness = 3.2386e-16
21 #% Teacher Phase 7| 1teration : 47: Best fitness = 3.0798e-17
oS Xnean = mean(£) ; % Determining mean of the population Tteration : 48: Best fitness = 2.367de-17
23 Iteration : 49: Best fitness = 1.2016e-18
2~ [~ dnd] = min(£); % Detemining the location of the teacher Tteration : 50: Best fitness = 1.1581e-18
< v
111~ 15 usagss of P*found |80 ln1 cl43
P Type here tosearch [ <] )

So, we can implement the multiple runs by converting the script file into a function file. So,

this is the function file for TLBO right.
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51- if £(i)< £(p) % Select the appropriate equation to be us
2- Xnew = B(i,) + rand(1, D).*(E(i,) - Blp,:)):
8- else

- Xnew = B(1,:) - rand(l, D).*(B(1,:) - B(p,))i % G
s5- end

5- Xnew = min(ub, Xnew); % Bour
8- Xnew = mas(lb, ¥new):

- £new = prob (xnew) ;
62- if (frew < £(1))
6- P(i,:) = Xnew;
6= £(i) = fnew;
- end

- end

- BestFitTter (t+1) = min(f); % Storing the best value of each iteration
70- rend 1

72- | [bestfitness, ind] = min(f);
73~ ‘bestsol = P(ind,:);

<
H B Typeheretosearch

: 49: Best fitness = 1.2016e-18
ion : 50: Best fitness = 1.1581e-18

In1 Gl 1

So, we in that file which we showed we have removed the display statement right and we
have also removed the convergence plot all those things can be done in the script file right.
So, this is just we have in this function file we just have only the algorithm all the analysis
part we have removed right, but we also store this to analyze the convergence we will require

this variable right because that keeps track of the best fitness function value in every iteration.

So, this function is will expect the problem that we want to optimize the lower and upper
bounds. The population size Np and the number of iterations denoted by T right. So,
previously these were defined here itself in the function file. So, that has now been removed
and it has been given as input to this function file. So, user is supposed to provide these detail
to use this function TLBO and what this function file will return is the best solution the best
fitness best solution as in at the end of the specified number of iteration what was the best

solution that was obtained in terms of the decision variable values.

And corresponding to these decision variable values what is the fitness function right or what

is the objective function value and then the best fit iter variable the variable best fit iter,



which will help us to analyze the convergence and we are also passing the last population and

its corresponding fitness function value right.

So, many a times this analyzing this population can give us further insights into selecting an
appropriate solution right. So, we written this population as well as its corresponding fitness
function now that we have this function file we can write a script file which makes use of this

function file right.
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| | TOm %] TEOSaipthunciont.m [+ Hane size Bytes Class Attributes
U cle -

2= clear BestFitIter  5lxl 108 double

3 Tp 1x1 8 double

4 % Erblen settings 13 1004 320 double

5= 1b= [-100 -100 -100 -100]; % Lower bound ) 1xl 8 double

6= ub= [100 100 100 100]; % Upper bound bestZitness 1xl 8 double

7= prob = @Rosenbrock; % Fitness function bestsol 1xd 32 double

8 e 1021 80 double

9 4% Algorithm parameters 1b 1xd 32 double

0- Np=10; % Population Size prob 1xl 32 function handle
dall T = 50; % No. of iterations ub 1xd 32 double

12

13 »> bestfitness

14-  [bestsol,bestfitness,BestFitlter, B, £] = TLBO(prob, b, ub,Np, T) i

So, let us go over here and. So, this is the script file with which we will be calling the
function TLBO right. So, clc clear you know it is to just clear the command window and to
clear the MATLAB workspace. So, we are defining the lower bound upper bound as 100 and
the problem is Rosenbrock function we want to optimize the Rosenbrock function with these
parameter settings for the algorithm that we want to take a population size of 10 and the

number of iterations to be 50.



Now, that we have this five variables we need to pass it to the function TLBO. So, for the
function TLBO we are passing the variable prop the lower bound the upper bound the class
size or the number of members Np and the T is the number of iterations that we want to
perform right. So, for this algorithm we have given the input and this is what we are

expecting the algorithm to return the best solution the best fitness.

So, what is the best fitness in every iteration including the initial population the final
population and the fitness function corresponding to the final population right. So, let me just
put a semicolon over here and if we execute this right. So, we does not display anything
because we have put a semicolon at the end of every line right, but if we type whos it will

show the variables which it has in the MATLAB workspace right.

So, here if we look at best fitness right, so best fitness is 1.8406. So, for the Rosenbrock
function with four decision variables with lower and upper bound as minus 100 and 100 it
was able to obtain a solution which has its fitness as 1.8406. So, what is the solution
corresponding to this fitness function that is given in this variable bestsol right. So, this is the
best solution it has determined right. So, we can get the best solution its corresponding fitness

and then we can also look at the population right.
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>> bestsol

1- cle
2-  clear

3 bestsol =

Ml W Ercble mtting

5= 1b= [-100 -100 100 -100]; % Lower bound 04319 0.2359  0.0330  0.0102
6= ub = [100 100 100 100]: % Upper bound

7~ prob = GRosenbrocks % Fitness function »e

8

9 %% Algorithn paramsters pa

10-  Np=10; % Population Size

- 150 % No. of iterations

2

13

14~ [bestsol, BESCEIEAGRY, BestFitIter, B, £] = TLB0(prob, 1b, ub,Np,T) ;

So, at the end of 50 iteration, this was the population right since the domain was minus 100
and 100 all the variables are within the domain and their corresponding fitness function is

given by f. So, for these population members this is the corresponding fitness.
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ICNGRE search Documentation A

TIEOSiptFunctiontm ¢ 0 0 0.
cle 0 0 0.

2= clear 04568 0.2111  0.0333 -0
3 04952 0.2453  0.0278  0.0072
4 % Problem settings | 04838 0.2292  0.0311  0.0073
5-  1b= [-100 -100 -100 -100]; % Lover bound 0.4867  0.2367  0.0318  0.0120
6= ub= [100 100 100 100]7 $ Upper bound 04867 0.2269  0.0346  0.0166
7-  prob = @Rosenbracks % Fitness function 04933 0.2386  0.0305  0.0098
8 04674 0.2149 00332 0.0052
9 %% Algorithn parancters
10- % Population Size » £
il % No. of iterations
2 i=
IE|
14=  [bestsol,bestfitness, BestFitIter, B, £] = TLBO(prob, b, ub,Np, )7 1.8646
15 1.8406
1 1.6528
7 1.8522
18 1.8785

1.8516

1.8541

1.8554

1.8563

1.8547

fe>> D
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Cormand Window
[ [ TB0m | TEOSaiptfundionim | +
1- 0.0000
2-  clear 0.0000.
3 0.0000
4 %% Problem settings 0.0000.
5= 1b= [-100 -100 -100 -100]; % Lower bound 0.0000
6- ub= [100 100 100 100); % Upper bound 00000
7~ prob = GRosenbrock; % Fitness function 0.0000
8 00000
9 &% Algorithn paramsters 0.0000.
0- Np=10; % Population Size 00000
n- s % No. of iterations 0.0000
2 00000
13 0.0000.
18- [bestsol,bestfitness, BestEitIter, B, £] = TLBO(prob, 1b, ub,Np, 1) i 00000
15 0.0000
1 0.0000.
1 0.0000.
18 00000
0.0000.
00000
0.0000.
00000
0.0000.
00000
J o0.0000 v

| saipt ltn 14 Col 33

So, the size of this fitness will be 10 cross 1 because we have 10 population members right.
So, this best fit iter will be a 51 cross 1 vector because, we had 50 iterations and we also

stored the initial population the best fitness in the initial population right.
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TLOm | TLEOSeriptFundtionim® ¥ | 4 >> whos

e O hame size Bytes Class Attributes
2= clear
R BestFitIter Slxl 408 double
4 4% Problem settings Tp 1xl § double
5- 1b= [-100 -100 -100 -100]; % Lover bound D 10x4 320 double
6= ub = [100 100 100 100]; % Upper bound T 1xl 8 double
7-  prob = GRosenbrock; % Fitness function bestitness 1xl 8 double
8 bestsol Ixd 32 double
§ % Algorithn parameters £ 1021 80 double
0= Np= 107 % Population Size 1o 1xd 32 double
n- T =50 % No. of iterations prob 1x1 32 function_handle
2 uwb Ixd 32 double
13
14-  [bestsol,bestfitness,BestFitlter, B, f] = TLBO(praob,lb,ub,Np,T); >> bestfitness
15 plot(0:T, g:tmmd |
16 bestZitness =
17
18 1.8406
19

> bestsol

bestsol =

0.4919  0.2359  0.0330  0.0102
v

M- [sript [in 15 ol 21

So, that is why if we see the best fitter will be 51 cross 1 right. So, now we have; so now
since that we have TLBO as a function file we can implement a for loop over here right and
execute multiple runs and do a statistical analysis right. We can also now plot the

convergence curve for this particular problem 0 to T comma best fit iter.
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I need to execute this right. So, here if we see it is actually starting with a very large value

right. So, 10 power 10 into 10 power 8 right and then it brings it to 0.
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TLEOScrptEundiontm® % |
clc
2= clear

4 %% Problem settings

5-  1lb= [-100 -100 -100 -100]; % Lower bound
6= ub = [100 100 100 100]: % Upper bound
7-  prob = @Rosenbrock; % Fitness function

9 %% Algorithn parameters
- Np=10; % population Size
n- T=50 % No. of iterations

18- [bestsol,bestfitness, BestFititer,®, ] = TLBO(prab,lb,ub,Np, T)
15~ |enilogy(0:T, BestFitIter)
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So, if you look at a semi log plot right. So, let me get rid of this right.
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So, here we can see the convergence in a better sense right. So, the x axis is iteration I am not
putting the x label and y label x axis. So, denotes the iteration. So, initially when it started it
started with a really high value right something into 10 power 7 right and then it brought it to
a value closer to 0. So, here we can actually see the performance of TLBO that it helps us it

helps us to progressively find solutions which are better with that we will end the session.

Thank you.



