Computer Aided Applied Single Objective Optimization
Dr. Prakash Kotecha
Department of Chemical Engineering
Indian Institute of Technology, Guwahati

Lecture - 29
MATLAB Optimization Tool: Options, Output Function, Vectorization, Parallelization

So, in this session we will see three things; first we will see how to change the default options
right. So, for every algorithm there is a set of default options. So, those options can be
changed right. So, if you do not give those values even then a problem could be solved, but in

many instances we may have to change the default options right.

We look how to change the options for one of the inbuilt function and for the rest of the other
functions its going to be similar right. Similarly, we will look into what is called as the use of
output function. So, output function is something that is called at the end of every iteration.
The inbuilt functions of MATLAB are iterative techniques right. So, if you want the technique
to do something after every iteration, we can write it in a function file and we can specify that

as part of our options.

So, whenever an iteration is completed, the function file which we wrote will be executed,

after looking into the output functions we look into vectorization and parallelization.

(Refer Slide Time: 01:25)

St (TN

So, you can find optimization toolbox as an app over here right. So, over here you have
optimization. So, if you click on this, it will open the optimization gui right. So, here we can

select the solver. So, the functions which we have seen are listed over here.

So, for example, fmincon we did not look at fminmax we did fminsearch fminunc we did ga,
lin prog right. So, all those functions which we studied as part of this session are listed over
here right. So, let me say that I select ga function right. So, if I select ga function you can see
that these are the various options right when we learnt the inbuilt function ga, you would have
seen that we did not even specify the number of iterations, the population size or anything

right.

So, that is because MATLAB by default has some values. So, these are the options that are

given to the user right. So, for example, we can change the population type right. So, there are

various types of population, we can also define our own population right. So, that can be

selected. So, the default type is double vector right.

So, the population size is default is 50 for 5 or fewer variables otherwise it is 200 right. So, if
its a three variable problem the population size is 50, if it is a 10 variable problem the

population size is 200. Even if it is a 1000 variable problem the default population size would

be 200 right.

(Refer Slide Time: 02:53)

o [T,

So, similarly there are a lot of other options which are given over here these options can be
changed as per the requirement of the user right. So, coming over to this side here we can give
the fitness function, the number of decision variable here we can give the coefficient matrix of
the linear inequalities, here we can give the coefficient matrix of the linear equalities. We can

give the lower bounds over here the upper bounds over here, non-linear constraints we are

supposed to write it in a function file and then provide the name of the file over here and then

this is the int con which we have seen right.

So, if let us say the 3rd, 8th and 9th variable are integer we are supposed to provide 389 over
here and then if we give the start it will run and it will display the results right. One reason
why we did not use this optimization tool was that, for problems involving larger dimension
we feel that it is difficult to use this optimization tool right. So, even for genetic algorithm if
you remember the discussion in the course since its a stochastic technique, we need to
implement 10 runs right. At least to us it is not clear how do we implement 10 runs over here

right.

Whereas the script file and the function files which we showed, we can just put a loop over
there right and we can use it for multiple runs and also do statistical analysis right. So, over
here these are the options which we can change right and over here the explanation of each of

them is given.

(Refer Slide Time: 04:12)

So, for example, population type if you want additional detail on population type you can look

into this help right.

(Refer Slide Time: 04:18)

0 Y YT

So, what we will do is, we will solve a problem wherein we change the default option right.
So, we will demonstrate it for genetic algorithm right, but you can use it for any other problem

right. So, the function that we require is optim options right.

(Refer Slide Time: 04:39)

So, if use type doc space optim options, it will open the help window of optim options right.
So, this is the help window of optim options right. So, the syntax of optim option that we will

be using as part of this course is this one right.

Options is just a variable name, we can give any variable name right this optim options is the
inbuilt function right. So, we need to use the same thing over here and then we need to
provide the solver name. Solver name means the underlying optimization function which we
are using. So, for example, ga particle swarm, lin prog, int lin prog. So, whatever that function

we are using right. So, we need to provide name of that inbuilt function right.

And for each of this inbuilt function there are certain values which can be provided by the user

right.

(Refer Slide Time: 05:22)

So, for example, if we scroll down over here. So, the name value pair arguments are given
over here. So, for example, if we are using let us say ga right. So, in ga what are all the things

which we can change can be obtained from this options right.

(Refer Slide Time: 05:32)

= e

i - —

[rop— e

A1 0 g 3, [, 0., o e e B 1 101 e b e

So, now it is opening the options of ga. So, if you look over here this is the option right.

(Refer Slide Time: 05:37)

S P L g e e, " BT G

. -
ni: LI _

So, for example, we can change the constraint tolerance right. So, the name of the field is
constraint tolerance, what it indicates is given over here in this description right and what is
the default value is also given. So, the default value is 10 power minus 3. So, if you want to

change whatever value we want to give has to be a positive scalar right.

So, this is the keyword this we cannot change right this is the description right which tells us
what is that exactly this keyword corresponds to and what are the possible values and what is
the current default value right. So, the current default value is in this curly braces. So, for

example, over here we have maximum generations right.

(Refer Slide Time: 06:19)

So, if you want to modify the maximum number of generations we need to provide this

keyword max generations right and provide a positive integer right.

So, the default value is 100 into number of variables. So, if we have a 5 variable problem the
default value is 500 generations, if it is a single objective optimization problem and we are
using the function ga, if it is a multi-objective genetic algorithm then the maximum number of

generation is 200 into number of decision variables.

So, this is a function file, this helps in creation of the offspring using mutation. So, the
different options which are available for mutation is given over here mutation options right and
the default option is mutation Gaussian if we are working with ga right. If we are working

with ga multi objective, then the default option is mutation adapt feasible right.

(Refer Slide Time: 07:12)

et - A1
i Ayt e -
——
Onenen i it 3
[R ey ——
]
JIES——
i
e e
[re——r— I
gt
v e i -
e
Jorase v
Mot e
]
[
i b o
e
St e o e i
- ™
i i i B B v i
S P
st i B i
s
f—
- i ‘l
Rt s e
M e b e [-]
B et e 4
s i
n.ﬂhmnm mAam= i g

So, if we click on this mutation options we will get additional information on mutation

options.

(Refer Slide Time: 07:15)

Optimization options

F Optimization options are specified as the output of the structure ‘optimoptions’.

#Can be used to modify or view the default setting of any optimization solvers.

#Consider minimization of Rastrigin function usin

. . .] 5
#Using optimoptions, ;:(¥)= Z[- 10cos(2x) + 101
e i=l
* change crossover probability to 0.6, =502 £x< 512 Viell,..,D
Lo e

* include plot function to plot best iteration versus objective value.
_

So, now what we will do is we will solve an optimization problem. So here what we will do is
we will not solve with default the ga right we want to solve with the inbuilt function g a, but
we want to work with the crossover probability of 0.6 and we also want a plot which we will

plot the iteration versus best objective function value.

(Refer Slide Time: 07:36)

MATLAB code

. — Create a script file to solve the problem using
Create a function file of the objective

. ga
function s
function F = Rastrigin(x) rng(l, 'twister') i ror reproducibility
it
D = length(x); FUN ={BRastrigin; s objective function handle
F=0; i
D = 2; i Dimension of the problem
for d = 1:D 1B = -5,12+ones (1,D) ; & Lover bounds
F=F+ x(d)"*2 - 10*%cos (2*pi*x(d))

UB = 5.12%ones(1,D); & upper bounds
+ 10; the default umm

¥ &
end = (ga','BlotFen’,

othoar.f (CrossoverFraction® U 6)

] % Calling the solver

f{x)zZ[xf—chos(erx,]HO] [x, fval] = gltE‘UHT, 1, [[]: [, 18,

[F2<x<502 viel2.,D]

So, what we will do is, we will create a function file right where in we will write the objective

function right and then this is the script file right. So, all this we have discussed right.

So, now what we are doing is we are defining a variable options right and we are using the
inbuilt function of MATLAB optimoptions right. So, this has to be only optimoptions instead
of this options we can have let us say gaopt right because this is just a variable name right, but
this optimoptions is an inbuilt function. So, that has to be called as such right and now we

want to solve with ga and we want to change the default values of the ga function.

So, we need to give this ga within single coats right and then in this PlotFcn right. So, there

are a lot of plots that ga can generate if you look at the options of ga you will be able to see

PlotFen right and then we are selecting this one. Again, this is an inbuilt function which is

already available right we are changing the value of PlotFcn right to ga plotbestf right.

Similarly, we are changing the crossover fraction to 0.6 of the keyword which corresponds to

the crossover fraction is crossover fraction and we are changing the value to 0.6 right.

(Refer Slide Time: 08:52)

s 7L e e v 1= it

Bt Sl s Pt g 2. 3 v
S 1 o i s 4 e
e o

So, if we go over here right and look at the options of genetic algorithm; genetic algorithm

options are here over here we are interested in the plot function.

(Refer Slide Time: 09:04)

T i g e et o 4
¢ e
R o e o v
= P
v
[TR ——

i .)
s - - -
o e . =i s

- o g e e

- e e

s —— -

' ety

- S

- e v e

¥ ——

== s sy

o= Ny k "

M e e i s 8 e o

- i Rt o B 1 1, o e T

: 5 e s g I
e o

s

i

.........

———

£
¥
i
B
i
i
i
i
i
i
¥
i

So, this is the keyword PlotFcn for the keyword PlotFen we could take any of this values

right.

(Refer Slide Time: 09:08)

S P L e e e, i " 0 B0 G

n fimmea— _

So, the default value is a null set right. So, that is why it would not plot anything right. So, we
can take ga plot distance, ga plot genealogy. So, what we have actually taken now is ga
plotbestf right. You can actually go and look into this plot options and try to understand what

each of this plot is doing. So, for now we are directly giving the value.

Since this is a function, we need to give this at the rate symbol right. So, now, since we have
defined it as options, we need to solve the problem right. So, ga FUN because that refers to
this objective function file which we have written right D is the number of variables we do not

have any linear constraints.

So, no linear inequalities; no linear equalities lower bound and upper bound we have minus
5.12 to 5.12. We do not have any integer variables we do not have any non-linear constraints.

So, that is why all of this is empty and then we have given options right. So, either options if

you have used options over here or over here we need to give gaopt right that is the name of

the variable.

(Refer Slide Time: 10:19)

S8 DT o Lo Papene ¢ i e et

| St | i [4

1
2= cle; clear
3= ogll, 'twister'} % For réproducibility

4= FUN = BRastrigin; %
&= D= 2; \ Dimenzion
&= 1B = -5.12%nes (1,0
7= UB = 5.12%omes(

8 ' Change the de

3= options = optimoptions »'FlotFen’, fgaplotbestf, 'CrossoverFraction®,
10 { Cal g the 2

1 V(% fvall = gafPm, o, 1), (1, [0, L), LB, UB, [}, [], opticns); I
12 [z, fval] = ga(eun, 0, [1, (1, (1, [1, 18, o8, [1, [Ihs

13

£ Y

W
O T]

So, whatever we have discussed its actually coded over here right. So, let us say initially we

are running it without the options right. So, let me just come in this line, no options right now

if we run this.

(Refer Slide Time: 10:35)

% bm 5
I l“"'" S ——— m| Optimization terminated: step requested from plot
2= cle; clear k>
o mg(l, 'twister') § For reproducib ty
4= PN - BRastrigin;
Lo D=2 L probl
€= 1B = -§.12%nes(LD); ¥ Lower b
7= UB = 5.i2%ones(1,D); ¥ Upper b
8 § Changs jol etting
9= options = optimoptions{'ga’,'Platfen’, @gaplothest!, 'CrossoverFraction’, 0.6
10 \ calling th o
1= [z, fval] = ga(Fon, 0, [, [}, (1, [1, 18, U8, {1, [}, options);
12 \ [x, fval galFum, o, 11, (1, [0 L, B, B, 1], [N
13
I . : i
[- O Y Y]

So, in this case we did not change the default option right. So, no you did not plot anything

right at the completion of the algorithm it gave this status message right and that was it right.

So, now we are changing the default option right. So, let me solve this one right. So, just
because we are defining options here does not mean it will be taken by ga right. So, it will be
taken by ga only if we include this options while solving ga right. So, this line was actually
uncommented when we had executed line 12 right, still we did not get any plot right. So, that

is because we did not include options though we had defined it we did not include it here we

are now including that.

(Refer Slide Time: 11:20)

4
ey T .
o El G S et TV A T = o o Gt S “
e e IR, CET PR D R
OSSR 1 L it Do 158 M 13
po———— — -

P ————— i
|

timization terminated: awerage change in the fits

3 eng(l, ‘twister’)
1 P = BRastriging i"
D=2

L] ptions = optimoptions{'ga’,"elotFen’, Bg T EEEEEEEE
- Lt i

1
11 Ix, fval] = ga(Fus, 0, {1, (1, (1, (1, 18, 0B, {1, [, options);

So, over here if we run this now right. So, here if we see it is actually changing the values are
changing and every generation we are getting this plot right. So, in this case it is plotting the
best value in the every generation and the mean of the fitness function of the population right.
So, this way you can change the default options right. So, as part of this course it is not

possible to run you through all the options right.

So, here we have just demonstrated that the options can be changed. So, for whatever
function you are working with, you need to go and look at what are the default options and if
you want to change the you can change them right. So, the purpose over here is to just

demonstrate that the options can be changed right.

As and when you are working with solver right you can look at the default options and change

whatever is required. So, that was about how to change the default options of MATLAB, now

we will look into how to make use of the output function in MATLAB. So, for changing
options we demonstrated it with ga. So, same thing we will do for output function we will
demonstrate it with ga. So, for whatever inbuilt function you are using in MATLAB you can

write your own output function as per your needs.

(Refer Slide Time: 12:26)

OutputFen in optimization toolbox

#To retrieve output from an optimization algorithm in every iteration

7 Syntax: q = optimoptions({@solvername, @urpn@n‘, {@outputfunction)
} deetiy

- ol " 4 . :
#For ga, MATLAB passes the n!)rmns, state, and flag dara to the output function, and it returns

state, options, and optchanged data,

* options: structure containing the settings used in ga.

* state: Structure containing information such as generation, start time, stop flag, best score in each
generation, current population and scores etc. about the current generation.

* flag: current status (‘inif’, ‘iter’, ‘done’ ete.) of the algorithm
: - R Ry £ c
#Output function syntax: |\'1:l|u,r:p\:unmplL‘|l.muu|| = oulf on(options,state,tag)
' ' T iy Tl i

~ 4 PS. AL <
roptchanged: flag indicating changes to options (if options are ch:mgcd, =1 else
optchanged = 0)&—
REn

So, the use of this output function is to retrieve output from an optimization algorithm in
every iteration. If we specify to the algorithm through the options right. So, options is are
name of a variable over here. So, that has to be set using optim options which we discussed
earlier. So, in optim options if you specify the name of the solver and if we use this keyword
OutputFcn right with o and f as upper case that is a keyword right and specify name of any

function file which we have written.

So, remember this is not an inbuilt function file right. So, this is a function file that we are
writing. So, whatever changes we want we can implement through this output function. So, in
case of ga when this function file is access. So, ga would supply these three values; options,
the state and a flag. For options is a structure which will contain the current setting used in ga
right state will have various things. So, for example, current population is also a part of state

right.

So, state is going to be a structures. So, this variable flag denotes the current status of the
algorithm right. The syntax of the output function if we are using ga is whatever the name of
the function that we want to give, remember this was a function that we write, its not an
inbuilt function. So, whatever function name we give we will receive three things. So, the

function that we write should be capable of receiving three things options, state and flag right.

And what the function is supposed to written is the state, the options and we need to specify if
we have change the options right. So, optchanged is a flag which has to have a value of 1 or 0
right. So, we need to provide a value of 0 if we are not changing the current options of ga, if
you are changing the current options of ga in this output function, then we have to give a
value of one to this variable optchanged. So, remember these are just variable names right. So,

we can have x y z and a b ¢ over here.

(Refer Slide Time: 14:21)

MATLAB code

Create a function file of the Create an output function which plots the population
objective function % in every generation
function F = Rastrigin(x) function [state, opt_ig__ns, 0 =
D = length(x) ; outputFnExample (cptions, g]
F=0; = N .
optchanged = tj._.ligg § Flag to indicate the change in options
for d = 1:D
F=F+x(d*2 - currentPop = t.ata.?jgulation:s current population
10%cos (2*pi*x(d)) + 10; plot(currentPop(:,1), currentPop(:,2), 'b.');
end hold on; s

\ﬁamw

Dre. XTabal('x 1')
flx)= Z[x; ~10cos(27x) + 10] yIabel('x 2')
=

end

S\Lb &3

So, here this is the fitness function we are solving Rastrigin function. So, this is something that
we have done previously right. So, here we are writing a function file right. So, function file
which can receive options, state and flag. So, this is with respect to ga and this function file
which we are writing will return state options and whether the options are changed or not

using this variable optchanged right

So, optchanged we are assigning a value of false over here right. So, we are assigning value of
0 or false because over here in this output function file, we are not changing the options the
current options of ga. So, that is why we are passing this value of false back to the algorithm
right. So, what we are doing is, we are accessing the population right. So, state contains lot of
information. So, the current population can be accessed by state dot population right. So, all

of it would be assigned to variable currentPop right.

So, this Rastrigin function we are solving for a two variable the population if you will see it
will have two columns right. The first column will be for variable 1, the second column will be
for variable 2 and the number of rows will be the number of solutions right. So, what we are
doing is we are plotting x 1 and x 2 with a blue color dot. So, what we essentially want to do

is at the end of every iteration we want to see how the points are moving in the search space.

If you can recollect this we had done long back while we were looking at teaching learning
based optimization, we also looked at the decision variable space as to how the solutions are
approaching the optimum. So, hold on is to just make sure that the plot is retained subsequent
population is also plotted on the same plot right. So, draw now will immediately draw the plot
right and then we are assigning xlabel and ylabel as variable x 1 and variable x 2. So, now we

have this objective function file ready, we have the output function file ready right.

(Refer Slide Time: 16:20)

MATLAB code

Create a script file to solve the problem using ga 6

_clciclear
1, 'twister') % For reproducibility 4 -

Fr'r_m = @Rastrigin; % objective function handle Al g . :.

D = 2; & Dimansion of the problem 0 00 APE o er
LB = -5.12%0nes(1,D) ; ¥ Lover bounds of the probles @ s opre g T
UB = 5.12%cnes(1,D); % Upper bounds of the problem v, s .f,:}‘,:mi L PR
- Ch the default settings using cptimoptions 2 L T T G .o
@iﬁb= optimoptions('ga', 'OutputFen' e . o o
EM_}: 'Cy6ssoverFraction’ ,.; Sota w0 LAE B

% Calling the ﬂu ’ ——— @ - ! 0 oo v o

[x, fval] = tma_grmn UB, o

il 4 4 2 0 2 4 &

, [1, options);

Output:
[5.12 <x< 512 Viel..D| x [0.7856e" -0.0458¢"]

fval 1.2287¢%

So, now we can solve with ga. So, rng 1 comma twister will help us to reproduce the result.
So, the objective function file which we had written as a name of Rastrigin. So, that we are
assigning to a variable fun right. So, the dimension of the problem is to we are defining the
lower and upper bounds right. The lower bound of both the variable is minus 5.12 and minus

5.12 the upper bounds of both the variables are 5.12 and 5.12 right.

So, remember the ga function by default does not go into the output function file right unless
we inform ga through options right. So, right now we are defining options. So, this is a
variable name, we are using the function optimoptions right the name of the solver that we are
currently working with ga. So, if you are working with f min con then you need to give f min

con this output FUN is a keyword it remains the same right.

And the file that we want ga to execute at the end of every iteration is this one which is what
we previously wrote right outputFnExample right and then we are also changing the default
crossoverFraction to 0.6 again this is a keyword right. It has to be a scalar value. So, we are
providing a value of 0.6. So, then we solve using ga right. So, for solving ga the syntax is the
fitness function file number of decision variables linear constraints if we have any. So, in this

case we do not have any linear constraints.

So, we give empty bracket lower bound upper bound in this case we do not have non-linear
consent, if we had non-linear consent we need to give the name of the file right and int con; int
con is if we have any integer variable. So, in this case we do not have any integer variables.

So, we give an empty bracket comma options right.

Options because we use the word options over here, if we had used let us say z over here
being able to provide z over here. So, when we execute this right we will get something
similar to this right. So, the x axis is the variable x 1, the y axis is the variable x 2 and it shows

the variables moving right.

(Refer Slide Time: 18:25)

| e ——

Lt e L]
|| g < — :
1 tunction [atats, cptions, optchanged] = cutputfrExasple(ocpticns, atate, Glagh q *g:tmmm AR AT

3= | optchanged = Calse: § Flag to indicate the change in cptions

5- | curcentiop = atata.Population;d curpant population
&= pleticurrentPop(:, 1], currentBopi:,2), 'b."): held on;

8= dravmod
#- xlapal{'x 1) T
10~ ylabel('s 2')

1
12- pause0,01)|
13- lend

14

_ -
0. R]

So, let us execute this these are the functions which we have right.

(Refer Slide Time: 18:27)

[O]
1= cleiciar : *::tmmm torminited: averige change in t
2 I
3= eegll, 'teiater’) % For reproducibility
1
5- P = gastrigin: % cbjective function handle
[

T- D=2 % Diménaion of the peobles
8- LB = =5,12%aea(l,D); ¥ Lower bounds of the probles
$- UB = 5.012%nea(l, D)\ Upper bounda of the probles

11 § Change the default settings uilng optimeptiond

12- options = eptimoptionai’ga’, 'Outputfen', BoutputFnExample,...
13 *CrogsovarFesction, 0.6);

14

15 § Calling the solver

16= (%, tval] = qa(Ful, O, (I, [}, 11, (1,18, UB,[], [), eptions):
17

h B Tyt e o

(Refer Slide Time: 18:31)

\ s |t 4| = e
1 -!‘\ﬂ"-rl"ll ' llanrll-.llll!-al E| kg:t imizition terminated: average change in ¢
2- D= lengthix):
- Feo:
i- Citor d = 10
5 F oo x(a)*2 - 10%os(2pite() & 10;
i ond 1
k

0 R

So, this is the same thing that we explained you the output function this is the objective
function that Rastrigin function and this is the file that we want ga to execute at the end of

every iteration. Remember this is a file that we have written over here.

(Refer Slide Time: 18:47)

of s v B oot ke
T o B Optimizaticn terminated: average change in t

1= clecloar R

2

i eng(l, "twister')

4

8- FUN = BRastrigin: &

£

T= D= n of the probl

B- 1B = -5,12%nea(1,D): ¥ Lover bounds of t

$- UB = 5.012%nes (1, D) PpeT bound |

i

i ptios:

1= o sFent, BoutputPrExangle, ...

1

"

1H] illing th vt

6=z tval) = @EW, 0,), 0, 0, (1,08, W,0), 1), options);

: .
0 Y ST]

So, if we execute this one. So, at the end of every iteration they supposed to plot. So, here if
we see the solutions were moving before it converge to a particular value. So, we can also put
a let us say a pause of 0.01 right. So, and then if we execute this right. So, now, if you can see

this is how the solution moved towards the final solution right.

So, this is the use of output function right. So, for example, let us just put a break point over
here and is execute this right. So, if you want you can either look at the help of MATLAB

right.

(Refer Slide Time: 19:28)

I T Caai 3
P ————— -~
= .

K> atate

1

2
0%
4
5-
-
7
8-
3-
10-
]
-
-
]

= .

T ¥
function |atate, cprions, ptchanged] = outputmwlte
optehanged = false; % Flag to indicate

cureentiop = atAte.Populationsd current population
plot (eurrentPopiz, 1), eurrentPopi:,2), '5."): hold on:

dranod
Xlabal('x_1')
ylabal('x 2')

pauseid, o1}
and

S
H-.; L]

In this case we will just say what is state right. So, this came at Oth iteration this is the starting
time this is the last improvement time. So, the number of functional evaluations which it has

implied maybe 50 right. So, this is the population right. So, here if we see state dot population.

atate =

atiuct with flelds:

Ganaraticn
StartTime

0
£ 180249695610

StopFlag: '°

LastInprovement :
LaatImprovesantTise:
Beat:

(22H

Fankval :
Expectation:
Salection:

Populaticn
Seore
LinearConateType

TaMixedIntager:

1
& ko> State. Population

1.00

1GB24BEIEEL0

0

i

50.00

15051 deiibla]
[50%1 deuble)
(5062 duublae)

£ [50s1 double]

& "Beundconstrainta’

-

(Refer Slide Time: 19:51)

ST 5w R i+ e 1 55 + G [~ -
dtae o Bl]
T e—s EX) -L.56 ’
1 tunetion [SEAa, cptions, optehanged] = outputFEXISOLE .87 2.5T
= : -1l 2.31
3% | cptehanged = false: % Flag to indieate the changs in o .81 3.93
g 1.6 1.2
5- | currentfop = SEAbe.Population;s curpent popalation - 0.3 .57
€= plot{currentopiz, 1), currentbop(:,2), 'b."); hold oni 1.8 155
7 -1.89 2.3
6= drawmew 1.%1 4.0
8= xlabel('x_1") .43 -0.T4
10- | ylabel('x 2') -1 LT
1 258 1.67
2= pause (0,01} 5.01 125
13- land 2.54 -3.45
1| =228 4.60
256 -0.51
1.0 0.80
-0.5 0,94
1.10 268
211 1.1
501 0.75
-1.78 -5.08
-1.52 L.20
\ | mu[.am-[

H‘;‘w:-mm L @ n

So, this is the population when ga comes into this function for the first time right if you are

interested in score, you can look at state dot score right.

(Refer Slide Time: 20:04)

38% | cptchanged = false: § Flag to indicate the change in of

5- currentfop = BEAES. Population:d current pepulation
&= plet{currentPopiz, 1, currentPopi:,2), 'b."): held on;

A= dravmod
§- xlabal('x_1')
10- | ylabel{'z 2')

1
2= pauseid,0l)
13- end

O YT

So, this is the fitness function value corresponding to these solutions.

tuncticn (30Ats, options, eprohanged] = CUTPULEMEXAEDLE

FunEval: 50.00

Expéctation: [S0x1 double]
Selectifn: [S0=1 double]
Population: [S0x2 double]

Seora: [Sxl double]

L

IsMisedIntager: 0

Kx» state.Population

ans =
-0.65 1.1
-5.12 1.8
-2.02 2.9
-6 240
- -0.09
.21 -5
-1.58 %7
i -L.06 -3.62

(Refer Slide Time: 20:10)

|| s © : —
1 Crenction [3tats, options, optchanged] = sutputFnExample (options,

2 state:
0% cptchanged = false: § Flag to ndicats the change in options atruct with flelds:
L]
5~ currentPop = BUALE. Population:t current population Ganetation: O .
&~ plot(currentPop(:, 1}, currentPopi:,2), 'b.'): hold on: StartTime: 108249605610
i StopFlag: ' 0
8= draunod LastIsprovesent: 1.00
8- xlabel{'s_1'} LastIsprovemontTine: 108249605610
10~ | ylabel{'z 2'} Bast: []
11 hows " o)
12= pausei0.01) Funbval: 50.00)
13- “end Expectation: [506] double] il
14 Selection: [50x1 double] 4
Population: [5042 dodble] rainta®
Score: [50v] double]
LinsarConstrType: 'boundconatraints®
IaHixedInteger: 0
g =
-0.65 L1E
=512 183
A -2.02 2,95 B

. |
v b - 1
T O S

Similarly, you can look at the help of ga and see what are the things that are available through

state and which of these things can be modified it is just a continue right.

(Refer Slide Time: 20:19)

%% (D@1 | o 0 o G0 ¢ B WANCAMGAR 0+ o . UG b s e e i » e
e

e e— T — |

|| b ¢ - g q
1 Citunction [state, cptions, GpEchanged] = outputiExasple options, atate,” .61
2 3.5
J0% cprehanged = false: § Flag to indicate the change in cptions = 48.37
i 4.1
5= | curcentiop = atata. Population;d curpant population 26.06
§- plot{currentPopiz, 1), currentBopi:,2), 'b."); hold on; 27,63
1 22.21
#= drawnow 4209
§- xlabel('x 1"} 51.
0= ylabel('z 2') 434
1 36.38
i2= pause(0.01) 42,28
13- -ond 4.02
i 9.2
24.67
.63
.
FI8T]
20,37
545
3.7

3__optchanged = falss; % Flag to indicats the change
fuios .
s .— .

o=

So, this is the second time right. So, here if we look at state right at the end of first generation.

So, the best solution currently is 5.41.

(Refer Slide Time: 20:24)

o

rme——
B oot e o

opkchanged = false; § Flag to indicats the change in options

curcantiop = atate, Population:d curpant population

ploticurrentPop(:, 1), currentPopi:,2), 'b."); hold onf

dranmon
Labal (5 1)
ylabel ('x_2')

pauseid, i1}
and

=
“tunction [state, options, eptehanged] = outputEnxasple (options, state,”|

3__optchanged = false; % Flag to indicate the change
Ex3 state

state =
atougt vith fields:

L I
StartTise: 188249695610
StopFlag: '
LastIsprovesent: 1.00
LastImprovementTise: 188243695610
Bast:
how **
FunEval: 100.00
Expactation: [50%1 doubla]
Salection: [78x1 double]
Fopulation: [$0s2 double]
Score: [50s1 double)

TaMixedInteger:

=

(Refer Slide Time: 20:32)

—
e Cae

e
1 tunction |state, cptions, opbchanged) = cutputFnixaspla (options, atate,-

2 state =
30+ Fpchanged = false; % Flag to indieats the change (n options -
1 akrugt with fields:

8- | currentlop = atate. Populationsd curpent population

€= plot{currentbopiz, 1), currentbop(:,2), 'b."): held on;
7

B= dravmod

8- | zlabal('z1")

10- ylabel('z 2')

Geperation: 1.00
StartTise: 188243695610
StopFlag:

LastImprovesant: 1.00
LastInprovementTine: 188249695610

1 Bast: 5.41

12~ pause (0,01} howr **

13- and Furkval: 100.00

14 Expactation: [$0x1 doubla]

Salaction: [78x1 double]
Population: [$0:2 doubla)
Scora: [$0s] doubla]

L Typo:
IaMixedIntager:

3__optchanged = false; % Flag to indicate the change
1__cptchinged = falae; 4 Flag to indicate the change
3__optchanged = falso; % Flag to indicate the change

‘ﬁ K>

e |
p— —
T e S

So, if we do continue. So, after these iterations now let us have a look at a state right.

(Refer Slide Time: 20:38)

SH D@ 606 o G ™0 . 5 0
s T —————
[1 - P . — = -
| Ctunction [state, cptions, optehanged] = cutputPnExample (cptions, atate,=| 2—°ptchanged = false; % Flag to indicate the change
3__cptchanged = false; % Flag to indicate the change

2
10% | cptehanged = false: % Flig to indicate the change ln cptions K state

4

5= curpentiop = atate,Populations® cur pulation statg =

&= ploticurrentPopiz, 1), eurrentbop(:,2), 'b."): hold on;

1 atrugt vith fislds:
6= dravnow

Gonoration: 4.00
StartTine: 188249695610
StopFlag: *°

8- xlabel('x 1"}
10- | ylabel{'x 2')

::_ panan {0, 01} LastTmprovesant: 3.00
13- opd LastImprovementTine: 199562644053
I Bost: [S141 .78 1.46 1.46)
how:
FunEval: 230.00
Expactation: [50¢] doubla]
Salection: [78:1 doubla)
Population: [$0s2 doubla]
Zcore: [30x1 double]
LinsarConstrType: ‘boundconstraints’
TaNixedInteger: 0
b
" s [

= 4 et :
07 YT

So, at the end of these many iterations the best value that we currently have is 1.46 right. So,
here whatever changes we want to make to the current population can be made right in
addition to whatever ga has done to generate a solution, we can employ whatever knowledge
we have about the problem over here. Whatever we include over here will be taken into

account by ga every time it completes an iteration remember this happens only at the end of

every iteration.

So, now that we have seen output function right now let us look into vectorization and

parallelization.

(Refer Slide Time: 21:18)

Vectorization of fitness function

rNectorization increases the speed of execution,

rlor using the veetorized option, the fitness function must

® jecepr a marex with arbireary number of rows (popularion) -
* rerurn the firness vector (fimness of the populinon) ,ﬂ.t]=ll1ﬂ+}:[xf 4000417-\]]]
)

#Vectorized code of Rastrigin function k- S02$5E502 Vielde.D
!hnntlontg = Ruulqi.n\’ecturiud@ F’l{,);‘ \/

[K.D] = siza{X); b muzbar of Srcision variables R e -"""‘*'\"‘N:W"“‘ "ﬁl“ h)
Rerris Fvector Ny 1)

F = zeros(H,1); ¥ Initial valus of Citnads

forn= 1N Hi\\
£ for d = 1:D o
F(n) = Fln) + X(n, d)*2 - 10%cos (20pi*X(n,d)) + 10;
end

and
Function F = Rastrigin (x) @ /

D = langth(x): & wumber of declrion varidh 7

Pub; § imitial valos of fitwese \1\\ Mot w vertanzed Code "\""'T'T"‘I"""""Jj_x@

ford=1: Retuums F scalar (1% 1)
F=F+x(dl*2 - 10%cos{2'piex(d)) + 10:

end

So, vectorization we have previously discussed right. A vectorized objective function is one
which can receive N solutions right and evaluate the fitness function of all the N solutions and
pass N values for the fitness function right. So, for example, in this case the X can be N cross
D right N solutions which correspond to the row and D decision variable which correspond to

the columns and it should be able to send back N cross 1 a vector right.

So, the here basically what we are doing is we are writing a for loop wherein we are
evaluating the fitness function for each of the solution right. So, this is a vectorized code. So,
this is a example for code which is not vectorized right. So, in this case we have this name
Rastrigine it can receive only one solution. So, it will receive 1 row and D columns and it will

send a 1 cross 1 scalar which corresponds to the fitness function of this particular solution.

(Refer Slide Time: 22:14)

MATLAB code

Create a seript file to solve the problem using ga

cle;jclear

eng(l, 'twister') % For reproducibility

D = 20; & pimension of the probles

LB = =5.12%cnes(1,D); % Lower bounds of the problem

Use vectorized
Elapsed time 1?2&\

U'.B = 5.12%*cnes(1,D); % Upper bounds of the pruhly

nq the solver without vgctoriz oz
@ , (PopulationSiza) ,2000) ;
| - E F —-_-— o

tie
Tx, fval] = @:m D, 01, (1. 0,], 18, 8,0, 0116ptions) ; &—
-—-u—..:—_—_"._-—r"

noVec = toc
¥ Calling the solver with \rer.*Ill rization option

Ve
§ = optimopticns (\ga\ , 'Usa\'ector}gi" ,true, 'PopulationSize',2000) ;

. —— eltem o e
= emnnglnwchriu : \ Cbjective functicn handle

r;mu Otm D, 0, 0, 0, [, 18, U8, (I, [], options);
“ﬂ-mﬂ

Machine configuration
Inte] core i7 (@3.4GHz with 24 GB RAM

So, in this example what we will do is we will compare the performance of ga right with
respect to a vectorized code and then code which is not vectorized. So, these statements by
now you understand right. So, we are taking a population size of 2000 right. So, by default ga
has a PopulationSize right. So, we are overriding the default option right. So, the name of the
solver the appropriate keywords. So, in this case population size and in value for that we were
using the function optim options to set this and we are defining it in a variable options right

and then we have this objective function Rastrigin right.

So, this Rastrigin if you remember its not a vectorized code it can receive only one solution at
a time. We are using this tic function in MATLAB right, so that is similar to starting a stop

clock right. So, we are executing ga right we are providing the name of the fitness function,

the number of decision variable there are no constraints the lower and upper bound, there are

no non-linear constraints and integers and we are providing these options.

So, in this case MATLAB will solve this problem using this function which is not vectorized
with a population size of 2000 right and at the end we are having this toc which is more like
stopping the stop clock right and the time required to complete execution of this is stored in
this variable in noVec right. So, that will tell us the time required for solving this problem

without vectorization right

So now we want to use a code with vectorization. So, we need to explicitly inform the inbuilt
function ga that the code which we have for objective function is actually capable of
evaluating N solutions right. So, again we use this optim options the solver which we are
currently working with is ga right. So, over here this is the keyword use vectorized. So, we
need to give a value of true over here. So, in this case what ga would do is every time it wants

to access the objective function, it will send all the solutions together right.

In the previous case it will send the solution one by one in this it will send all the solutions
together right. Because we have used this option use vectorized and we have given true. Since
we used a population size of 2000 over here, we also used a population size of 2000 over
here. So, this is as usual defined in a variable in this case again options right and objective

function file which we have now is RastriginVectorized right.

So, in this case we want ga to use this file because this is a vectorized code and we are
informing ga through this options that the code that we have is a vectorized code right.
Similarly, if we measured the time with tic and toc right and use the same line which we had
over here it will solve the problem and if you look at the performance it depending upon your

problem complexity and the population size you can get reasonably quicker results right.

So, without vectorization it required 17 seconds on a machine of this configuration whereas,
with vectorization it required only 13.65 seconds to solve on this particular machine. So, as

you can understand it is good to have a vectorized code, first we had seen the feature of

providing options right then we looked into the feature of using the output function, then we

had discussed on vectorization now we will discuss on parallelization right.

Earlier in this course we had discussed some part of parallelization right where in we had used
the par for command to parallelize the evaluation of the objective function right here we are
going to see the parallelization feature of the inbuilt functions of MATLAB. So, many inbuilt
optimization solvers in MATLAB like ga particles from optimization supports this parallel
computing right.

(Refer Slide Time: 25:56)

Parallel evaluation of fitness function

#Option is available to compute the fitness and non-linear constraint function in parallel.

»Cannot use vectorized and parallel computation options simultaneously.

UseVectorized = false ! UseVectorized = trae
——

#For using the parallel option, the fitness and non-linear constraint functions need not be
vectorized.

#Syntas: options —Iff{ SolverName, 'UseParallel’, tmu'. false);
. 5 L
#Parallel option available in solvers such as ga, particleswarm, patternsearch, etc.

E‘-
#Demo of optimezing an ODE 1 parallel: https://in.mathworks.com/help/gads [optimize-an
ode-in-parallelhtml

el . pentic algothun-ogiions Bl 41124

So, this parallelization is available to compute the fitness as well as the non-linear constraint
function in parallel. So, if there is a difference between vectorized and parallelization right. As
we have seen earlier in vectorization what we do is we pass this N cross D matrix together

right. So, N is the number of population and D is the number of decision variables in the

optimization problem and the objective function or the fitness function was supposed to

written N cross 1 right.

So, this is the vectorization feature. So, if we have the vectorization feature as on right then
we cannot use the parallelization. So, this is the keyword of MATLAB use vectorized similarly
the keyword for using parallel computing in MATLAB with respect to the optimization
solvers is use parallel. If use vectorized is given as true and we also set use parallel as true or
even if it is false right in both cases it uses the vectorized feature it does not do parallel

computing right.

So, if you want to do parallel computing use vectorized has to be false. Here as shown if we
use vectorized is equal to false and if we have use parallel as true, then it uses parallel
computing if use vectorized is false and if use parallel is also false, then it uses serial

computing right in these three cases we not get the benefit of parallel computing.

So, for us to use parallel computing, we need to use parallel as true and use vectorized as
false. So, for using parallel computing we need to go through optim options which we have
previously seen right. So, optim options is the inbuilt function of MATLAB. So, for whatever
solver we are working with let us say ga, particle swarm, pattern search. So, whatever solver
we are working with we need to give the name of the solver and then we need to use these

keyword use parallel and set the value of use parallel as true right.

And we need to set this value of use vectorized as false right. So, in this case it will use the
parallel computing feature. So, here we will show you an example, but there is also another
example given by mathworks wherein they have a optimization problem involving ordinary
differential equation and they use parallel computing to solve it if you are interested you can

also look into that example.

(Refer Slide Time: 28:10)

MATLAB code

Create a function file of the Create a seript file to solve the problem using ga
objective function

cle;elear

£u.n<:tion[:I= Rastrigin (x) tng(l, 'twister') % For reproducibility

D = length(x) ; FUN = @Rastrigin; % objective function handle
= 0; D = 20; % Dimension of the problem
LB = =5,12%ones(l,D); % Lower bounds of the problem
or d = 1:D

UB = 5,12*ones(1,D); % Upper bounds of the problem
F=F+x(d)*2 - 10%
cos(2*pi*x(d)) + 10;

and

ENE e e £
GaEUN, D, [1, [1. [1.[1

IEumio,Uli 4 simulate an
expensive function by pausing epkicon = Mﬂn” ga', 'UseParallel’, t.tua

'UsaVactorized', fllul

_‘(
‘:p:?ol VT xurt";h‘)gi‘ﬂa) (
Use parallel | false | true @
Elapsed time |@3~D2B 12361 % P PO PR P § PO P - , optiens) ;

't b ‘Er_hlllu__u_n_tm_:'mhm
Intel core i7 (@3.4GHz with 24 GB RAM

So, here what we are doing is we are taking the same Rastrigin function which we have
discussed previously right. So, here if you carefully study this function right you will be able to
realize that this is not vectorized right. At a time we will be able to pass one solution that is we

will be able to pass 1 cross D and what we will get is 1 cross 1.

So, every time we pass the single solution and we get the fitness function value of that
solution. This we have discussed multiple times so, we will not again look into that. As we had
seen earlier parallel computing is usually beneficial when evaluation of the fitness function is
time consuming. So, here we are artificially making it expensive by adding a pause, pause of
0.01 right. So, after executing these lines MATLAB will pause for 0.01 seconds right before it

returns the value of F to the function which is calling it right.

So this is our fitness function file. So, these things we will skip by now we should be familiar
with that. So, what we are going to do is solve the problem twice right. So, first time we will
solve it without parallel computing and the second time we will solve it with parallel
computing right. In both the cases we will measure the time required for solving the problem

right. So, here we are starting tic right and we are executing ga.

So, we are providing the function which is Rastrigin over here the number of decision variable,
there are no linear equalities or inequalities hence we are providing empty brackets and then
we provide lower and upper bound right. So, when it encounters this toc it reports the time
elapsed since calling this function tic. So, basically this variable woPar will display the amount

of time taken for solving this problem without parallel computing.

So here if you see we have not changed the options. So, by default parallel computing is off
right. So, then what we will do is we will use this optimoptions function of MATLAB right.
So, currently we are working with ga right. So, we are providing the name of that solver ga
and we are setting the value of UseParallel as true and UseVectorized as false. So, in this case

what it will do is it will employ parallel computing.

So, for us to use parallel computing we need to first start the parallel pool right. So, we are
using this MATLAB inbuilt function parpool. So, it depending upon the settings right parpool
will initiate multiple workers right the more the number of workers the work can be delegated
to a larger number of workers. So, parpool will initialize all the workers right and then again

we are solving the problem between tic and toc right.

So, in this case we are providing the same set of inputs which we provided over here. So, for
us to provide these options we also need to specify whether we have non-linear constraints or
not or if we have integer variables. So, in this case we do not have non-linear contains and we
do not even have integer variable. So, again we give empty brackets and then we provide this

options right.

So, options is the name of a variable which we used over here. So, now, when we compute
this right the time taken for solving this problem, we will be stored in wPar. So, when we
executed this on a machine of this configuration this was the time difference that we could
absorb with parallel computing it required 123.61 seconds right and without parallel
computing it required 853.02 seconds right. In this case if you want to have the same result

from this solution procedure and this solution procedure you can again fix the seed to one.

So, r n g one comma twister right. So, when MATLAB solves for the second time over here,
it will use the same set of random numbers which it used for solving the first time. So, in this
case if you see the x value and the fval value over here as well as the x value and fval value
over here will be identical. So, this is how you can use the inbuilt feature of parallel computing

for the inbuilt optimization solvers of MATLAB.

In this session we have seen four features right first we started with the options feature, then
we looked into the output function, we followed it with vectorization of the objective function
and then we discussed parallelization of the objective function right. Here we have
demonstrated it for ga, but this discussion holds good for many of the functions which we

have seen earlier with that we will conclude the session.

Thank you.

