Computer Aided Applied Single Objective Optimization
Dr. Prakash Kotecha
Department of Chemical Engineering
Indian Institute of Technology, Guwahati

Lecture — 28
MATLAB Inbuilt Functions: Nonlinear & Mixed Integer Nonlinear Programming

Welcome back. In the previous session, we had looked into how to solve linear programming
problems and integer linear programming problems. In this session, we will be looking into
how to solve Non-linear programming problems as well as Mixed Integer linear Programming

problems.

(Refer Slide Time: 00:45)

Constrained Non-linear Programming

e pea

Linear/Non-linear objective function

Linear equality and inequality constraints
Non-linear equality and inequality constraints

| Bound constraints |

Matlab function: fmincon, ga, patternsearch
Introduced before R2006a

So, for non-linear constrained optimization the objective function can be either linear or
non-linear. There can be equality and inequality constraints these constraints can either be

linear or non-linear right. And there are bound constraints that is the decision variables are

bounded by a lower and upper bound right. The functions which can be used to solve these

problems are fmincon, ga, and pattern search.

(Refer Slide Time: 01:12)

Constrained Non-linear Programming

Minimize f(X)=x+x+x, ‘/E@ @ @ Ny Ne MM

- L]
Subject to: 0.0025(x, +x,)-1<0 - 33
AR - Linear
D.DI}ZS(—.‘.'.-}.\}-PL!—'Erl_]_ = H inequality | "
L nnl{-_:\‘_"'_.l‘a)-li___] construnts

100y, - 3., +833.33252x, ~ 83333333 S0 =

812505 +12505, 20 L

XX, =23, - 2500x, +1250000£ 0 SOoiaints

T —_— J

) : 100< ¥, <1000 o b
. 3 o
Bound constraints: @ <00 w::u:;u . = B%
ozzim) =55 b » 2
nE

e
Lodoms o s @ l
Matlab function: finincon ;{_-—0.01]25 oos @ oo Lk
: o o) o @ @

Engineesing Optimization: Theory and Praciice, 35 Rao

So, the example that we will take to solve fmincon is objective function is x 1 plus x 2 plus x
3, so the objective function is linear right. We have 3 inequality constraints right and all of
these 3 inequality constraints are linear. So, the decision variables are x 1, x 2, x 3, x4, x 5, x
6, x 7, and x 8 right. So, these are linear inequality constraints, we also have non-linear

inequality constraints.

So, over here these three constraints are less than equal to 0, over here if we see we have this
non-linear terms over here right and we have bound constraints over here. So, the lower and

upper bound of x 1 is given over here, the lower and upper bound of the variables x 2 and x 3

are same as given over here. The lower bounds of the 4th variable, 5th variable, 6th, 7th, and

8th variable is given over here right.

So, we have inequality linear constraints, we have inequality non-linear constraints and we also
have bound constraints. So, in this example we do not have equality constraints right. Similar
to the other functions first we need to decide as to how we are going to arrange the variables
right. So, we will take this pattern x 1, x 2, x 3, x4, x 5, x 6, x 7, and then x 8. So, this is how
we are going to stack the variables right. So, this is important to define this convention
because only based on this convention, we will be able to write the variables which are

required.

So, these three linear inequalities we can write it like this as given over here right, so the
matrix A the variable x 1, x 2, x 3 are not in these equation right. So, we have 3 0’s right, the
coefficient of x 4 is 0.0025 the coefficient of x 5 is 0 because it does not appear in this
equation. The coefficient of x 6 the coefficient of x 6 is 0.0025 the coefficient of x 7 and x 8 is

0 and O right.

So, similar to the other functions which we have discussed previously this minus 1 can be
brought to the right hand side right, so if we bring this minus 1 to the right hand side it will be
1. So, fmincon requires the constraints to be of this form A x is less than equal to b, and A
equality x is equal to b equality right. So, that is why we have brought this to the right hand
side. So, for the second constraint if we see again the variables 1, 2, 3 are not there right 4, 5

and 7, so 6 over here is 0.

So, here if you want you can write x 1, x 2, x 3, x4, x 5, x 6, x 7, and x 8. So, the coefficient
of x 6 in second equation is 0 similarly the coefficient of x 8 is 0. In the final equation only 5
and 8 appear right, so 1, 2, 3, 4 are 0. The coefficient of 5 is minus 0.01, the coefficient of x 8
is 0.01 right this 1 is again to be taken to the right hand side. So, we have one over here, this
equation does not involve x 6 and x 7, so we have 0 over here. So, this is how we define the

coefficient matrix for this problem right.

(Refer Slide Time: 04:15)

ofx)

=50

2ol

'“.‘" f(rl subject fo ,‘t&ﬁ"\"‘ kw—s
wE

Jdegx=beg =
hexsnh ﬁ

fox, b, beg, Ib, and ubare vectors, and Aand Aeq ape matrices
elx) and ceq(x) are functions that retirm vectors e Ce‘u b‘.}

S &)=
7@@

As we discuss fmincon requires the problem to be in this form. This we have previously
discussed inequality and equality this denotes linear constraints right. So, non-linear
constraints should be of this form, non-linear inequalities should have less than equal to form
and the right hand side has to be 0 for non-linear constraints right. This is also inequality this

one is also inequality right.

So, let me just write C of x less than equal to 0 and A x less than equal to b. So, this one is for
linear and this one is for non-linear. So, for linear inequalities the right hand side should be a
constant value right whereas, for non-linear inequalities the right hand side should be O.
Similarly, over here if you see C equality of x equal to 0 and A equality. So, the name of the

variable is Aeq into x.

So, this is a separate variable this is a separate variable should be equal to b equality again this
is this the name of a variable right. So, this is again for linear this is for non-linear. So, for
non-linear equality constraint should have 0 as their right hand side whereas, for linear equality
constraint the right hand side should be a constant right. It is not necessary that this b equality

would be 0.

(Refer Slide Time: 05:34)

fmincon

b0)

whi =
3 Fnib)
1.2, b, beg, Ib, and ubare vectors, and Aand Aeg ape matrices

e(x) and ceqix) are functions that return veciors ar b‘ E“

Output: (&) Solution vector
@ Objective function value at solution

= exitflig Algosithm stopping condition
@ Tnformation such u}_g!w_uum..,
algonthm used, exit messape ete.,

limbda Lagrange multiphiers at the solition

@ Tnutial potat of the decision vanables
A Coellicrents of Lneas nequality
b RHS of linear inequality constraints
Aeq Coeflicients of lnear equality

beq RHS of lineas equality constraints
U] Lower bounds of decision vanables
lnh Upper bannds of decision vanables

nonkeon Non linear constrauts fusetion ha

i)

options Structuge containing options such as display goud Guadient at the solution
options, maxiamum iterationsfunetion evabuations, hessian Approxumate Hessin
plot functions, chosce of algonthm ete. ———

fmincon is the inbuilt function right. So, fun can be a function handle right. So, we can write
the non-linear objective function in a function file and give the name of the function file over
here. So, fun is an objective function handle right, x naught is the initial point of the decision

variable. So, for non-linear problems we are supposed to give x naught right.

So, this A b A equality, b equality, lower bound, upper bound is similar to what we have

discussed previously right. The coefficient matrix and the right hand side vector of the

inequality constraint the coefficient matrix and the right hand side of the equality constraint

lower and upper bound right.

So, these non-linear constraints can be written in a function file and that handle can be given as
input right over here. And then if we want to override any of the default options of fmincon,
we can provide the options over here right. So, depending upon what are we interested in the
output of the function can be the solution vector fval; fval is the value of the objective function
at this solution vector exit flag as usual we will tell us the reason for the stopping of the

algorithm right.

The variable output is a structure right, it will have lot of information such as number of
iteration used, which is the algorithm use, the exit flag which indicates the reason for
termination. It can also give us the gradient at the solution as well as approximate hessian

right. And lambda is the Lagrange multipliers at the solution.

(Refer Slide Time: 07:11)

Matlab code

P, = x5, = 2500x, +1250000 <0

Create a function file e ohi;e_c_:_ti\re function ,,1‘_ & N N=s
function @@ = (x) & AR
= = 100#x(1) - x(1)*x(6) + B33.33252*x(4) - 83333.333 "Yt' -\'4 ;11?5 -Sﬂ-‘.ﬂ

—7 C(2) = x(2)*x(4) - x(2)*x(7) - 1250*x(4) + 1250*x(5);
— — —— — e —

= x(3)*x(5) - x(3)*x(8) - 2500%x(5) + 1250000;

hekraM-T1p

EClq = []; % nonlinear equality constraints are absent
e T i

> ceg (=Mt MO NOREY
ETACER: (B A0S =52

So, in this case our objective function is x 1 plus x 2 plus x 3 right. So, what we will do is, we
will create a function file function f is equal to the name of the file we have chosen it as
objective function you can choose whatever you want right. And the input to this objective
function is x right; x is the set of decision variables right. And what we are returning from this
function is the value of the objective function. So, the objective function in this case is x 1 plus

X 2 plus x 3.

So, what this function is supposed to do is it will receive the values of all the decision
variables. So, for example, the problem that we are solving has 8 decision variables, but the
objective function has only 3 decision variables right. But, still if you look at this x it will have
8 values. All the values of the decision variable will be passed on by the algorithm to this

objective function file and this file is to evaluate the value of the objective function.

So, in this case we could have just written x of 1 plus x of 2 plus x of 3 is equal to f right or
we could have written this the variables x 1, 2, 3 we are only accessing that and then we are
summing it up right. That is being stored in the variable f and this is the variable which is
getting passed on right. Let us say our objective function was x 1 square plus sin of x 2 right.
So, in this case f will be x of 1 square plus sin of x of 2. So, whatever is the nonlinearity that

can be captured in this objective function.

So, now we will create another function file for the non-linear constraints right. So, remember
the non-linear objective and the non-linear constraints can be passed through a function files
right. In this case we are again creating a function file whose name is NLCon right this is a
name that we have chosen NLCon right. So, this non-linear constraint file can receive the
decision variables the values of the decision variable and it is supposed to return 2 variables C

and C equality right.

In this case we have chosen variable names as C equality, but you can choose any variable
right. C is supposed to be the value of the expression on the left hand side. So, in this case the
left hand side expression is this one right 100 x 1 minus x 1 x 2 so on, so that is the
expression. So, if we substitute the values of x 1, x 1, x 6, x 4 in this equation what would be

this left hand side right. So, that is supposed to be returned.

So, that is true for all the inequality constraints that we have. So, in this case we have 3
inequality constraint, so C of 1, C of 2, and C of 3 right. So, we can pass 2 variables C and C
equality right. So, the first variable C is for the inequality constraints. So, we have 3 inequality
constraints, so we will have 3 values of C C of 1, C of 2, and C of 3. So, C of 1 the expression
on the left hand side of the equation is 100 into x of 1 right minus x 1 into x 6 plus 833.33252
x of 4 minus 83333.333 right, so that is the first constraint.

The second constraint is x 2 into X 4 minus X 2 into x 7 minus 1250 x 4 plus 1250 x 5 right.
Similarly, you can write the third constraint also. So, whatever nonlinearities are there in the
non-linear inequality constraints can be captured through this function file right. So, here in

this case we did not have equality constraint, let us say we had these two equality constraint x

5 plus x 4 into x 6 equal to 5. And let us say we had another equality constraint x 1 plus root

of x 2, x 3 minus 52 is equal to 0.

Let us say if we had these 2 equality constraint right, remember for the function fmincon right;
all the equalities involving nonlinearities right. So, this is also nonlinearities this is also a
non-linear constraint the right hand side has to be 0. So, first of all we need to convert this one
into the appropriate form which will be x 5 plus x 4 x 6 minus 5 equal to 0. The second
constraint is already in the same form right. So, here what we will do is C equality of 1 is x of

5 plus x of 4 into x of 6 minus 5.

C equality of 2 is x 1 plus x of 2 into x of 3 to the power point 5 right minus 52. If we had
non-linear equalities, we could have defined C equality of 1 and C equality of 2 over here. But,
since in this current problem we do not have non-linear equality constraint we just give empty
bracket over here. So, here for the objective function file as well as the non-linear constraint

file you need to remember that the input would be the decision variables right.

Does not matter how many decision variables are used over here the values of all the decision
variables will be passed to these two functions by the algorithm right. And what the algorithm
expects is the value of the objective function f right and the value of the expression on the
left-hand side of the inequality constraint and the equality constraints. Now, that we have

defined both the files which we will need we can now solve the problem right.

(Refer Slide Time: 13:02)

Matlab code

Create a function file of the objective function

000 o025 0 00025 0 0
ele; clear; Ao b-[

/= 1000 0.0025 0 0.0025 0 0 A=(0 0 0 -00025 00025 0 00025 0
. ¢ i ! 000 0 00 0 0 001
000 -0.0025 0.0025 0 0.0025 0; =

000 -0 00 0.01] L #Linear 1Mqu.|nucenatrnntl'1_l"o leAx YoAy W Y0 lo Mt _‘ﬂ
b = ones Vi % BHE near inequality cW

- 3 100 < x;, 10000

1b = 1000 1000 @]:_i_benr bounds I_(;_o ! 10000
db = [10000 10000 10000 1000%cnes(1,5)]; + Usper bouscs S0 e L
_x0 = Ib; & Initial peint of variables 0k x <1000,i =4,5,...8

opactivapunctio)

bjectivel % objective function hamdle — @
=(WICoR. + Monlinear constraint function handle L)‘: R AL 3 =

Output: e

X ([579.31 1359.97 510997 182.02 29560 217.98 28642 395.60]
FVAL 13

So, clc clear is took just clear the command window and the MATLAB workspace right. So,
this we have discussed A which comes from the linear inequalities of this problem right, so
that is what is defined over here right. So, this defines we have 3 constraints right, so we will
have 3 rows and will have 8 variables, so there would be 8 columns. So, this is the coefficient

matrix of the linear inequalities.

This is the right hand side vector of the linear inequalities right. So, here we have 3 1s. So,
once is an inbuilt function of MATLAB right we want 3 rows and one column right, so this
will give 1 1 1 right. So, the lower bound for the variable is the first variable lower bound is
100, so that is given over here. The second and the variable have a lower bound of 1000, so
1000 1000 and the rest of the 5 variables have a lower bound of 10. We could have chosen to

write 100 right 10 power 3 twice and then 10 5 times right.

So, this is the upper bound right or we could just use this functions ones of MATLAB. So, we
want one row 5 columns this will give 5 columns with the value of one right we are
multiplying it by 10 right. So, we will ultimately end up getting this one right. Similarly, we
defined the upper bound, so the first 3 variables have the same upper bound and the last 5

variables have an upper bound of 1000

So, for this problem we are taking the initial guess x naught is equal to the lower bound itself
right, we are defining these 2 variables which are function handles. So, the function which we
wrote for the objective function is objective function and the function that we wrote for
non-linear constraint is NLcon right. So, you need to have this at the rate symbol over here.

So, that whenever this variable is accessed right we are actually accessing this function file.

So, till now we have only defined whatever is require to solve the problem. So, in this line we
call the function fmincon we provide in the same order first the objective function right so,
fun; then the initial point the coefficient matrix and the right hand side of the linear
inequalities. The coefficient matrix and the right hand side of the equalities in this case we do

not have them, so we are giving empty brackets right.

So, the lower bound, the upper bound, and the file for the non-linear constraints right. If we
do not want to use this variable, we can directly give at NLCon. So, we are directly providing
the name of the file; similarly, instead of fun we could have directly provided the name of the
file right. So, when we solve this, we will get the value of the decision variable. So, these are
the values of the 8 variables right, and this is the objective function value corresponding to this

solution right.

So, now that we have got this solution we expect you to go back and execute this program
and find out what is the reason for termination as and when it terminated what was the reason
for termination right. So, you need to give X comma FVAL comma exitflag right. So, let us
say you give this variable e and then use this same part right it will give you a number right.
So, look at the help of fmincon and see the reason for which the algorithm got terminated
right.

And also we expect you to have a look at whether this solution satisfies all the constraints
right. Similarly, you can have a look at the output, the values of lambda, the gradient, and the
hessian right, so that we leave it to you to find out. Now, we look into ga and patternsearch

right both ga and pattern search can solve non-linear programming problems right.

(Refer Slide Time: 16:58)

Constrained Non-linear Programming

| e
f0-Jlesos] G

subject to

inequality

constraints

2 1
X+, 24 E Non-linear

2t \,' <16
[JF).': = i-) | Linear equality constraints |
105,15, <10

»Matlab function: .L@f
-

So, for ga and patternsearch we will use this example right. There is a reason that we have
chosen a new problem to demonstrate ga and patternsearch ideally we could have used the
same previous example to demonstrate ga and patternsearch right. So, there is a reason why
we are not doing it at the end of this session you would know how to solve a non-linear

programming problem with ga and patternsearch right.

What we expect you is to solve the previous problem right? The problem which we use for

fmincon take the same problem and try to solve with ga and patternsearch and let us know

your experience about solving that problem with ga and patternsearch right. So, here the
objective function we have is a maximization problem right objective function is a non-linear
function right. So, the objective function is 1 by 1 plus x 1 square right plus x 2 square right.
We have 3 constraints 2 of them are non-linear right and they are inequality constraint this is a

linear equality.

(Refer Slide Time: 17:57).

/Antggn, cptions)

Cliaal

infean, b, beg, b, anbmrmrm. and Aand Aeq are mairices
e(x) and ceq(x) are functions that refurn vectors

A

b RHS of lisear meqality constrants

Aq Coefficients of linear equality constraints

Dulput:
RHS of Lisear equality constrants i

s x Solution vector

Ib Lower bounds of decision variables g e .
il Olyective function valie at solution

b Upper bounds o decision vacibles - m——
exitilag Algorithm stopping condition

(s Intormation such as mmber of iterations,

algorithm used, exit message, state of
candom numbes eEnenlos ele.,

itenn Tisdiees of macpes variables
oplions Structure containing optimization optioas such s display

7 0

%
opiots, masivium iesations finction evaltions, plat Final population

fustions, elice of alperitn, funtion and probabil — _ _
dmﬁmmm el are Obyective function valoe of final population

So, first we look into the function ga right. It can solve only minimization problems right. So,
the problem which we have is a maximization problem. So, first thing is that we will have to
convert into a minimization problem the non-linear constraints and the linear constraints are to

be provided in the same form as we did for fmincon right.

So, for fmincon also for linear constraints these 2 are linear constraints, the right hand side

should be a constant value the left hand side will not have any constant value. Whatever the

constant value is there on the left hand side has to be brought to the right hand side that is for
linear constraints. For non-linear constraints whatever constant terms appear on the right hand
side they need to be brought to the left hand side right. The values should be 0 over here for

non-linear constraint and this is the lower and upper bounds right.

So, in addition to this right ga can also handle integer variables for the current problem we do
not have any integer variables. So, we will not discuss about this right now. For using ga, ga is
the inbuilt function again lower case right. Similar to fmincon to provide the objective function
you can use a function file in this case we will be providing a function handle right. We need to
provide number of decision variables. Remember for fmincon fun was the same thing, in
fmincon, we did not have to provide the number of variable it was the initial guess over here

we need to provide the number of variables right.

This is the same thing which we discussed for fmincon right. Similar, for non-linear constraint
we will be defining the non-linear constraints in a function file and will provide the function
handle over here right. So, this is identical to fmincon right ga additionally can take in a

variable which can be used to provide indices of the decision variables which are integer right.

So, if we have integer variables then we can provide the indices of that which is similar to
intlinprog which we have discussed previously. And we can also provide options to override
any of the default options of ga right. The output from the ga is the solution vector right the
value of the objective function at the solution vector, the exitflag as to what was the reason
the algorithm terminated. A structure output which has various information about the
algorithm; it can also provide us the final population right. So, ga is meta heuristic technique

which we have discussed in the course, so there we work with population right.

So, at the end of all iterations the final population whatever we have that can also be accessed
right. So, this variable population if we use over here right will provide us the final population
and the objective function value or the fitness value of the final population. So, corresponding

to this population what are their objective function values, so that is given in score right.

(Refer Slide Time: 20:45)

Matlab code

Create a function file of the objective
function

function .f_ =

€ ‘ Create a seript file to solve the problem using ga
Dijectivar @ / cle; clear; =

@ . T rng(l, twister')
= -1+ x(1)*2) + x(2)"2)"-1; fun -ﬁjactiw?n: % objective function handla

Create a function file of the objective
funcion - .
funetion [E' ceq] =

) =4
c2) < x

(1)

-0

!

A

Y

So, we need to first create the objective function file, the name of the objective function file
we are using is objectiveFn right. So, you can give any other name that you choose. So, to this

function also the algorithm will pass the decision variables x. So, this function file is required

&

Req = [1 -1]; + coefficients of equality constraints

Es_\l.a,' % RHS of equality constraints

ﬂs’ 1b = [-10 =10]; % Lower bound
onstrain ub = [10 10j;% upper bound
—

nvar = langth{lb); s we. of decisicn variables

%(1)%2 - x(2)%2; nonlcon @ onstraints;s ¥onlinear constraint

"2 + x(2)*2 - 16;

function handle

% calling the solver [~ z(Ll

ﬂx]:[t]u:’}u;i:

_/Jr:"»r__@
5 +xi 16 ’1\\

[%, fval] = ga(fun, nvar, (], [1, Aeq, beq,
1, wb, :

_opi)et
Ded

5 =1, !
=53 <10

: LD
Aer -l

to send the value of the objective function at this decision variable.

So, in this case the objective function is 1 plus x of 1 whole square plus x 2 square to the
power minus 1, so this is the objective function. Similarly, we can define the constraints in
another file right, so the name of the function is NLConstraints right. So, this is a function file
just like fmincon we will have to use ¢ and ¢ equality right c is for the inequality constraint and
c equality is for equality constraints. So, in this problem we do not have any equality

constraint which is non-linear. So, there is this equality constraint, but it is linear, linear

constraints can be provided separately.

Over here we need to provide only non-linear constraints right, so we do not have any
non-linear equality right. So, we give ¢ equality is equal to empty bracket right and we have
these two constraints remember these are non-linear constraints. So, non-linear constraints
need to be of the form less than equal to 0. So, this constraint is of the form greater than or
equal to right. So, we need to multiply by a minus sign on both sides. So, minus x 1 square

plus x 2 square is less than equal to minus 4.

So, right now we have only converted this greater than or equal 2 2 less than or equal 2 this
has to be brought to the left hand side because for non-linear constraints we require the right
hand side to be 0 right. So, this has to be minus x 1 square plus x 2 square right plus 4 is less
than equal to O right. The other constraint is straight forward that it is x 1 square plus x 2

square minus 16 is less than equal to 0.

So, the constraints need to be first converted into the appropriate format right. So, here if you
see minus X 1 square minus x 2 square plus 4 that is the left hand side over here. Similarly, the
other one has been defined x 1 square plus x 2 square minus 16, so ¢ of 1 ¢ of 2. Every time
the algorithm passes the value of the decision variable, this file will return the values of the

constraints right.

So, these 2 file is similar to what we have written previously for fmincon. Now, we have
created both the function file which is required right. So, we can write this script file, so clc
clear you know right. So, since it is a stochastic algorithm every time we run we may get a
different solution right, so we do not want that to happen. So, we are fixing the seed to

generate random numbers.

So, every time we run we will get the same answer once we see that it is running well for one
algorithm then you know how to change this seed and run for multiple times and do statistical
analysis that we have discussed previously as part of this course right. So, we are defining fun
which is a function handle right; so, at objective fun because that is the name of the function

file which we created.

So, we have equality constraint right, so we define Aeq, beq the coefficient of x 1 is 1 the
coefficient of x 2 is minus 01. So, we give 1 and minus 1 the right hand side vector is 3 right,
remember this equation is not to be converted into x 1, minus x 2, minus 3 is equal to 0 right.
So, for linear constraints the constant term should be on the right hand side. So, for this
problem both the variables are bounded between minus 10 and 10. So, the lower bound is
minus 10 minus 10 the upper bound is 10 10. So, the number of variables we could either

write to directly or we can just say length of 1 b.

Then we are defining this function handle with the name of the file which has the non-linear
constraints. So, here it is NLConstraints, so we are defining that right. Now, we can call the
solver right, so ga we need to pass the function handle which has the objective function value
number of decision variables linear inequalities. In this problem we do not have any linear
inequalities we have one equality constraints. So, we need to pass on these 2 variable the

lower bound, upper bound, and the name of the file which has the non-linear constraints.

(Refer Slide Time: 25:02)

Matlab code

Create a function file of the objective

function [: Create a script file to solve the problem using ga
function £ = OhjectiveF @ : -
ALY v cle; clear; &
D e sy
=A@+ x(1)°2) + x(2)%2)"-1; fun =(é0bjectiveFn; & cbjsctive function handle

Req = [1 =1]; & cosfficients of equality constraints

h_og_:}; % RHS of equality constraints

function ¥ Y 1b = [-10 -10]; % Lower bound
funetion [E' aiq] = onstrain ub = [10 10];% upper bound
— =
@ nvar = length(lb) ; & o. of dacision variables

vg_m =4 - x(1)*2 - x(2)*2; nonlcon s.—q Honlinear constraint
ELE) ‘-_l.f,l)‘_-“z +Ll(2]‘2 —16; function handle

Create a function file of the objective

% calling the solver 4~ J(P T e
[x, tval] = ga(tun,

. nvar, (], [], Aeq, beq,
Output; Y £ ™ o, B!’-;

X (14994 -L19%]
joo®

This is what we get as solution right 1. 4994 minus 1; 4996 and the value of the objective
function at this point is minus 0.1819. Remember we had a maximization problem right that is
why we had a negative sign over here to convert it into a minimization problem. So, whatever
value we get only for the objective function right not for the decision variable only for the

objective function we need to multiply it with a negative sign.

So, the value of the objective function is 0.1819, because our problem is maximization
problem. The decision variable are as given over here this is x 1 this is x 2 because that is the
way we had choose to arrange the variable. So, in addition to x and FVAL right which is what
we accessed as of now the algorithm can also provide exit flag, output, population, and score
right. So, we expect you to execute the same problem right and see these values and you can

also read the help given in MATLAB.

(Refer Slide Time: 26:08)

patternsearch

[x,fval exitflag,output] = tgu,y, c(x)£0
A,b,Aeq beq, 1b, ub, nonlcen, Gptions)

¢ [x)=0

Inpm min f(x) subject ro3 Axsh

i Objecive function handle Agxmb,
[b<x<ub

X0 ol ot of the i vacales it

[x, b, beg, Ib, andubare veciors, and Aand Aeq are matrices

Coefficicats of lisear incquality constraints
ox) and ceq(x) are functtons that refurn vectors

RHS of knear mequality construnts

A

b

Ag Coellicicnts of lincar equality constrsnts

by RHS of knear equality constramts

b Lomer bouuds of deciion variables Qutput:

b Uppee b of decisioe aciables ® P Soluton vector

ar N B st osioc lahe i'\:] Objective function value at solution

T i i st B ey oo 'cf'ﬂag Algorithm stopping condition
mursinmm iterstions, function evabstions, plot fusctions, output Tnformation such as nimber of iterations,
m‘: algosbun, olegance aual maximum size of algorithm used, exit message etc.,

So, now we will solve the same problem with patternsearch right. So, for patternsearch the
name of the function is patternsearch this is the inbuilt function right. The input is similar to
fmincon right, the objective function, the initial point, linear inequalities, linear equalities,
upper and lower bound. Function file which will contain the non-linear constraints and options

which can be used to override the default options of patternsearch.

So, the output from patternsearch would be x the solution vector right, fval which is the value
of the objective function at the solution given by x. Exit flag that will help us to determine the
reason for which the algorithm terminated. And it will also give this output structure right it

will have lot of other variables which can give information about various other things.

(Refer Slide Time: 26:57)

Matlab code

Create a function file of the objective

function Create a script file to solve the problem using
function £ = ObjectiveFn(x) S pu#ﬂmm{rﬁh
cle; clear

£=-((1+x(1)*2) + x(2)"2)*-1; 'twister') i For reproducibility

Create a function file of the objective | fun = @0bjectiveFn; & objective function handle

function g = [1 -1]; % Coefficients of equality constraints
= 3; % RHZ of equality constraints

function [¢, ceq] = HLConstraints(x) i
= [-10 -10]; % Lower bound

- \//‘ ub = [10 10] ;% upper bound
caq = [];
el) =4 - x(1)*2 - x(2)%2; 0= [-3 -3])i% anitial point
a(2) = x(1)*2 + x(2)"2 - 16; nlcon = @NLConstraints;s wenlinear constraint
function handle K‘
% Calli & solver
Ompm' A M @ E]jh- patternsearch(fun, x0, [], [I,
X [1.4995 -1.4995) Baqipbeariib ik Snchlean);

FVAL -0.1819 p\t\

So, similar to ga we need to construct these two files right. So, this has non-linear constraints
this has the objective function right and over here patternsearch is also a stochastic technique
right. So, we need to fix the seat this part remains the same which we discussed previously

right.

Over here we need to give an initial guess whereas, in ga we did not provide an initial guess
right. So, x naught is equal to minus 3 minus 3 is the initial point we are giving, this is again
the function handle for non-linear constraint. So, we are solving it by patternsearch right. So,

if we solve it by patternsearch we will get the value of x as well as fval.

In this case x 1 is 1.4995 and x 2 is minus 1.4995 the value of the objective function reported

is minus 0.1819. But, since it us a maximization problem which we are solving the value of the

objective function would be 0.1819. So, we have seen three functions right fmincon, ga, and
patternsearch all these three are inbuilt functions of MATLAB.

So, we showed you how to solve a problem with fmincon and we choose a different problem
for demonstrating ga and patternsearch right. So, we expect you to look into the other output
which is given by all these 3 functions and try to interpret them. Next we will be looking into
how to solve bound constraint non-linear optimization problem using particleswarm

optimization and simulated annealing.

(Refer Slide Time: 28:28)

Bound Constrained Non-linear Programming

Non-linear objective function @

{y b
Lo

| Bound constraints |~/

a wemarid bnd n

-
MATLAB function: Wné Earticleswara\
J F in R2007a

simulannealbnd:
particleswarm: Introduced in R2014h

We will be looking into two functions one is based on particleswarm optimization which we
discussed as part of this course, another one is based on another materialistic technique called

as simulated annealing. So, the inbuilt function in MATLAB for simulated annealing is

simulannealbnd right. So, this simul for simulated, and then anneal we have for annealing, and

then this supports bound constraints.

So, we have this inbuilt function in MATLAB particleswarm optimization is something that
we have discussed in this course right. So, both of this function can be used to solve
optimization problems which have non-linear objective function. It can also support linear
objective function right, but when we have linear objective function we usually prefer linprog

in MATLAB to solve this right and it can also support bound constraints right.

So, that is what we had discussed in particleswarm optimization right that we need to provide
the fitness function, the lower bound, and the upper bound right So, it does not matter what is
the nature of this fitness function whether it is linear, non-linear all of them could be solved

using these 2 inbuilt functions right.

(Refer Slide Time: 29:33)

Bound Constrained Non-linear Programming
Rastrigin Function ")3’-2’

-~
7
0G0 Y[-0 |

Domain:

100
50
@g xs\5.12) Viel 2,.,D
0

5

512
0

0
@ S s
&)

10 [0 0]

—

So, here we will take the rastrigin function, rastrigin function is given over here. So, it is a
scalable function as in like we need to fix the number of variables right. So, ifit is D is equal to
5. So, this will be 10 into 5 right plus summation going from 1 to 5 right x 1 square minus 10
cos 2 pix 1 plus x 2 square minus 10 cos 2 pi plus x 3 square minus 10 cos 2 pi x 3 all the way

up to 5 right.

And the domain of the decision variables are between minus 5.12 to 5.12 this is the surface
plot of the rastrigin function right. So, x 1 over here x 2 over here and the objective function
value. So, as you can see there are several peaks and valley the algorithm is expected to search
in this space and come up with the best optimal value right. So, for this problem the global
optima is known, it occurs at x one is equal to 0 x 2 is equal to 0 and the value of the objective

function is 0 at this point.

(Refer Slide Time: 30:31)

simulannealbnd

min f (x)
e
h<x<ub

where Ib and ub are scalars / vectors

indicating the bounds of decision variables

1
. =
entﬂag) @tp-l?}] = ﬂmulanneaégné,{finj@.l__,@.o@

&)

IﬂPUlI Oulpul:

X0 Initial point of decision variables b Solution vector

I Lower bounds of decision variables fral Objective function value at sohution
ub Upper bounds of decision variables exitflag Algenihm siopping condition

: 5t o b has di ouiput Tnformation such as numbes of itesations
pliocs > ”“'?"‘"""-? [_ "s:ll.x a_s ’PIF : and funetion couat, state of random atmber
options, unction

plot functions, initial temperature ete.

gencrator and exit message.

For us to use this MATLAB inbuilt function for simulated annealing the optimization problem
has to be necessarily a minimization problem. If we have a maximization problem we need to
convert it to into a minimization problem right. So, the syntax for using this function is the
name of the inbuilt function we need to provide the function. So, in this case we will be

providing it using a function handle.

We will write a function file which will contain the objective function right. And we will
supply the name of that file over here right and we can give a starting point lower bound upper
bound and this options is required if we want to overwrite any of the default options of this
function. The output from this function would be the decision variables the value of the
objective function, the reason for termination right. It will be indicated by a number and you
can then look into the help of this function. And decode what is the reason for termination
using the value indicated by exit flag output is a structure right. So, which will contain

information on several things related to simulated annealing.

(Refer Slide Time: 31:36)

MATLAB code

Create a script file 1o solve the problem using

simulannealbnd
L N B T
lo; clear L~ r""' [; j

Create a function file ()k{c objective
function

¥ For repreducibility

@Rastrigin; & objective function handle
D = length(x):

|1' % Dimangion of the probles =
= -5.12 ; % Lower bounds
3F=0; v~ \0 2 \0 [=
AL n'\"w D) = 5.12%ones (LD} ; ¢ vppes bownds
T, e i W™ = 2%cnes (1,D); ® Initial peint |]
= F + x(d)"2 - 10%cos(2*pi*x(d)) + 10; u@1 = B ..P,{ = vie H
EX PlT] =

ety Ay

functionl

A
m}@f-@w)hﬁ < Qutpt
<502 £x2 512 Viell..D FVAL
57245 0.0168¢9) (65066

So, for this objective function right we need to first write a function file. So, here we are
writing a function file whose name is rastrigin right and the input to this function file would be
x right only one variable irrespective of any number of decision variable right. So, this variable

would be a vector if there is more than one decision variable right.

So, if there are five decision variable x will contain 5 values. So, what we are trying to write
over here is right objective function file which will work for any number of variables right. So,
this is a scalable function. So, what we are doing is first we find out what is the length of x
right. So, that would be D then we assign a variable f'is equal to 0 and then we run a loop for

the summation we run a loop for D is equal to 1 to upper case D right.

So, what we do is every time we calculate this term for that particular variable and then sum it

with F right. And this f will contain the value still the previous term. So, initially it will be 0

plus x 1 square minus 10 cos 2 pi x 1 right plus 10 right. So, this will be f in the first instant
next instant the value of this would be stored in f right. So, let us say the value turns out to be

2. So, this will be fis equal to 2 plus x 2 square minus 10 cos 2 pi x 2 plus 10.

And the third time it will be f plus whatever value we get over here let us say y y plus x 3
square minus 10 cos 2 pi x 3 plus 10 right. So, at the end of it we will have this as a scalar
value which is what this function passes to simulated annealing. So, this is what we can have in
the script file right. So, clc clear is to just clear the command window and MATLAB

workspace, again simulated annealing is a stochastic technique right.

So, to help us to reproduce the results we are fixing the random number generator right. So,
rng we are using the twister algorithm with a seed of 1 and then we are defining this variable
FUN which is a function handle right. So, we have this at the rate symbol and then the name of
the objective function file over here right. So, whenever we want to access this particular
function file we can just call FUN and over here we are defining D is equal to 2 for a 2

variable problem the lower and upper bound is defined using these two lines right.

So, we first create a vector of onse right, so if there are 5 decision variable. We create 1 1 1 1
1 and then multiply it with minus 5 point one 2. So, this will give us the lower bound and for
upper bound we have this plus 5 one 2 into onse of D x naught is the initial starting point
right. So, we are giving just 2 2 as the starting point x 1 is equal to 2 x 2 is equal to 2 if d is
equal to 2 right. So, if we change D to b let us say 5 the lower bound upper bound and this x
naught would automatically get adjusted right.

So, over here we are calling the function simulated annealing we are providing this variable
fun right which is a function handle the initial guess which we have defined right the lower
bound and the upper bound. So, we are solving with default options of simulated annealing.
So, we are not providing any options right. So, what it can return is x fval exitflag and output

this output does not correspond to this output right.

So, this output in MATLAB would have several fields it is a structure it will have several

fields when you execute this program you can have a look at it right. The final values of x and

fval reported by MATLAB for this particular problem is as given over here right. So, these are
the decision variables and this is the objective function value at this decision variable right. So,

since this is a stochastic technique we need to run it for multiple times.

So, as usual we can put a for loop over here for I is equal to let us say 1 to 10 and then bring
this line over here right. So, rng of I comma twister and then run I comma twister and then run
this for 10 or 15 times and then do a statistical analysis as shown earlier for the 5 algorithms

which we have discussed as part of this course.

(Refer Slide Time: 36:08)

particleswarm

sy)
where [b and ub are scalars / vectors ?“\?"{j (
indicating the bownds of decision variables

e - 3
) bk e - DS) 3

Input: Qutput:
fun jective function handle
nvar Dimension of the fnction - Solution vector
b Lower bounds of decision vagiables Jval Objective function value at solution
ub Upper bounds of decision variables exifflag Algorithm stopping condition

options Siructuse coniaining optimization options such as oufpur Information such as number of iterations
display options, mainum itexations/ funetion and function count, state of mndom number
evaluations, plot functions, inertia range, social generator and exit message.
and self adjustment coelficients ete.

So, the next function which we will discuss is particleswarm. So, the inbuilt function for
particleswarm optimization in MATLAB is particleswarm like all other functions of MATLAB
it can only solve minimization problems right. And it does not explicitly support constraints

right and it can have bounds on the decision variables lower and upper bound.

So, when we say it does not explicitly support constraint it does not mean that particleswarm
optimization cannot be used to solve constrained optimization problem. But, MATLAB does
not allow to specify the constraints right, but we can include the constraints in the objective

function file which we have done in the first half of the course right.

Wherein we had the objective function we evaluate the violation and then add penalty to the
objective function. So, that way we can solve constrained optimization using particles warm,
but MATLAB as such does not have the feature to explicitly define the constraints right. So,
for example, if you remember linprog we were able to define A B A equality B equality the

linear constraints where explicitly defined right and given to the function linprog right.

So, over here particleswarm function of MATLAB does not explicitly take these constraints.
So, the syntax of particleswarm is the name of the function particleswarm the name of the
function which has the objective function value. We will write a function file which we will

contain the objective function and we will pass on that as a function handle.

Nvar is the number of decision variable, Ib and ub are the lower and upper bounds of the
decision variables. And options can be used if we want to overwrite any of the default setting
parameters of particleswarm. The output is x which is the decision variable the value of the
objective function at the decision variable, exitflag would be a integer which will tell us the

reason for the termination of the function particleswarm.

And we will have a structure right which will have several fields right. So, the name of the
structure that we have given over here is output right. So, this output will have several fields
which will provide various information about this particleswarm optimization right. So, again
all these 4 are variable names right, we can give any other variable name similarly all of these

are variable names.

(Refer Slide Time: 38:19)

MATLAB code

Create a script file to solve the problem using
Create a fu@:_t_igr_l_ﬁl: of the objective P articleswarm

function e G
) o Eng(l, 'twister') & ror reproducibility
function F = Rastrigin(x) = GRastrigin; % cbjective function handle
= : = 2. % Dimension of the problem
D = length(x); =2
F=0; < 1B = -5.12%ones (1,D) ; + Lower bounds
fm (1 T = 5.12%ones (1,D) ; % Upper bounds
F=F + x(d)*2 - l0*cos(2*pitx(d)) + 10;
g, % calling the solver

[X, FVAL, EXITFLAG, 1=

pacticlenamd) D, 13, %)
_-— e

s
/ll}'Z[-l,“ —mumﬂﬂ'.rl}i-m]

5 Output:
~512 £x5 512 Viell..D

FVAL

X
[0.0876e°7 -0 5884¢7)
. 087607 -0. 5884e

Here we will use the same function file which we built for simulated annealing right. So, this is
the same file. So, here for solving we fix the random number generator we define this function
handle, we define d is equal to 2 because we are solving a 2 variable problem Ib and ub are
defined like this which we have discussed previously right. So, here we call particleswarm
provide FUN which basically refers to the function file which has the objective function D is

the number of variables right.

So, 2 in this case the lower bound and the upper bound right. So, the output from this would
be x 1 is equal to this and x 2 is equal to this and at this value of x 1 and x 2 the objective
function has a value of 7.0 into 10 power minus 13. So, now we have seen simulated annealing

and particle swarm optimization. So, both of this can be used to solve linear and non-linear

objective function, but they cannot support constraints right it is only for unconstrained

optimization problem.

(Refer Slide Time: 39:32)

Unconstrained Non-linear Programming

Non-linear objective function e

e

MATLAB function; fminunc and fminsearch
Introduced before R2006a

But, the decision variables can have their own bounds. Now, we look into 2 inbuilt functions
of MATLAB fminsearch and fminunc which will help us to solve unconstrained non-linear
optimization problems. So, first will begin with these 2 functions fminunc and fminsearch these
are 2 inbuilt MATLAB functions. So, it can be used for problems which have a non-linear
objective function and there should not be any constraints. So, constraints are not allowed

right neither linear nor non-linear even bound constraints are not allowed in fminunc and

fminsearch.

(Refer Slide Time: 39:53)

Unconstrained Non-linear Programming

Rosenbrock’s function
4yt 7|
Minimizd =X "

Gradient:

EIEE

—> Continuous differentiable function

So, the example that we will be taking is rosenbrocks function right we are taking 2 variables
right. So, we are supposed to find out the values of x 1 and x 2 at which the function has a
minimum value. So, for this problem the optima actually lies at 1 comma 1 that x 1 is equal to

1 x 2 is equal to one and at that point the value of the objective function will be 0 right.

So, this 1s the global optima which is known for rosenbrock function right. So, first we will be
discussing fminunc right, so for this we can also supply the gradient right and the function has
to be continuous. So, we can find out what is dou f by dou x 1 dou f by dou x 2 and this
information can also be used by fminunc it not only can take the objective function value, but
it can also take the gradient right. So, in this case dou f by dou x 1 will work out to be 2 into

100 x 2 minus x 1 square minus 2 x 1 right.

So, that is why 200 400 minus 400 x 2 minus x 1 square into x 1 plus 2 times x 1 minus 1
right; similarly, dou f by dou x 2 can be calculated. So, to this function we will not only
provide this objective function value, but we are also be providing this gradient expression for
dou fby dou x one and dou f by dou x 2 right. For us to use fminunc the function has to be a

continuous differentiable function.

(Refer Slide Time: 41:19)

minunc

Objective function file returns a scalar

mxl 5 f(x) If user provides the gradient information of flx),

.
where f(.\') is the objective fimction then the objective function file returns two scalars
(function value and gradient value)

i), €3 e YTl

Input: Qutput:

P P X Sohition vector

fun Objective function handle Sral Objective function value at solution

x0 Tnitial point of decision variables exitflag Algorithm stoping condition

options Struchice containing the optimization options oufpur Information such as aumber of
such as choice of algorithms, display options, itezations and function count,
masimum itegations/ function evaluations, pll)i a]gmillml used, exit message ele.,
functions, output functions ete. grad Guadient at the solution

hessian Approximate Hessian

So, fminunc solves a minimization problem right. So, if I have a maximization problem we are
supposed to convert it into a minimization problem, so the input to fminunc is the objective
function right. So, fun is a objective function handle it can also contain the gradient as we will
show you it can also contain the gradient. Or it can just contain the objective function value

we can give an initial guess and if we want to override any of the default option of fminunc we

can also give this option. So, the output from fminunc would be the decision variables right

the value of the objective function at the decision variable.

Exitflag will be a integer right which will tell us the reason for the termination of fminunc and
it can also give us the gradient and hessian of the function right. So, here remember that all
these are variable names right. We can give any variable name just that the fourth value
returned by fminunc would correspond to gradient. The fifth value would correspond to
hessian, the third value would correspond to exit flag, the second value would correspond to

fval, and the first value will correspond to the decision variables.

(Refer Slide Time: 42:27)

MATLAB code

Create a function file of the objective Create a script file to solve the problem
function using fininunc e
function (f,g] = ‘g grad cle;clear i

S ——— E——— F“I.‘-‘-?"

@cﬂ.matn objective £ %0 = [=1,2]; % Initial
1004 (x(2) - x(1)42)°2 + (1-x(1))*2;) 0 = [QL2]7 ¢ mmicial guess
= _j(‘l_]_._xi]___}n_ (1-x(1))*2; 58 .@oﬁnb_roc_kﬂ._‘ghgnd-' % abjective

5 Datermination of gradient SR ‘

@ = [-400% (x(2) =x(1)*2) #x (1) +2% (x(1)-1) ; % calling the solver

fminunc(fun, x0); L—

Minimize = —x !+ x =1}
Oulput: X FVAL

e Rl 0999 030 12z
: 200(x,-x;) —=

~

— -1

So, this was our objective function right and this was our gradient right. So, we are writing
this file right, so rosenbrock with grad this is the name of the file again you can give whatever

name you want. The input to the function is the value of the decision variables every time the

solver would call this file multiple times and every time it calls it will give us the decision
variables and we can return the value of the objective function and the value of the gradients.
So, fis the value of the objective function, so the first value which we are supposed to return

is the objective function value.

So, we have written fis equal to 100 x 2 minus x 1 square the whole square plus one minus x
1 the whole square or x 1 minus 1 the whole square both are same. So, the gradient will have
2 values g of 1 and g of 2 right. So, g of 1 is this expression g of 2 is this expression, so we
have this first row and then we have a semicolon and then the second row. So, this will
contain 2 values because we have 2 decision variables right, so x 1 and x 2. So, what this piece
of code does is it will plug in the value of x 1 and x 2 in these 3 expressions and return them

back right.

So, objective function value is written separately as f where as the gradient is returned as a
vector if this were to be a 5 variable problem this g will have 5 values g of 1, g of 2, g of 3 and
so on all the way up to g of 5. So, once we have created this function file we can now solve
the problem right. So, clc and clear will clear the command window and the MATLAB
workspace right we are defining an initial guess x naught is equal to minus 1 2. So, we are

solving the problem with an initial guess of x 1 is equal to minus 1 and x 2 is equal to 2.

We are defining a variable fun which is a function handle right and we are assigning the name
of this file to this variable, so fun becomes the function handle. So, the output from fminunc
which we want is the value of the decision variable the objective function value at that x
exitflag output grad and hessian right. So, we could have just given x 1, x 2, x 3, x4, x 5, X 6;
x 1 would indicate the decision variables, x 2 would indicate fval, x 3 would indicate exitflag,

x 4 would indicate output, x 5 would indicate grad, and x 6 would indicate hessian.

You can go back and have a look at what would these values be right, but here we are only
showing what is the value of x and what is the value of fval. So, fminunc has been able to find

the value of x 1 is equal to 0.999 x 2 is equal to 0.9999 and the value of the objective function

is has given over here. So, this is how you use fminunc to solve an unconstrained optimization

problem, now we look into fminsearch.

(Refer Slide Time: 45:19)

‘minsearch

min / (x)

i
where f (x)is the objective function

e LR
[x; fxgl, exitflag, output] = (fminsearch)fun, x0, options)

| Objective funetion file returns a scalar |

functions, output functions efc.

Input: Output:
fun. Objective function handle X Solution vector
10 Tnitial poant of decision variables fral Objective function value at solution
options Structure containing the optimization options exifflag__ Algonthm stopping condition
such as choice of algorithms, display options, oupur Information such as number of
imum iterations/ function evaluations, plot itegations and function count,

!Lﬂl)ll[llm used and exit message.

So, for fminsearch also MATLAB supports only minimization problem right. So, if you have a
maximization problem you need to convert it into a minimization problem. For the function
fminsearch in MATLAB, we need to provide the objective function a starting point. And if we
want to override any of this options of fminsearch we need to use options. The output which
we can have from fminsearch is x which is the value of the decision variables after solving by
fminsearch fval is the value of the objective function at the decision variable. Exitflag is a
number which will tell us the reason why fminsearch terminated and output contains more

information about the solution process.

(Refer Slide Time: 46:00)

MATLAB code

— Minimize S(x)]I]lf)(x2 -3): +(x] -]):

Create a function file of the objective

function &) @

function £ = rasonbmck(_g e ‘b ,_).{.— FVAL
i (0.9999 0.9999] 1.7062¢™

% Calculate objective f et

£ = 100%(x(2) - x(1)*2)*2 + (1-x(1))*2;
fi® 100%iz(2) =X (1)72 e e

Create a script file to solve the problem using fiinsearch

cle; clear

fun = @rosenbrock; % cbjective function L]vdJ'\
x0 = [-1, 2]; & Initial quess G\ Lk

% calling the sp Fre. "&'
S - i

So, we will use the same optimization problem which we used right for fminunc. So, the
objective is to minimize f of x is equal to 100 into x 2 minus x 1 square the whole square plus
x 1 minus 1 the whole square right. So, here we need to only pass the objective function value
we cannot pass gradient for fminsearch. We create this function file which will return the

scalar f the name of the function is rosenbrock and x is the input to this function.

So, fminsearch when it solves it will call this function multiple times every time it will send the
value of x right. So, x will contain x of 1 x of 2 because we have 2 decision variables for this
problem and this function is expected to return a scalar value right. So, the scalar value is
nothing but the evaluation of the objective function at the given point x. So, this is

straightforward we call the function fminsearch we provide this fun right, so fun is function

handle. So, either we can use fun over here or we can directly give at rosenbrock over here

comma X naught.

So, again we are starting with the point minus 1 comma x 2 in this case the value of the
decision variable that we obtain and the objective function is given over here right. We expect
you to go back and look at the exitflag and output right. So, remember this output is not the
same as this output right. So, this output is just to show you that this is the output from this
function whereas, this MATLAB variable output is a structure right. You will be having

multiple fields into that, so you can look into the values of each of them.

(Refer Slide Time: 47:33)

Quadratic Programming

Quadratic objective function

==

|(Linear quality and inequality constraints |

| Bound constraints |L./

—

MATLAB function: r,imdgmg

Introduced before R2006a

So, now we look into a special type of non-linear problem which is called as quadratic

programming. In quadratic programming the objective function is quadratic whereas, the

constraints are supposed to be linear for the inbuilt function quadprog of MATLAB. So, this
quadratic programming can be solved using the inbuilt function quadprog in MATLAB right.

So, here we can have bound constraints, so the decision variables can have their own bounds
lower and upper bounds. This function quadprog can support equality as well as inequality
constraints, but they need to be linear. If the constraints are not linear then we cannot use

quadprog and the objective function as we discuss has to be quadratic in nature.

(Refer Slide Time: 48:10)

Quadratic Programming

#Minimize f [x): [Objective function | | Quadrasic |

Subject to
26 +x, 26

X —4x, <0

#MATLAB function: quadprog

Eaginenuing Optimization Theorr ud Practice, 55 Rao

So, this is an example of quadratic programming right. So, the constraints if you see all those
constraints are linear the lower bound for the decision variables are 0 the upper bounds are not
given which means the upper bound is infinity. And this objective function has quadratic term
right this is a quadratic term quadratic term and a the quadratic term over here. For solving

this problem we can use the MATLAB function quadprog.

(Refer Slide Time: 48:32)

quadprog

min f(x)=-4

2x +x, 26

X —dx, <0 ,&T’ A 5’3

I, =0, Iz >0 i /ﬁammmlm matax (H) s not 1 positive defiute, quadprog ssues o warnng and uses the

symmetrized version (H + HT)/2 instead

I TN P

So, this is how MATLAB requires the input, so the objective function is supposed to be in this
format right. So, all the quadratic terms are captured over here and all the other linear terms
which are there in the objective function are captured over here right. So, for example,
consider this problem minus 4 x one plus x one square minus 2 x 1 x 2 plus 2 x 2 square. So,
here we have these 3 quadratic terms this is a quadratic term, this is a quadratic term, this is a

quadratic term. So, only minus 4 x 1 falls under this second part right.

So, here what we will do is first we need to decide the order in which we are going to arrange
the decision variables right, so let us say we will arrange x 1 and x 2. So, in this case if we
compare the objective function which is given to us and this objective function which is the

form that MATLAB requires right. So, then f has to be minus 4 and 0 right and x would be x 1

x 2 right; so, minus 4 x 1 plus 0 x 2 because we do not have an x 2 term which is linear in the

objective function.

So, that is going to be our f this H is the hessian matrix right, hessian matrix is the second
derivative of the objective functions. Dou square f by dou x one square is 2 dou square f by
dou x 1, dou x 2 is minus 2. Similarly, dou x square f, dou x 2, dou x 1 is minus 2 and dou
square f by dou x 2 square is 4. This will always be a matrix its size will be number of decision
variables by number of decision variables. So, if you have a quadratic objective function which

involves 5 decision variables right.

So, then you will have a 5 cross 5 matrix then the hessian matrix will be 5 cross 5. So, this
hessian matrix has to be calculated by us and it has to be provided to quadprog function right,
so this is H right. So, now if you do this operation half x transpose H x plus f transpose x right
with the x is equal to x one x 2 right. And this f and this h and if you calculate this expression
it will come down to what we have over here. The first step in solving an objective function

which is quadratic in nature using quadprog is to determine the hessian matrix right.

So, once we have the hessian matrix then we can proceed ahead right. So, quadprog requires
us to provide the hessian matrix and the constraints need to be of this form right. So, whatever
constraints we have has to be converted into this form right. So, remember that quadprog can
only support linear constraints right. So, whatever linear inequalities we have A would be the
coefficient matrix b would be the right hand side vector this is for the inequality constraints.
And for equality constraint the right hand side would be the constant values whereas, A

equality is actually the coefficient matrix of the decision variables for linear equalities.

And then we can give this lower and upper bound right. So, the syntax for quadratic
programming is quadprog is the name of the inbuilt function right. We need to provide the
hessian value H right we need to provide this vector f followed by the coefficient matrix. And
the right hand side vector of the linear inequalities the coefficient matrix and the right side
vector of the linear equalities. The lower bound the upper bound initial guess and options we

need to provide if we want to override any of the default options of quad prog.

So, the output from quadprog can be x which contains the decision variable. FVAL which
contains the value of the objective function at the decision variables which quadprog has
reported to be optimal. Exit flag which will tell us the reason for termination of quadprog,
output which will contain additional information about the solution process and the lagrange

multipliers.

(Refer Slide Time: 52:18)

MATLAB code
Create a script file to solve the problem using quadprog g\?,'ﬁ ¥ zh
cle; clear % Cleaz th d window and work tivel; -
ar the command window and workspace respectively M\ "A__ll _‘D—
A= [-4; 0] % Linear terss in the cbjective function \0 =
L/'H = [2 -2; -2 4]; % Hessian matrix lnpu‘: M]
wA=[21;1-4]; % Coefficients of linear lnequality S— el
\ob = [6; 0]; % RHS of linear inequality
\,ﬂﬂq =1 [z % Coefficients of linear equality I: J‘:[-z I.]
= []: ¥ RHS of linear equality M"\UD =
= [0 0]; % Lower bounds of the variables !c‘\"‘ M:[ﬂ 0I
= “ % Upper bo o variables

cal.'l.i:ng the uulv:: ¥

[x, ag, outputf @EL f, A, b, Req, beq, 1b, ub)

4513 1 0159
-6.7692 los{!

?m, lth [0.3871e712 0.8824e71) q ST:sdw m for change i lowes bound
dammid Pt e e

LAMBDA. upper o W\ Shadow price foe change in u '—_-.
w. ineqlin [o :_5_15" '0-] x| Shadow prce for change g RHS of mequality constramts

T

So, for the problem which we showed you a couple of slides back right, so this is f this is the
hessian matrix right. So, the constraints were 2 x 1 plus x 2 is less than equal to 6 x 1 minus 4
x 2 is equal to 0. So, these 2 were our constraints the coefficient matrix is 2 1 because our

decision variables are x 1 and x 2 and the right-hand side value is 6 and then 0 right.

We were only given the lower bound, so lower bound is 0 0 right. So, here we need to define

H right A and b as defined over here right. We do not have any equality constraint, so we give

empty matrix right. The lower bound is 0 0, so we are defining Ib is equal to 0 0, so ub is an
empty matrix right. So, if it is an empty matrix the upper bound is taken to be infinity right.
So, here we call quadprog we provide H f A b, A equality, b equality, lower bound, upper
bound which we have defined over here right. And the output that we are expecting is all these

five variables which we have discussed previously.

So, in this case we get x to be 2.4615 and 1.0769 right. This means x 1 is equal to this and x 2
is equal to this and at this value of x 1 and x 2 the value of the objective function is minus
6.7692 right. So, exit flag and output we have not given over here right. So, this output is not
the same as this output, this output is just to show you what is the output of MATLAB. This
variable output will be a structure which will contain lot of fields it will provide us with

various information about the quadprog solution.

Lambda is a structure right, so you would get this only when this is in uppercase right LAMB
DA right. So, lambda dot lower, lambda dot upper, lambda dot inequality right. So, this can be
any variable name whatever the variable name is there that variable name would appear over
here. So, we have dot lower, dot upper, and dot inequality and these two corresponds to the
decision variable with respect to the lower and upper bounds; whereas, this corresponds to the

inequality constraint.

So, here we have two decision variables, so this lambda dot lower will contain 2 values, and
lambda dot upper will contain 2 values, and we have 2 inequality constraints, so this will also
contain 2 values right. So, if we had let us say 10 variables and let us say 5 linear inequalities.
In that case this would have been 5 cross 1 and these 2 would have been 10 cross 1 and 10
cross 1 right. So, the interpretation of this Lagrange multiplier is similar to the discussion
which we had for linprog. And those are the shadow prices for the changes in a lower bound,

upper bound, and right hand side of the inequality constraints right.

So, here if we had equality constraints then we would get something as lambda dot equivalent
right which will also give us information about the lagrange multipliers with respect to the

equality constraints. Now, we will look into how to solve mixed integer non-linear

programming problem using the inbuilt function of MATLAB. The only function in MATLAB

which supports solving mixed integer non-linear programming is ga.

When we say the inbuilt function of MATLAB can solve mixed integer non-linear
programming problems using genetic algorithm. We need to remember that it can either
support integer variables or it can either support equality constraint it cannot solve the
problem which involves both. So, for example, if you have a mixed integer non-linear

programming problem if it does not have equality only then ga can solve it.

(Refer Slide Time: 55:57)

Constrained Mixed Integer Non-linear Programming
!—'-'_F'_-_‘_-_'__-—-—-_________-_-_-__——

|U"§1_l‘man=ﬁnear objective function |

Linear equality and inequality constraints

&
Non-linear equality and inequality constraints

Bound constraints
&

]nteger variables®

Matlab function: ga
Introduced before R2006a

So, the function that we are looking at is ga right to solve mixed integer non-linear
programming problems right. So, it can support linear equality and inequality constraint

non-linear equality, and inequality the constraint. It can support linear and non-linear objective

function, it can support bound constraints right, it can support integer variables only if there

are no equality constraint; if there are equality constraint it cannot support integer variables.

(Refer Slide Time: 56:28)

Constrained Mixed Integer Non-linear Programming

e
L . X Non-linear
Minimize f(x,y)=- Y- ln[ﬂ N aion
subject to
: \f Non-linear
—x-In| % |+y<0 [inequality
23/ constraints
2Bsd)
s

Fyel0l) g ¥
> W

» Matlab function: ga

The problem that we will take over here is two variable problem. So, the decision variables are
x and y x is a continuous variable the lower bound is 0.5 and the upper bound is 1.5. Whereas,
y is a binary variable, so y can take either 0 or 1 it cannot take any other value apart from 0

and 1.

So, it is a binary variable, so a value of point 2 is not acceptable though it is between 0 and
one that is not acceptable. So, the objective function over here is non-linear right, the only
constraint that we have over here is non-linear constraint it is an inequality constraint and there

are bound constraints lower and upper bound of both the variables are known.

(Refer Slide Time: 57:08)

Minimize f(x.y)= ;‘:ﬁ-hﬁ @ 9 Create a scri ipt file to solve the problem using ga
clec;clear vy
=5 <0 rng (1, 'twister') & For reproducibility L ! 22' ﬂ
W% ne Ty
D.iSJ’SU L4 & cbijective function handle P
-eﬁm 0.5 % Lower bound = ‘
" e 1‘_ 1]; % upper bound ‘IkmL-l 3
Create a function file of the objective =
J = 2; % Index of integer variable
function nvar = length(lb) ; & eroblem dinension
:?uon . T \./— nonlcon Ionlﬂontnt % Nonlinear constraint function
f= -xt:m*x;n logjX(1)/2); ¢ =
06 - gm0 0]
Create a function file of the objective ub, “9"1'-"-‘“:
function

function [c,ceq] =\ (%) v’
% x = X(1) and y = X(2)

Output: X [1-_3171) 1
c = =X(1)-log(X(1)/2) + H
S ; = FVAL 2.1272

So, as we had seen previously for ga we need to construct these two files, so in this case what
we are doing is it’s a two-variable problem. So, we are choosing a notation of x and y. So, the
first value will indicate the value of x right and the second value will indicate the value of y,

the name of the objective function file which we have chosen here is objfunint right.

So, the input to this would be the decision variable let us say capital x it can be any variable
name right we have chosen capital x right. So, and according to our convention that the first
value of x is the lower-case x and the second value of the upper-case x is the value of'y. So,
this is the objective function file which we require. Similarly, we can write this file nonlconint
the decision values are passed by the algorithm to this function right. So, this function is
supposed to return ¢ and c equality where ¢ and ¢ equality is similar to what we have

discussed previously for solving non-linear programming problems right.

So, here c is equal to right we have only one constraint, so that is why we are not doing c of 1,
so ¢ is equal to minus x right. So, minus x of one because the first variable indicates the x
value right minus log of x 1 by 2 minus log of x 1 by 2 plus x of 2. Remember we do not have
y right y is stored in this second position right. So, we are accessing x of 2 and we do not have

any equality constraint. So, ¢ equality is equal to empty bracket, so this is the script file right.

So, clc clear you know again we are fixing the random numbers right. So, we are defining the
variable fun right, it has the name of the objective function file over here right since we want
fun to be a function handle, we need to have this at the rate right. So, the lower bound and
upper bound lower bound of the first variable is 0.5. So, 0.5 the lower bound of the second

variable which is actually the integer variable is O right.

So, over here it is 0 the upper bound of the first variable that is x is 1.5 the upper bound of the
second variable is one. So, here since we have an integer variable we need to specify which is
the variable that is integer. So, in this case the second variable is integer, so we only give 2

over here this is similar to intlinprog which we have discussed previously.

Let us say we had 3 variables let us say x 1, x 2, and x 3 and let us say the second and third
variable were integers right. And we choose to arrange the variables in this order right then in
that case intcon would have been 2 3. Or let us say we had x 1, x 2, x 3, x 4, x 5 and let us say
x 6 and if only the second and the sixth variable had been integer, so this will be 2 and 6. So, in
this case only the second variable is integer. So, we give intcon is equal to 2 the number of

variables is nothing but length of lower bound or we could have just given 2.

This is a variable name right which is a function handle it refers to the file in which we have
written the non-linear constraints. Again we need to specify this symbol at the rate right, so
here we are solving with ga right. So, ga we need to provide the details of the objective
function file. So, either we can write this one over here instead of fun or we can directly give
fun nvar for the number of variables. We do not have any linear inequalities or equalities, these

two are for inequalities these two are for equalit right.

So, we do not have them, so we have given empty brackets the lower bound the upper bound
and the name of the file wherein we have the non-linear constraints right. So, in this case we
have given nonlcon. So, it could be any variable name as long as it refers to this particular
function. And previously when we had used ga to solve non-linear programming problem we

had stopped over here since we now have integer variables right.

So, we also need to specify the integer variables right, so we had used this variable intcon to
specify the location of the integer variables, so we provide that intcon over here right. So, as
output we have only accessed the decision variable and the objective function file. We expect
you to access the rest of the output provided by MATLAB and try to understand that right.
So, the value of the decision variable reported by MATLAB for solving this problem is x 1 is
equal to 1.3770. So, which is nothing, but the value of x right and the value of y is one over

here. At this decision variable the value of the objective function is 2.1272.

(Refer Slide Time: 61:58)

Solving MINLP using ga

e 2
» |r.0_,F|w\ [—’f minwize fx) winimize fix) AR
méj\mu mimiee f{x) siibjict i
' e wbjectio) subjict ! o .
Problem type Agreb, v L :': & drsh @ £
Clx)s ‘JJ T crjst cin=0
(%)=
Cylx)=0 -/ | intean jare integer vartable
i infeow | are integer variable V(JW\MM T BT Varkble e

x| Ilwulmmm —_— vareconfimens wirihle
—

—~2 9 @ 9 ¢

MINLP problem MINLP problem MINL]']‘m:l|)|.ul:| MINLP problem | NLP problem

without nonlineas without Linear without 1'1\“.41\!} =
No iteger vanables

equality constraints || equality constraints consirinis

Ah this slide is to just help you consolidate right. So, this is a typical MINLP problem right.
When we say an MINLP problem this is what we mean right there are linear inequalities, there
are linear equalities the objective function its not in a specific pattern right. So, it can be
non-linear also we have non-linear inequalities non-linear equalities and some of the variables

are integer right.

So, this intcon is written just because we are discussing about the ga function. If our problem
contains all of this right then MATLABs ga function cannot solve this right. So, it cannot
support integer variable with equality constraints right. So, over here if you see this is also an
MINLP problem right because some of the variables are integer and there may be

nonlinearities involved. But, MATLAB ga cannot solve this because we have linear equalities.

So, this is also an MINLP problem because we have nonlinearities and some variables are

integer right, so here non-linear equalities are there right.

So, that is why MATLAB ga cannot solve right and if there are no integer variables if all the
variables are continuous then MATLAB can solve it right. It can even support equality
constraints both linear as well as non-linear because this is then NLP problem right. A
non-linear programming problem there are no integer variables right this MATLAB ga
function can solve, so it can solve an MINLP problem right. So, technically as per the
definition of MINLP which we use for this course right. So, some variables are integer and

there is some nonlinearity right

So, that way this problem also gets classified as an MINLP problem, but this is an MINLP
problem without equality constraints right, so without equality constraints right. So, only this
problem can be solved by the inbuilt function of MATLAB right. To the best of our
knowledge there is no inbuilt function in MATLAB which can solve a really MINLP problem
involving equality constraints right. Whether it is linear or non-linear does not matter if there is

a equality then integer variables are not supported by MATLABsS inbuilt function ga.

(Refer Slide Time: 64:01)

Input and output firguments of different solvers

[x, tval, exitflag, output, frmbeda)

[x, fral exitflag,outpt m | =

x, fval, exittlag, outpu
& '|

[\ tal, exitflag, output] = fmins \.mllfiun d

[x, tval, exitflag, output] = simulannealbnd(fu .xl:.u\ oplions)
E—— E— =

[A, fval, 1':\|I'I]:|_u. uul]ml] lr.ulu Jeswicn 1|m AV @ ::'mcm\j
——————

[el exittlag, uulpllr'uL]ut. sian| = tmmrtm 1|u. mﬂmu)
——
[feal exitfls agoutput, l\ipul ation,Score] =ga v, mw Wi @ |® .cb]slu)u\:.
—— . - -
il fden

This slide provides all the functions which we have discussed right along with its input and
output right. So, linprog is the first function we discussed this is for linear programming in
intprog for MINLP right. Quadprog is for quadratic programming, fminunc and fminsearch are
for unconstrained optimization problem. And they do not even support bound constraints right
the variables can vary between minus infinity to plus infinity only. Simulated annealing and

particle swarm optimization again no constraints constraints are not allowed over here.

But the domain can have constrained Ib and ub right, fmincon is used to solve non-linear
optimization problems right. So, only integer variables are not allowed ga can solve NLP
problems as well as MINLP problems only thing is that if there are integer variables then there

cannot be equality constraints right. If integer variables are not there then equality constraints

are supported, but if integer variables are there then equalities are not supported and then we

had this patternsearch right.

So, the output if you see there is a similarity among all the functions right. The first 4 values
are similar the decision variable, the objective function value, the reason for termination
indicated by a integer number right. And output will contain additional details about the
solution procedure right. So, the lagrangian multiplier can be obtained only in linprog right,
quadprog and in, fmincon right. So, only there we can get the lagrangian multipliers right over
here lagrangian multiplier is not returned by intlinprog. In addition to that we get gradient and

hessian only in these two functions fmincon and fminunc right.

And for genetic algorithm we can additionally get the final population and the score right. So,
if you look at the input right, so all of this are for non-linear. So, the objective function we
supplied as a function handle right. And here we can give initial guess also right, so in this
cases we can provide the initial guess. Over here there are only two functions which will
support integer variables right; one is this intlinprog and the other is ga right. In intlinprog the

intcon is the second variable, so in ga it is given after the non-linear constraint right.

So, only these two functions support integer variables right. So, for intcon we need to give the
index of the variable which is an integer. So, this A b A equality b equality is for linear
equalities and linear inequalities right. This Ib ub is the lower and upper bound of the decision
variables. In this course, we gave non-linear constraint through a function file right. So, we
need to write the non-linear constraints in a function file and need to provide the name of the

function.

Only this quadprog requires us to provide the hessian matrix. In this session we looked into
how to solve non-linear programming problems as well as mixed integer non-linear
programming problem using the inbuilt functions of MATLAB with that we will conclude this

session.

Thank you.

