Computer Aided Applied Single Objective Optimization
Dr. Prakash Kotecha
Department of Chemical Engineering
Indian Institute of Technology, Guwahati

Lecture — 26
Constraint-Handling using Correction Approach Case Study: Production Planning

Welcome, in the previous session when we were talking about Constraint Handling. So, we
only discussed on penalty approach right. So, as and when a metaheuristic techniques provides
the solution, we check for the constraints right if that constraints are not satisfied, we assign
an appropriate penalty right. So, the penalty can be either hard penalty or it can be determined
based on the amount of violation right. So, previously we had solve production planning
problem using this approach wherein we had used a hard penalty approach for handling the

domain constraint, right.

So, any solution which gave a production which is non zero, but it is less than 1 of the
penalized that solution with a constant value of 10 power 5 right. Whereas, for budget and
investment constraint, we determine what is the extent of violation and we assigned a penalty
appropriately. Another way to handle constraint is to correct the solution right. So, based on
the nature of the problem; whatever solution we receive from the algorithm can be corrected
right. Based on the domain specific knowledge right and the corrected solution can be

returned back to the metaheuristic technique right.

So, it is a very simple approach that approach can provide significant improvement in the
results right. So, that is the approach we will be looking in the session right and we will
demonstrate it on the production planning problem. So, that you can realize the benefit of

employing your correction approach rather than a penalty approach.

(Refer Slide Time: 01:49)

Metaheuristic techniques and optimization problem

Problem devals @
i Metaheuristi
Technique

Ontimization problem

Scripl £
———
Best solution. £
and other results

© <14 <

* -

o L m C L2903 ("

Mgllri[hSnO" k0 E i
Problem details ;

Script

Best solution
and other results ~ §

X 4 Qemn wo)yl\~
v e N

o i xvo &wx<l

If you recollect whatever we have been discussing so far. This was the communication
between the metaheuristic technique and the optimization problem which we had right. So, the
metaheuristic technique will pass the solution X to the optimization problem and the

optimization problem when in turn will provide the fitness function of this X right.

If this X is an infeasible solution and if we are solving a minimization problem this f would be
very high value right. Whereas, in the correction approach, what we do is; the metaheuristic
techniques still passes the solution X right. The optimization problem does not merely

determine the fitness function of X right, but checks for the violation.

And if there are any violation in any of those constraint right, if there is an inbuilt mechanism

right. So, if we employ some mechanism right which will help to improve the solution x right

then that improved solution is passed back to the algorithm along with the improved solution

we also pass the fitness function of the improved solution right.

So, it is not correct to convert X to X c let us consider we have a two variable problem and
the decision variable passed are 2 and 3. And let us say there is a mechanism in the
optimization problem which looks into the solution and corrects the solution to 2 0 right. And
the fitness function of this 2 0 is let us say 16 right. For some evaluation of the objective
function and the other constraints, the fitness function value turns out to be 16 and for this 2
and 3, let us say it is 25 right. So, what we obtain from the algorithm is 2 3, it has a fitness of

25 and it violates some constraint right.

There is some mechanism in this fitness function which corrects the solution right. The
solution is corrected to 2 0. And the fitness function of this 2 0 is let us say it is 16. The
solution is better than this solution and this betterment is not directly because of the
metaheuristic technique, but because of the mechanism which we had employed over here to

correct the solution right.

So, in this case to what the optimization problem is supposed to communicate to the
metaheuristic technique is not the value 16, but also the solution 2 and 0 right. So, what
should happen in this metaheuristic technique is; this 2 and 3 should be replaced with this 2

and 0 and the corresponding fitness function value right

So, this is the correction approach wherein we get a solution from the metaheuristic technique,
we employ some mechanism which is problem specific right to correct the solution and we will
send back the corrected solution in this case 2 0 along with the fitness function value of the

corrected solution right.

So, for example, if we consider teaching learning based optimization; we generate a new
solution. That new solution let us say it is 2 3. So, when it is communicated to the
optimization problem; the optimization problem corrects it to 2 0 and this 2 0 is sent back to

the metaheuristic technique along with the fitness function value of 16.

So, the metaheuristic technique or TLBO in this case, should consider 2 0 as the newly
generated solution along with its fitness function. So, it is this solution which has to be now
used for greedy selection right. So, this correction approach as you can see it is a very

straightforward approach only thing is that we should be able to develop a mechanism for the

problem at hand right.

So, it is very problem specific, the correction approach is not part of the metaheuristic
technique, but it is a part of the optimization problem. But it is implemented in the fitness
function evaluation right. There are couple of things which you need to remember while

employing a correction approach right.

(Refer Slide Time: 05:28)

Metaheuristic techniques and optimization problem

rithm pa T
i 5) Metaheuristic
;) Technique
Bestsolution :

and other resulis

S AR

Problem details {:}P—b

Seript i1 Metaheuristic L W ;
Best solution Te':hnlque i i : e i

and other results @ A LTS
¥
R\,

The first thing is that the fitness function should be calculated for the corrected solution right.

So, what we get from the algorithm is the set of decision variable let us call it as X right. So,

that is corrected to a new solution let us say X c right. So, penalty is not supposed to be
calculated for this X right. So, penalty is supposed to be calculated after correcting the
solution. This is because when we are conveying the fitness function value right. We should

convey the fitness function value of the solution which we are passing to the algorithm.

So, the solution that which we are passing to the algorithm is X c right. So, the fitness
function should correspond to this corrected solution right. So, for corrected solution; if you
think about it at least for this production planning problem if you see that, it will not have any

violation of domain constraint right. So, this will have a better fitness than X right.

So, there is no need to calculate the fitness function of X itself right because, we are anyway
correcting the solution. Once we correct the solution; we can find out the penalty for that
right. So, in this case there would not be any violation with respect to domain constraint, but

there maybe violation with respect to raw material 1, raw material 2 and the budget constraint.

So, the penalty is to be calculated for the corrected solution and then fitness function is to be
calculated for the corrected solution. Because, this is the solution which we are conveying
back to the metaheuristic technique plus penalty of the corrected solution. So, this will be the
fitness which we need to pass through the algorithm. So, here you need to remember that
whenever we are employing a correction approach. We are doing something on top of what

the algorithm is doing.

So, the algorithm let us say it suggested a solution 1, 2, 3 right. So, for some reason we are
correcting that solution in the optimization algorithm let us say that solution 1, 2, 3 becomes
3, 8, 7 right. So, we have done something on top of the algorithms. So, in some sense you can
say that we are disturbing the algorithm. For many problems depending upon the correction
approach that you employ you may get a better result, but there may be cases where in a

correction approach does not enable you to get a better solution.

So, in the case of production planning problem. So, this was | this was h right and let us say m.

Let us say 1 is 50, mis 100 and h is let us 175 and this O is a feasible solution right. So, if we

get any solution over here right. It does not violate domain constraint. So, you are not adding

penalty.

If the solution is here, we again do not add any penalty right or if the solution is 0, we do not
add penalty. So, what we were doing previously is that if any solution o was over here which
is greater than 0, but less than 50. Let us say it was 45 right. So, what we did for this solution
45 is that; we assigned a penalty for it right. So, instead of assigning penalty what we can do
as part of the correction approach for production planning problem is that any solution which
is greater than 0, but less than 1 can be converted to 0 right. So, this is some mechanism that

we are employing right.

So, solution X remains X right. If this X is greater than or equal to 1 and less than or equal to
h, remains X if X is 0 right. And what we are saying is; we will convert it to 0. The algorithm
gave us some value, but we will convert it to 0 if this X is greater than 0 and it is less than 1
right. So, this is the correction approach that we are employing right. So, we will correct the
X and we will no longer assign the penalty. Because, we have converted the solution in such a

way that it no longer violates the domain constraint. So, we will no longer penalize it right.

(Refer Slide Time: 09:15)

ele
clear
clede all

W% Preblea settings

[preduct, 1,m b, 11, in, ib, €1, cn, ch, 5P, mml, ra2, rmd, nProcess] = PreductionPlamningDatas
Ib = zercs (1,nPEocess) ;

ub = by

preb = B3KS_PreductlonPlanning: % Fitneas function
prebt = K3 Productjonblanningt: \ Fitneas functlon

4 AMgoritha pacaseters
Mp = 50: T = 100; % Wo. of population and iterations

Pe = 0.8: F = 0,65 § DE crossover pecbabllity & Scaling factor
wo= 0.8 el = 1.5 e2 = 1,50 § P50 Inertia welght, Acceleraticn coefficient
KRuns = 5

baattitness = Wal (NRuns, 3}
bastfitneasC = HaM (NRuns, 3) 2

¥ Res = [1000 500 500; 1000 1000 1000; 2000 500 500; 2000 1000 1004]:

(Refer Slide Time: 09:16)

tunction [product,l,

1 b, i1, 18, ih, c1, €, ch, 8P, ral, =2, rm3, nProcess] = Productiontlanninglata
H 1

£l § data haa been taken from httpa://wd, tandfonlinecom/doi /pdl/10,1060/03052150215722
4

5 |4 the production levels of the varicus proceases at which the producticn and invastsent costa are known

&= | 1=[70 75 77.5 70 47.5 40 40 45 40 90 90 90 90 90 90 50 50 €0 100 50 25 25 125 125 250 50 €7.5 70 70 70 100 75
T mo= 135 150 155 145 95 90 B0 0 80 180 190 180 180 180 180 100 100 120 200 100 50 50 250 250 500 180 135 1
8= | ho= [270 300 310 200 190 160 160 160 160 360 360 360 360 360 360 200 200 240 400 300 LoD 100 500 500 1000 360 200

10 | % investment coats of the varlous processes at the thres producticn levels
11 ¥ (low, sedium and high)

12- | i1 = [55 58 €0.2 55.1 43.3 6.2 40 106.6 62,8 233.5 185.8 119 212.3 105.8 221.7 115.5 63.7 23.1 117.6 2.5 73.1 4
13- | im = [61.1 B5.] B6.§ 83.1 66.8 92,8 61.4 151.7 135.4 3907 304.5 179.4 3627 164.3 376,1 180.4 100.2 33,2 166 114
14= | ih = [131,6 132.4 134,01 132 104.3 1532 95.1 231.5 207 €99.7 537.1 289.2 657.7 2€3.1 €72.7 287.4 156.3 50.7 307.5

16 | % production coats of the various processes at the thres producticn lovels
17 § (low, medium and high)

18- | ¢l = [50.7 56.0 56.9 51.7 36.2 38.5 31.8 37.8 30.5 92.2 86.7 95.5 97.5 105.9 83,1 41.4 34.9 36.6 €7.6 33 287 M €
1%~ | ¢m = [90.]1 103.8 103.7 7.6 €9.8 65.2 57.1 7.7 €5.6 158.2 154.1 175 157.2 196.6 131.] €0.7 62 €2.1 125.2 €3.14
20~ | ch = [170.7 196.2 195.7 184.5 130.4 120.7 105.5 94,9 115.1 290.% 287.7 330.% 204.0 375.2 235.4 117.2 111.6 120.8

22 | 1 selling price for unit quantity of the product
23~ | 3P = [0,575 0,575 0,975 0,575 0,575 0,78 0,70 0,735 1.45 1,13 1.13 113 1,13 1.13 1,13 0,83 0.83 0.45 0,74 0. 14

So, to better understand let us consider an example let us look into the production planning

data.

(Refer Slide Time: 09:21)

L T = 0 W
- -
e L]
Lol P L]

I BT e e g — Ty ———) s> Stat
1 funct 'Nn]" SKS_ProductionPlanningix)
2
] k. SPELDgRE . Com/cliaptar/10, 1007/978-3-030-26458-1_13 S
L]

40059 =322
5= |ppoduct, 1,8,h, i1, 18, ib, <], 8, ch, SalePr ill. al, a2,] = ProdectionPlanningbata; 8 Accessing the & 116906454035348127744..00
: . .

<546.20 283
7= nProceas = lengthills
] 5 f
B8 | st = 10w »» baatiitnesa
0= AvailRawl = 500; .

fitness =

I~ AvailRawl = 500; beattitaas
2

=364.34 5000000000
13- PC = zerca{nPrecess,l); 400,59 1723779686
14- | IC = zerca(nProcess, i) -3&0.20 5336353030
15- RiReqd = zeros (nProcess,l): S S
16- R2Reqd = teros(nProcess,l): o i
17- | Ravense = ZaEod (AProcess,l): 393.31 1165064940
10~ | penalty domain = zercainPrecess, l): B
1%
20~ Fifor | = 1: nProcess
21
22 = 81 xif) 2= L)) &6 x(3) <= mif) % {f the preduction s in betvesn low and medim
23
4 el FCiA) = ffcmitd = clifh)/imid) = 1(41ibeixidh = 1041} « elfd): § Determining the or !'|.!"-- .)
= et
0 T]

Now, that we have designed a correction approach. We can implement that. So, this fitness
function will receive the solution X, but it will return not only f, but it will also return the
corrected solution ok. So, this is done. We are no longer going to have any variable which is
going to violate the domain constraint right, because we are going to correct it right. So, if X

lies between 1 and m; we do not need to do anything, because no penalty was calculated.

(Refer Slide Time:

09:42)

- UM % 5
20 H G pe U e

S8 DGR+ 0 ¢ 0 S ¢ OSSR 58 P UG Sk ¢ bl
e o
22 - AL 3} >= 103 k& x1(1) <= mij)
i LAt =
24 - BC(I) = (iemtd) = el /i) = 1N = = 1ed) + 1)
25 - s 1L /m) = 100* (x03) = 1) + L1 pr T L)
B | ST, T LI90649403534R127744. 00 9101731564140766;
21 546,20 285,63 420,77
28 -
2%
»
31 - elaslf x(]) > m(3) & x(}) <= hij) b
12
- FCii) = (dehid) = emifD)/indd} = midd)}* (xid) = m(}) + emii):
M- IC() = (R = SR Ahed) = BO1IS I - mth) + dmeh): e
=l Roqd(j} = x(}) ‘mal{j):) 300,20 5I36ISI0IORODGOTI6I56.00
- J) = xtitm2(d): 32200 $10173156414076616704,00
::- i3] = SalePrice(i)*=(}: 353,31 116%06494035348127744,00
1%
40 - alaalf 0 < X3 &6 x(10< 1030 ﬁ id
41
42 panalty desi
43~ xth) Lo
44 - and
45
H

If X lies between m and h again, we do not do anything because it was already in a domain
right. So, previously what we had done is; if a solution is greater than 0 right and less than [;
we were assigning a penalty. So, right now what we will do is; we will not assign a penalty,
but we will merely correct the solution right. So, we will say X of j is equal to 0 right. So, no
matter where the solution lies right. If it is greater than 0, but less than 1, it does not satisfy the

constraint. Since it does not satisfy the constraint previously we were assigning a penalty.

Now, we will not assign a penalty, but we will merely correct the variable. So, the corrected
value of the variable is 0 because, 0 we know for sure does not violate the domain constraint
right. So, we assign it to 0 as discussed earlier right you can also assign it the value of 1. As
discussed earlier you could even choose it to assign it a value of | right or you can generate a
random number and see if the random number is greater than 0.5; you can assign it to 0, if it is
less than 0.5; you can assign it to 1right. So, here we are the demonstrating one of the scheme,

you can try out the other two schemes right.

(Refer Slide Time: 10:58)

e o

> Stat
gtat =
=400, 5% 322,08 =372.10
1744, 7 766
HA—. b

43— penalty Ic = o

S0~ | if TotallmvRed > Budget % cheeking for violatien of the |

o baatiitness
51~ panalty 1€ = (Totallnvied - Budget)*2: § Datermining the penalty due to
52~ | ond

bastlitneis =
53

54- | penalty Bl = 0;

=364, S00000M00000000000000,00
85— TalalRlReqd = sus(R1Reqd) ;

=400.50 172377968659476935752.00

S8~ | if ToralRlReqd > RvailRavl ¥ Chacking for vielation of the :

=300.20 533635I0I0R0060256256.00
57~ penalty Rl = (TotalRlReqd = AvailRawl)*2: % Detarminlng the penalty due to =322.00 %10173156414076616704.00
::- g 383,31 LI6S0649403548127744.00
i0- penalty B2 = 0; 55>
01— TotalR2Reqd = sus(RIReqd) ;
§2- | if TotalB2Reqd » Avallkavi % Chocking for vielatien of the
63~ penalty B2 = (TotalRaReqd - AvailRawd)*2: % Determining the penalty due to

¥ Datermining the orofit lch\«-{li- = i

So, this x of j is equal to 0, we do not need to change anything with respect to calculating the

investment cost or the raw material requirement of 1 and 2 right.

(Refer Slide Time: 11:11)

> Jtat
Stat =
=400.59 322,08 372,10
s0= \ Chacking for violation of the investsent cost constraint L16MEAS0ISIBLITTA. 00 SLO1TILSEALA0T6E]
s1- wd - Budgot) 2 % Dotormining the penalty dus to viclation for investment oo =546.20 -203.63 -20.717
52~
k3 »» bastiitneaa
HE
55 = bestlitness
56 = % Checking for violation of the raw material | constraint
57= sqd - Availmawl}*2; 4 Dotermining the penalty due to viclation for raw material =364, 34 S00000000000000002000.00
5a = 400,59 17237THEBE594T6938752.00
55 =300.20 533635I0I0B0060256256.00
0~ =3212.00 $10073156414076616704.00
61~ =393.31 116%06494035B127744.00
62 = A Checking for viclation of the raw material 2 constraint
63= |sgd - AvallRaw2]*2; % Dotermining the penalty dus to violation for raw material e
64 =~
65
66~ | 1(FCHs A Dotermining the profit (cbjective)
(3]
2y IT + panalty Rl + penalty I Determining the [itmes tion valua
= 5 « '

So, everything will remain same except that this term is no longer needed. Because, there is no
penalty with respect to violation of the domain constraint, because if any solution violated the

domain constraint, we corrected it right.

(Refer Slide Time: 11:23)

> Jtat
M€= | ond
Al stat =
48~ TotalInvRed = sua(IC);
45 penalty 10 = 07 400,59 -322.08 1210
0- | it Totallovied > Budgst 8] Checkl 1eF wlolatiter de e § L16906AS403534R L2774, 00 S10173564140766]
51- panalty I = (Totallnvked - Budget)2; % Detarmining the penalty duo to =546.20 -205.63 =120.77
52= | ond
53 >> baattitness
54= | penalty Rl = O/
5= | TotalRlReqd = sum{R1Reqd); bastiitness =
56= | if TotalRlReqd > AvailRavl % Checking for viclation of the ¢
57 = pomalty Rl = (TotalRlReqd - AvailRawl)*2r 8 Detemmining the penalty due to =364. 34 S00000000000000000000,00
58~ | ond - =400.59 172377968659476938752.00
55 =300.20 5I363I5I0I0B0060256256.00
60~ penalty R2 = O; =322.08 $10173156414076616704.00
61 = mu]u;n@ = sum{R2Regd) 7 =383.31 LI6H06494035345127744.00
62= if TotalRiReqd » AvailRawZ A Checking for violation of the
63- panalty B2 = (Totaligheqd - wvailRaul)*f1 ¥ Determining the penalty doe to e
64~ | ond
65
66~ | profit = sumiRevenue) - sum(FCh; % Detemmining the profit (object
1 = -profit + 10°1%% (penalty IC + panalty Rl + pwmlty_hzl; \ Datarmining the I.-
. .

[—
-
T R)

So, over here we have removed that thing right. So, now, our objective function is compatible.

(Refer Slide Time: 11:29)

1
2
] % Starting of TLBO

4= 1 = HaN{Kp,1):

5= BeatFitIter = Kal{T+l,1):
6

7

8

= | D= langth{lb);

§= P = paphat (1b,Np, 1) + cepaat(jub-1b),Np,1). cand(Np,D): 8 Generation
1

Il- Cfor p= LiNp

12- Eip) = prabiPip, :)): Evaluating the fitness function of the Initial pepalati
13- and

H

15~ | BeatFititerdl) = minif):

14

17 4 Itaration loop

18- Cler t=1: T

1%

26 - for | = Liip

21 W Teacher Mhise

22 - Amoan = moan{F);

23

4 - I=,ind] = min(f); potemining the locaticn of the teacher o

p——
e

But if you look at our algorithms our algorithms were designed in such a way that it can
receive only the fitness function right. So, what we will do is; we will make a copy of this. So,
that we can compare both the approaches right. So, let me say this is TLBO correction right
and over here, we will receive not only the fitness function, but we will also replace the
member which we sent right. So, the member which we are sending is the p th row of the

population right. So, that we are replacing with the solution provided by the problem right.

(Refer Slide Time: 12:09)

1 il — - st
20 for | = 1:p .
21 W Teacher FPhase
i et e i 400,59 -322.08 372,10
:: [r.ind) » aini®) LLE906494035348127744.00 9101731564140766;
5 S = minif): V Dot] the location of the teacher
25— kb‘l\:;t Piind, 22 t -546. 20 -205.63 -420,77
N el 1
H
a5 baatfitnes
27~ TF = randif(l 2],1,1): »» bhatlitness
28
beatfitness =
23 - Mnww = P{L,:) + Tand(],D).*(dbeat - TRNmeanl; § Generatlng the mew solu
A ~ N e Py =364, 34 S00000000000000000000,00
n M = mn:uln.) ' Boanding tha violati varlable i Gy o
;21 a5 e 300,20 533635303090060256256,00
-322,00 H10173156414076616704.00
:;- el i T b i -353,31 1169064T40353BLITIN.00
¥%- i ifmew < {11} 5>
7= Pii,:) = Xeww:
- £id) = fnew; i
- and
40
41
42 ¥4 Learner Fhase

0 Y]

So, this line has become compatible now right. In two other places we would be calling the
objective function; one is after generating the new solution in teacher phase right, so over
here. So, here we will say f new comma Xnew right. So, we now receive not only the fitness
function, but also the corrected solution right. So, if the solution is already within the domain
nothing is going to change right, we will not be modifying the correction approach does not
help, but if the solution is violating the domain constraint it is corrected in such a way that the

solution no longer violates the domain constraint right.

(Refer Slide Time: 12:41)

i o
> Gtat

o= randd([1 ¥pl, 0, 1 § Selection of randes parter

gtat =

W Ensuring that the current seaber s not the partner e

while | = p |
116906454035348127744. 00 9101731564140766]
p = andi{[1 Bp],1,1): ¥ Salection of randem parter 546,20 285,63 2077

»» batfitness
i ()< £fp) % Salect the appropriate aquaticn to e used in Learner |

Xoow = Pl) + candil, D).*(R{d,:) = Pip,2)): © Genorating the new beatfitness =

alse

¥oow = Pil, i) = eandil, Db.*{PEL,:) = Pip,:)): ¥ Gemerating the new o ~364.34 S00000000000000000000.,00

e e =400.50 172377968€59476938752.00
| =300.20 5336ITI0I0R0060256256.00

57~ Hnew = min(ub, Knev): % Boanding the viclating varlables to thelr i 33200 $101T3156414076616704.00
i - Hnaw = maxilb, Koew): % Bounding the violating variables to their 1 .395.31 uammussmmm'w
59 i .
0~ ltm,]hnlc;llg prob (Xaow) ; ¥ Bvaluating the fitness of the newly | g .
i1 i
62 - Af itmew < £iLH) § Gready selsction
63~ il 2] = Xnew: ¥ Include the ped solution ia population

1) = fnou; \ Include the fitnesa function valus of the ne

So, similarly over here f new comma Xnew right. So, this we have converted for TLBO right.

(Refer Slide Time: 12:57)

A

R - Pl - mal L IO AY NS

955 0T L+ + U kR, B G Bl 1 e
_‘-—ﬂw
LD - >

) N : oE)
tunction [bastsol,basttitness,BastFititer, B,] = DiffarantlalEvolution (prob, Lb, ub,bp, T, B,

i Starting of DE
£ = Nabl (Wp, 1):

- AR R R
T '

fu = Kalilp, 1}

#= | D= length{lb); % Detarmining the msber of decision
]

10- | U = Na¥p,D): % Matrlx to atore the trlal solution:
i

12= BestFitlter = MaNiT+l,1): § Vector to stors the best fitness f

1t}

id= | P = repaat(lb,Np,1) + repmat{jub=1b),Hp,1). 'randip,00; W Gensratlon of the initial population
15

16= Cior p= Libp

- Eip) = probiPip, t)):

1= end

1%

20

21 BeatFitIter{l) = minif):

22

23 A% Itaration leop

24~ Cfort=1: T

= W -
0 Y]

Similarly, let us convert for differential evolution right. So, this is differential evolution, it
employs correction approach right. So, remember we are able to do this because we have
complete control over the algorithm as well as the problem right. So, since the algorithms we
had coded it ourself since we know this algorithms; we can employ this correction approach,
we can easily employ this correction approach. So, over here we are again receiving the p th

member of the population right and then we will be evaluating the objective function over here

right.

(Refer Slide Time: 13:29)

52
53 ¥4 Bounding and Oreedy Sslection
54 = for 1

55

56~ U, 2} = minjub, Ui, 211
57~ Ui, 2) = max(lb,Uij, 1)

58

55 = [faij),vid, :)] = prabiU(j, :1;
60

61 = it tulj) < £y

62= RUj, 21 = 00,00

€3~ £0j) = futiis

64 = and

65 = end

3

67 = BastFitIterit+l) = min(f}s

6= amd

63

10= | [bestfitnoss, ind] = mingf);

11= "bestsol = Piind,:):

12

13 !

i

So, the solution which we are sending is the j th row of the variable u right. So, what we will
get back is another solution. So, the newly obtain solution is plugged in the same position
right. So, this we have done for differential evolution. So, differential evolution; we call the
objective function only twice once is for the initial population and then once when we have

calculated all the solutions right. So, this is inside a loop, so that way we are calling it np

times.

e o

> Stat
tat =
=400, 50 322,08 =312.10
11E906494035348127744. 00 9100731564140766:
=546, 20 -85, 63 -420.77

> baatfitneaa

bastiitness =

=364, 14 S00000000000000000000.00
=41, 59 172377968€59476938752.00
=300, 20 533635I03000060256256,00
=322.08 $10173156414076616704.00
353,31 L16B06404035E12T744.00

(Refer Slide Time: 14:01)

= — | bt | Fim - B
1 function [bastsol,beatfitness,BestPititer, P, f] = P30(prob,
2

?

10- BestFitlter = Hal{T+l,1): \ Vector to store the
1

2 ¥ Particle Swarm Optimization

13

4= D = Length{lb}: ¥ Deternining the nuss
15

16= P = repeatilb,Np, 1) « ropmat{{ub-1b),Np, L), *cand(Np, 0
17- v = rapRat(1b,Mp, 1) ¢ repmatjub-1b),Hp, 1), rand (Np, 00
1]

18- Cfor p = LiNp

20~ fip) = prob(Pip, i)):

21 end

22

% Initialize the pora
3 Initi i

For particle swarm optimization also, we will be calling it only twice. One is during the initial

phase. So, we need to make a copy of this r

similarly, we will be using the objective funct

3= wepa § Inértia weight

i- el = L% cealaration coofficloent

3= @=L salaration coafficiant

]

I

8= 1 = Nad{bp,1); § Vector to store the fitmeas function value of the population mesbers

¥ Evaluating the fitnesa function of the inltial pepulation

fitneas o

1,00, 1,7, 4,1, [

bast fitness fumction value in every iteration

par of declalon varfables in the probles

% Geporatlon of the initial population

¥ Genaratien of the dnitial population

ofial bast 50

ight. So, now here we will have the new solution

ion over here right.

(Refer Slide Time: 14:24)

> Btat
32= Clor t=1:T
33 Stat =
34 = for p = 1:Np
15 =400, 5% 322,08 172,10
11E906454035348127744.00 9101731564140766]
36 = wip, 2} = wivip,:) + cl*rand{l,D).* (pbast (p, :}-F(p, 2}) + c2*rand{l,D).* (g«
L T 546,20 -205.63 420,77
38 = FIp.2) = Pip,:) + vip,:)s % Update the pesition (gemerate new solution)
35 | 2> bastritness
40~ Fip,2) = maxi?ip,:],1bl; % Bounding tha violating variables to their I
a1 = PIp 1) = min(Pip,:},u0); % Bounding the viclating varlanles to their up beatlitness =
42
43 = [£(p)Plp.2)] = pron(Pip,:}): § Dotermining the fitness of tha new =364, 34 S00009000000000002000.00
14 =400, 59 17237T9E8E59476538752.00
45 = it £1p) < £ pest (p) =300.20 533635I0I0B0060256256.00
" 3 =312.00 $10173156414076616704.00
47 = £ pbest(p) = Eiphs % updating the fitness function valuo of the i “353.31 1163064 M0ISHILITTAN.00
48 = poeatip,:) = Fip,:)z Y updating the parsonal best solution
43 &>
0= i £ _poest(p)< £ _gbast
51
52 = £ gbest = { pbost(p): ¥ updating the fitness function value of the
53 = gbast = pbest(p;t); % updating the global bast solution
54
——— ——

o . .
O ST

So, over here also it is the p th member of all columns. So, with these three files right, T L B
O correction, differential evolution correction, PSO correction. We have converted the
algorithm such that it is compatible to be used with the correction approach right. So, let us

go back to this right we will repeat this.

(Refer Slide Time: 14:50)

e | 3 s R
§ Fitness function

3% Algoriths paraseters

Kp =5 T= 100 A Bo. of population and iterationa

Po = 0.8; Fw 0.8% % [E crossover probability & Scaling factor
wu 0.8 cl=llc2nly A P30 Inertia weight, Acceleration cosfficient
HRuns = &

\ bastfitness = RaM (WRuns, 3}
bestfitnessC = Nal(NRuns,3):

oz = [1000 300 500; 1000 1000 1000; 2000 500 500; 2000 1000 1000);

Jfor =14
24= © for i = l:MRuns
25= mgii, "tuistar’) % Controlling the random nuBLST generator used by
26~ I~ basteitneasCii, 1), ==, ~] = TLBOCorrecticn(probs, 1b, ub, Np, T, Rea , 20}
7= end
28~ ond

Btat(:, 1) = min ! L] ing the best fitness function value

L] ining the worst fitnass functicn value
i L] ining the mean fitness function value
L]
\

the median fitness function valva
the standard deviation .

(Refer Slide Time: 14:55)

ssnan

e

vt | Uhitn | Dbt s | Pt | b | botabusafinn | i
24= [for i = 1:NRuns f
25~ rog{i, "twister') \ Controlling the random number generator used by rand, ramdi Stat =
26 = [=sbestfitnass (i, 1),=;~~] = TLBO(prob, lb, ub,Np,T);
27 -400.59 -3
28 - eng (i, ‘twister’) \ Controlling the randem mumber generator used by rand, randi 116906454035348127744.00
25 = I~ bestfitnesali,2),~,~,~] = DifferentialEvolution(prob, b, ub,Np, 2°T,Pc, Fl: 506,20 285
20
a1 = og{i, "twister') % Controlling the random mu wrator used by rand, randi 3> baatlitneas
32 = (= bestfitnass (i, 3),=, %] = PS0(prob, b, ub, Np, 2°T, v, cl,¢2);
23 bestfitness =
34 - mg (i, tuister'}) % Controlling the random numbor qenerator used by rand, randi
28 = I~ bestfitnessC(i, 1) ,~,~,~] = TLBOCorrection (prob, b, ub, ¥p, Th: 364,34 5000000000
36 400,59 1723776686
37 = g (i, "twister') ¥ Controlling the random mumbor gemerator used by rand, ramdi =300,20 5336353030
38 = |~ bestfitnesac(i, 2~ =, ~] = DifferentialEvolutionCor rm‘l.innﬁuw. 1b, b, Bp, 2T, Pe, F) =332,08 9101731564
23) : 383,31 1169064940
46~ eng (1, "twistar’) % Controlling the random mumbor genorator used by rand, randi
41 = |~ bestfitnesac(i,3) ,~,~,~] = PS0Correction(prob, lb, ub, Bp, 2*T,w,cl,cl}; A
42
43= " ond
44
8= Stat(:,1) = min{bestfitness); ¥ Deter
46~ Stat(:,2) = max(bestfitness);

Stat{i,3) = mean(bestfitness);

47 = \ =8 . o '
0 Y]

So, that we can compare the correction approach and the original approach right. So, here we
need to call this correction. So, this correction has to be given over here right and again over

here right.

So, let me use another variable for this thing, best fitness ¢ right and similarly, let me define
this over here right. So, this best fitness will give us the performance of the algorithms without
correction whereas, best fitness ¢ would give us the performance of the algorithm with

correction. We can also repeat these lines right.

(Refer Slide Time: 15:30)

u- mgii, "tuister’) % Controlling the random number generator used by rand, randi

B- [=sbestfitnesac(i, 1) ,~,~,~] = TLBOCorrection (probC, Ib, ub,Np,T);

% 7200

- g (i, ‘twister’) A controlling the randem mumbor generator used by rand, randi 14076616704
8- [~ bastfitnesaC(i, 2) ,~,~,~] = DifferentialEvolutionCorrectioniprobs, 1b, ub,Np, 2°T, P, Fl: 420,77

13

40 = ng (i, "twistar’) % Controlling the random number generator used by rand, randi

41 = [=;bestfitnasac(i,3) ,~,~;=] = PSOCorrection(probC, lb,ub, Np, 2°T,w,cl,¢2);

42

43~ end

41 7.0

48 = Stat(:,1) = min(bestfitness); nine bas 2 14076616704
46- Statii,2) = max({bestfitness); 420,77

47 = Stat(:, 1) = mean(bestfitness);

8= Stat{i,4) = medianibestfitness); e

48~ Stat(:,5) = std(bestfitness);

50

51

2~ statci:,1) = minfbesttitnass))
§3= StatC(:,2) = max(bestfitness);
80= StatCis,3) = mean(bestfitness);
88~ StatC(:,d) = median(bestiitness);
StatCii,5) = std(bestfitness);

0 Y]

So, let me use this variable. So, again this is a bit crude way of doing it. If you have sufficient
coding skills, you can do this same thing in a much better way right. So, now, what we are
doing is we are solving the same production planning problem with three different algorithms.
TLBO differential evolution and particle swarm optimization with correction and without
correction right. So, these are without correction. So, the first three are without correction the

last three are with correction right.

(Refer Slide Time: 16:06)

I [e oy

€= |product,l,m,h, il,in, ib,cl,cn,ch, 37, mml, a3, 3, nProcess] = Produces Stat

7= lb = zarca({l,nfrocess);

BE= ub=hY Stat

3

10= prob = §5KS ProducticaPlanning; \ n =400, 5% 12,08 372,10 -380.20

1= prooC = 0515 ProductionFlaming 116506494035348127744.00 910173156414076616704.00 4466105
- =546.20 205,63 -420.77 438,12

13 1% Algorithe parameters
4= Mp =50 T = 100

15= Pc=0.8; F=0.8%

6= wm0gclwlbe2nly

> baatfitneas

baat{itness =

::_ NRunz = 5 =364.34 S00000000000000000000. (0 ~36%.24
18- bestfitnoss = KallNRuns, 3}; =400.5% 172377968650476930752. 00 =438.12
30= bastfitnessC = Nal(NRuns,3); =390.20 $33635303000060256256. 00 ~285.63
a1 =322.08 S101731564L4076616704. 00 =546.28
ke i o3 = [1000 500 500; 1000 1000 1000; 2000 500 S00; 2000 1000 10 =393, 31 1169064M4035348127744, 00 ~464,59
23

24= Cfor i = 1:NRuns L e

25 = eng (i, "twistar') % Controlling tha random nusbo

26 = [~ bastfitnasati, 1),=, =] = TLBO{prok, b, ub, Np, T

27

28 = eng (i, "ewistar’) % Controlling tha randes mumbe

25 = 1~, bastfitnassii, 2),~, 7, =] = DifferentialBvelution iprob, 1b, ub, .

. '

: |
0 Y]

So, the fitness function also we need to have it in two forms right. So, one is prob another one
is prob C. So, one employs correction another one does not employ correction right. So, for
those functions which do not employ corrections, we do not need to make any changes
wherever we are employing correction we need to pass the appropriate file right. And then this
production planning we need to have us production planning c. So, this is production planning

correction approach right.

(Refer Slide Time: 16:47)

1
2 stat =
3 Refarence: httpa://1ink,springer.con/chaptar/10,1007/57§-3-030-26456-1_13
- = - 40058 =322
5 duet,1,m,h, 11,18, ih,cl,cm, ch, Salebrice, ral, ral, W3] = ProductionPlanningbata; & Accossing the data L1E90EASH03534B12TT40.00
: .

<546.20 -283
7 cesn = lengthil): § deterning the nusber of prochases
L]

»» bastlitness
L] ot = 1000} § Budget available
10 1Rawl = 500; ¥ hscunt of raw saterial 1 available
bastitness =

11 1Rawz = 5007 ¥ hsount of raw material 2 availible
12

=364.34 5000000000
13 zaroa (nProcess, 1): ¥ Initialization of variable to store the production cost f 400,59 1723775686
1 zoroa (nProcess, 11 % Initialization of varlable to stors the investmant coat { -JWIN 336153030
15 od = zerca (nPrecess, 1) ; ¥ Initialization of variable to store the rav satecial 1 e _3:2'” 3101731564
16 qd = zercainPrecess, 1); % Initialization of varlable to store the rav material 2 re -395.31 1169061540
17 noe = zeros(nProcess, 1) % Initialization of variable to stors the Fevenus genarests .
18 | nalty desain = zerosinProcess, 1) ¥ Initialization of variable ko store the penalty due to I
1%
20 J = 1t nProcess
21
22 i =03 »= 103) &k xif) <= mii) & if the production ia In betwsen low and medium level

tarmining the oroduction con 3 o

So, for without correction we will have this only f is written right without correction right and

so this line would be active right.

(Refer Slide Time: 17:01)

- al N e
self z§) > mt]) & x4} <= hif) % If the production is in batwesn medium and high level®
| stat =
EE) = (tehtdh) = i/) = midt iz - ned)) + en(dh: % Determining the production co
16630 = (indd) = Im3hi7ing) = a3t i) - mij)) + dm(dh: & Dotermining the investsent co 400,59 32
RIReq () = x(§)*mml(f): v Datermining the raw material | required for procass ummw:.lsmmm =
36~ RIRegd () = xif)*em2 (§): ¥ Dterining the raw material 2 required for process 516,20 _;u
17~ Ravanus (i} = SalePrice(j)*x(): \ Dateralning the revenue genereated by selling the pr .
38
> bastiitness
1%
::- olaalf 0 < x(}) &6 2t 1if) & if the production ia greater than zerc but less tham aatritanss =
g ten
::_ H:I.:Ir:a:linijl = 10%5: § Aasigning pemalty for vielating the domain hole const 364,34 000000000
|- - il 400,59 1723779636
I » -300.20 5336353030
- 1 =322.00 9101731564
I =383.31 1169064940
47
46 = | 1Invked = sum{IC}:
8- Ity Ic = 0; >
50~ | TotallnvRed > Budget ¥ Checking for violation of the investment cost constr
51- | penalty IC = (Totallnvked - Budget)*2; V Dateraining the penalty due to viclation for invests

(Refer Slide Time: 17:04)

A i —

™t Lt 117 H L i
JOE - it sy g 3 qu,l-u-..i

46~ | ond

48~ | TotalInvRed = sum{IC);

45= | panalty IC = 0; 400, 58 122
X LES064503534R127744.00
0= | if Totallmvhed » Budgat 116906494035348127744.,00
) 1Im 3y 546,20 205
51= penalty IC = (Totallnwhed - Budget)*2;
52= | ond

¥ best{itnesa

54= | penalty Rl = 0;

55= TotalRlReqd = sus{RIReqa); bastl

56= | if TotalRlReqd > AvailRavl

57 = penalty Rl = (TotalRiReqd - AvailRawl)*2 364,34 5000000000
8- | ond 400,50 1723779686
- 300,20 5336353030

322,08 9101731564
-393.31 1169064340

60= | panalty R = O;

61- TotalR2Roqd = sus(R2Reqd);
62= if TotalRzReqd > AvallRavz
§1= penalty B2 = (TotalRZReqd - AvailRaw2)*2 Determining t 1ty koe to violatlon for reIEE>>
64~ | ond

66~ | profit = sumiRevenue) - sum(PCh;

68= ¥ = -profit + 10°15* {penalty IC + ponalty Rl + ponaltyR2 + sumipenalty domaini);
n

tarml ::"- . .
0 Y]

So, this is to be converted plus sum of penalty underscore domain and we can also uncomment
this line right. So, what we have now is two objective function file; one employs the correction
approach right f comma X right. The other one returns only the fitness function value f right.
Over here in this SKS underscore production planning c, we employ the correction approach
right. No penalty is being assigned and the variable value is converted to 0 and that set of
modified decision variable is passed back to the algorithm and we do not have any penalty

over here right.

Whereas this production planning is the same file which we have been using in the previous
session right. So, we assign a penalty over here and we add the penalty right. So, this is the
violation with respect to every decision variable. We sum it up and add it to total fitness

function right.

(Refer Slide Time: 18:15)

A e

FRU R il el LI A PO T
LN

i S n

H- mgii, "tuister
3= I-, bastfitnasac

3= g (i, “tistar’ 400.59 -322.08 -372.10 380,20 3118
o I R 116906454035348127744, 00 510173156414076616704,00 446618504437792374704, 00 500000000000000000000,00 3154
» i 546,20 265,63 120,71 o =5

40= eng (i, *twistar!
1= [~ bastt itnasac

43= ond

IR Aol 1= b 659,30 55,00 [-680.26 604,56 20.45
o - R -0, 82 56,39 £73.21 670,60 13.65
et ?t\ll'.BJ Lo 710,04 557,39 605,51 579,70 fiz.11]
48= Stat(:4) = sedian]
43= Stat(:,5) = std(bes LEd

52- StatC{:, 1) = min{be
53= StatC{:,?) = max(be
54= StatCi:,3) = meanib
55= StatC{:,d) = median
S6= StatCi:, % = stdibe,

I .)
0 Y F]

So, now if we execute this, let us see if we are able to execute it without any error. So, now,
let us look at both the variables stat and stat C right. So, remember stat and statC are identical
in nature right. Only difference is for stat we did not employ a correction approach for statC

we employed a correction approach.

So, this has to be bestfitness C. So, now, if we execute this, so we can have a look at the
variable stat right statC remember the nature of stat and statC is the same right. So, each row
indicates an algorithm, the first column indicates the best value determined by the algorithm,

the second column indicates the worst value, third one mean the fourth one median and the

fifth one is standard deviation.

The first row is for TLBO, second row is for differential evolution and the third row is for

particle swarm optimization. So, stat is the same set of results which we would have obtained

previous right. Whereas, statC, the columns are the same the rows are the same only in this

case we employed a correction approach right.

Now, if you see the best value reported by TLBO right was minus 400.59 without correction
approach whereas, with correction approach it gives a value minus 699.38 which is
significantly better right. Even the best solution was not feasible right. Here now it is able to
find a solution which is minus 690.82, particle swarm optimization was previously able to
determine a solution of minus 546.28. Now, is able to determine a solution of minus 710 right.
So, if you think about it, we employed a very simple procedure right, but that simple
procedure has helped us to get significantly better result right.

So, even if the standard deviation also has considerably dropped right. So, from 31.18 and
98.61, it has dropped to 20.45 and 62.19 right. That is the benefit of correction approach
right. So, again we need to remember that the correction approach is very problem specific
right. So, for this problem, pushing the variable to a value of 0 helped us to satisfy the domain
constraint right. So, it is not necessary that the same correction procedure will work in all
problems. It is very problem specific that is why we chose to include that correction

mechanism in the fitness function evaluation file and not in the algorithm as such right.

We could have even implemented it over there, but then that may or may not work for all
problems right, but the correction approach, usually is expected to give better results right
than an approach without correction. So, in this case we did not assign any penalty, but we
helped algorithm by correcting the solution. So, we need to remember that when we correct a
solution; we not only should pass the objective function value, but should also pass the
corrected solution, that is one of the correction approach right. So, you can also think of other

approaches right.

(Refer Slide Time: 21:17)

Different correction approaches

Approach 1
[[] if x<l, and x20
X = — p—

Y| else

Processes

Low level c:lpacil_\'[I mol A Wi :ir;rn}
‘? Decision vaniables i) @ m L/ where D is the problem dimension
e

Approach 1 - O K Approach 2
(Fixit to zera) s . _.'l @ @ E—é—r i

{f, if x <l and x #0
X = —_— —

i S) g"’ 2 19 4K [lxee N
7 (Fix it to low level) form
Yi={1.2....D}
Approach 3 : : e
2 9 4] h il
{Fistuoiibed) X 12 @ 2 1 & where DD is the problem dimension
A h3
(=03 K (=08 &~ s e
0 if x <l and x #0 and r=05
= if %<l and x»0 and r>035
X if =<l / (),
b 19 4 =
Wi={l.2,..D}
where D is the problem dimension

So, for example, let us assume this is the low level capacity, this is coming from the data right.
So, it is more like we cannot produce anything less than 5, we cannot produce anything less
than 9 for second process. We cannot produce anything less than 1 right. We cannot produce
anything less than 3 for process 4 and we cannot produce less than 4 for process 5, again 0 is

allowed right.

So, if there is a 0 that is not an issue right. So, let us assume that this is the decision variable
that we are getting from a metaheuristic technique right. Let us say we get 12, 6, 2, 19, 2

right. These two values are non-zero, but they are also lower than the respective | value right.

So, this is the approach which we discuss right. So, for all those variables which do not satisfy
the domain constraint right. We will assign it a value of 0. So, this is the approach which we

discussed earlier. So, here what we are doing is if it is not equal to 0 and if it is less than I, we

are assigning a value of 0 else we retain the value of X i1 as given by the metaheuristic
technique. So, for example, here the value given by metaheuristic technique is 12, 2 and 19.
So, we are not modifying those values right, those values satisfy the domain constraint. So, we
do not change them only those things which violate the domain constraint we change it to 0

right.

So, the other approach could be fixing it to low level right. So, in this case what we are doing
is; if the value is within the domain, then it is fine right. Otherwise, if it is less than 1 and if it is
non zero, we make it as | right. So, for example, this variable was violating the 6 and 2 are
violating. So, right now what we do is; this 6 will be converted to 9. So, this is nine right
because the low level value is 9. Previously, in this first approach we converted it to 0, here
we will convert it into nine right whereas, for the fifth variable the value that we get from the

metaheuristic technique is 2 right, but the 1 value is 4.

So, here we fix it to 4 right. So, this is another approach. So, we can either employ this
approach or we can either employ this approach. So, there is also another approach wherein
we fix it randomly right. So, here we generate a random number for every decision variable
that is violating the domain constraint. If the random number generated is less than or equal to
0.5, we fix it to 0. If the random number is greater than 0.5, we fix it to corresponding 1 i
values right. Otherwise if it is in the proper domain, we do not need to change it. So, for

example, consider the second process right.

So, the low level value is 9, the value that we get is 6 right. So, if we generate a random
number and let us say the random number happens to be 0.3 right. So, if r is less than or equal
to 0.5, so 0.3 is less than or equal to 0.5 so, we fix it to O right. Similarly if we see the fifth
variable r is 0.8 right. So, 0.8 is greater than 0.5. So, we fix it to its low level value. So, this
two gets converted into. So, what we got from the algorithm is 12, 6, 2, 19 and 2, what we
will be returning back is one of these threes right. Either 12, 0, 2, 19, 0 or 12, 9, 2, 19, 4 or
12,0, 2, 19, 4. Depending upon which approach we take.

So, over here we will demonstrate the approach 1 right. We will implement it on the course
that we have you can evaluate both of these approaches right or design your own approach to

see if you are able to get better results than what we are discussing over here.

Now the question can be why did we correct, only for the domain constraint, why not for raw
material constraint or the investment cost constraint? If you can design a correction
mechanism for investment cost as well as raw material constraint you can implement it. So, if
you are able to design a correction mechanism to handle investment cost and raw material
constraint, you can even choose to implement it and check if it is actually benefiting the

algorithm.

In the previous session we had seen solution of the production planning problem using
teaching learning based optimization. We did not compare it with other algorithms right. So,
first what we will do is; we will solve the same problem right with particle swarm optimization
and differential evolution along with TLBO right. So, out of the 5 techniques which we have
discussed in this course. Out of the 5 techniques which we discussed in this course we are
selecting only 3 right. So, particle swarm optimization, teaching learning based optimization

and differential evolution.

The reason for doing this is that for these three algorithms the maximum number of functional
evaluation is a deterministic expression right. So, for example, for teaching learning based
optimization, it was Np plus 2 Np T right where Np was the population size and T was
number of iterations. For particle swarm optimization and differential evolution the expression
if you remember it is Np plus Np T this is because in teaching learning based optimization in
every iteration for every member we evaluate the fitness function twice whereas, for the other

two algorithms particle swarm optimization and differential evolution it was only once.

We want to compare these algorithms with respect to maximum number of fitness function
evaluation. Whereas, the other two algorithms; genetic algorithm and artificial bee colony
optimization did not have a deterministic expression for the number of maximum functional

evaluation right. So, for example, in artificial bee colony optimization depending upon when

we encounter the scout phase. The number of fitness function evaluation would change right.
So, it can vary from Np plus 2 Np T right. So, that is the minimum number of functional

evaluation and the maximum number of functional evaluation is np plus 2 Np T plus t.

Assuming that the scout phase is encountered in every iteration. Similarly, for genetic
algorithm also the number of maximum functional evaluation is not a deterministic expression.
It depends upon whether an offspring undergoes mutation or not. So, for this particular
comparison, we are only taking three algorithms because for all the three algorithms we have
coded with respect to maximum number of iterations right. So, if you remember that loop for t
is equal to one to t that was there in all three of them right. We did not write it with respect to

number of fitness function evaluation right.

So, we can do that right. So, for example, all the 5 codes we can convert it for maximum
number of fitness function evaluation that only requires a little bit of coding skill you should be
able to do it on your own. We will also upload those codes with respect to the number of
fitness function evaluation on the course base. So, for this session we will only restrict with
particle swarm optimization, differential evolution and teaching learning based optimization
right. So, we are not going to change anything in this function file. So, this is the SKS
underscore production planning. So, this function file is what gives us the fitness function

value right.

So, we are not going to do anything to this function file. Production planning data is just
passing the data to this file which evaluates the fitness function right and these are the three
algorithms; teaching learning based optimization, differential evolution and particle swarm
optimization. So, all these three are now function files right. So, the TLBO returns the best
solution at the end of specified number of iteration. The value of the fitness function
corresponding to this best solution. So, bestsol is actually the set of decision variable best

fitness is the fitness function value of bestsol BestFitlter gives the convergence curve.

So, it basically tells what is the best fitness function value obtained in every iteration and that
includes the first initial population. This p is the final population. So, the dimension of p would

be N p cross D where Np is the population size and D is the number of decision variable.

Whereas, f would be Np cross 1. So, for each solution in p, we will have a fitness function
value. So, that is what is given in f right. So, the output is same for the three algorithm;
bestsol, best fitness, BestFitlter p and f. For TLBO, the input is the fitness function file, the

lower bound, the upper bound, population size and the number of iteration right.

For differential evolution it is the same thing right. In addition we need to provide crossover
probability as well as the scaling factor. So, this crossover probability is required in crossover

operation and the scaling factor is required in the mutation right.

So, similarly for particle swarm optimization, the output from the algorithm is same right,
input is the problem the lower and upper bounds, the population size number of iteration. In
addition to that we need to give the inertia weight and two acceleration coefficients ¢ 1 and ¢
2 right. So, now, we have these three metaheuristic techniques right and we have our problem

over here the production planning problem.

(Refer Slide Time: 29:54)

—BIL —Ril
“tunction [= SKS_ProductionPlanaingix)

7~ nPracess = lengthil):

§- Budget = 1000;
10- | Availkawl = 500;
1= Avallpaw? = 500;

13- | PC = zercs {aProceas, 1):

14~ | IC = zercainbrecess, l):

15~ | RiReqd = feroa (nProcess, 1)

16~ | Rikoqd = zercs(nProcess, 1}

17~ | Revarue = zeros (aProcess, 1)

18- | penalty domain = zercs(nProcess, l):

20- Cfar § = 1 nPrecess

22~ £2 2(4) 3= 10d) &6 x(d) <= mij)

(Refer Slide Time: 30:01)

¥ ¥ Reference: httpa:/flink,speinger.com/chapter/10, 1007/976-3-030-26458-1_13

1
:

3

i 1

5= [product, 1,5,b, i1, is, in, 1, s, b, 5| ENNTRDREMPRERPRRRRMRRY toct ionPLann ingata; | hecossing the data [xos the [0
6

¥ dateraing the umber of proceases

§ Budget available
¥ Amount of raw material | available
& Amount of raw material 2 available

& Initislization of variable to store the production cedl fof each prc
¥ Initialization of varlable to store the investment ceat for each prc
% Tnitialization of varlable to store the av material 1 pequired for
& Initialization of varlable to store the rav material 2 required for
¥ Initialization of varlable to store the revenus genaceated for each
% Initialization of varlable to atore the penalty due to viclatiom of

% if the producticn i3 in between low and medium level

uction cost for (hl.‘

®, ik, ¢l, en, ch, 5P, rml, re2, rm3, nProceas] = PreductionPlanningData:

L H

And this is the data for the production planning problem right. So, this is a script wherein we
are going to compare the three algorithms right. So, the first three lines uses to clear the

command window the workspace and close any figure if it is open right.

So, here in line 6 we are accessing this function production planning data which contains the
data right. So, because we need to provide the upper bound right. Upper bound if you
remember it is the h value right the maximum production that is possible right and lower
bound is 0. Remember it is not the low level value because if we put it as low level value, then

we are enforcing an artificial constraint that each process has to be use right.

So, that constraint is not part of the problem. The problem specifies that either we can choose
not to produce or if you decide to produce it has to be | or greater than 1 and it has to be less
than h. So, there is a domain hold. So, that is why we are taking the lower bound as zeros. So,

this n process will also tell us the number of processes or in this case the number of decision

variable right. So, this is lower bound this is the upper bound. So, prob is a function handle

right. So, we are assigning the name of this file SKS underscore production planning right.

To prob right, and then since we are using three algorithms. We need to specify the
parameters that we are going to use. So, we are fixing the population size to be 50 and the
number of iterations to be 100 right. So, these two values remain constant for all the three
algorithms right. In addition to this for TLBO we do not require any other parameter.
Whereas, for D E, we require the crossover probability and scaling factor. So, we have fix the
crossover probability to 0.8 and the scaling factor to 0.85 right and for particle swarm

optimization, we need to provide the inertia weight. We have taken it as 0.8.

The acceleration coefficients ¢ 1 and ¢ 2 as 1.5, 1.5. So, that helps in defining the parameters
which are required for the algorithm. So, NRuns is the number of runs. So, so for the purpose

of demonstration we are just taking 5 runs right.

(Refer Slide Time: 32:04)

R i, Ol LA) TP Ty,
L

e

T

TN LR e e b

4 Problea settings

7- 1b = zercal,nProcess)

#- ws=h'

i3 4 Algorithe parasaters

]

- [product, 1,m,b, i1, 18, Ih, c1, 8, ch, 3P, tal, ra2, 3, nProcess] = ProductionPlanningData:

11— probd = BSKS ProductionPlanninge:

Bocorrect ion (probe, b, ub, Np, T):

Let me just remove this. We are not going to use these two, right. We are going to use this
variable best fitness to store the fitness function value reported by every algorithm right and

each run right. So, we are going to have NRuns. So, in this case we are going to have 5 runs

right and we have 3 algorithms. So, that is why we have taken 3 columns right.

So, what we are basically trying to do is; the first column we will use it for TLBO, the second
column we will use it for differential evolution and third column we will use it for particle
swarm optimization of this variable fitness and for each algorithm, we are going to run 5 times
right. For each run that we complete, we will populate best fitness with the solution obtain
from that algorithm right. So, this is the for loop we are going to compare these three
algorithms right based on 5 runs right. So, that is why we have this loop for i is equal to 1 to

NRuns right and again we are fixing the seed right.

So, rng of i comma twister. So, that we can reproduce the result right and in line 24, we are
solving the problem with TLBO right. So, we are giving the necessary input prob Ib, ub, Np
and T. So, the solution that we will be returned by TLBO is all of this thing the set of decision
variable, the fitness function the convergence curve for that run, the final population and the
final fitness function right. So, right now we are interested only in the fitness function value.
So, we will do statistical analysis based on that fitness function value. So, that is why we are

not receiving any of this four values right

We are not receiving what is the set of decision variable, we are not receiving the values for
plotting the convergence curve, we are not receiving the final population and we are also not
receiving the fitness function values of the final population right. So, if you are interested you
can just specify a variable name and then you can appropriately analyze whatever you wish to.
So, this will help us to solve with TLBO right. So, this line again specifies that. So, for
differential evolution also we want to control the random numbers right. So, that we can

reproduce it.

So, that is why we are including this line right. So, over here as well as in over here for
particle swarm optimization. Even if we remove line 26 and line 29, it is correct right. Only
thing is that we will no longer be able to reproduce the results of a particular run right. So, for

example, let us say we do not have this, let us say we comment these lines right.

And if you want to reproduce the third run of PSO. Only the third run of PSO it is not possible
right, but if we have these lines over here right, then we do not need to execute TLBO
differential evolution. We can merely say rng of whichever run was the best run comma twister

and we can get those results.

So, that is why we are fixing the random number for each of the algorithm right. So, similar to
TLBO for differential evolution and particle swarm optimization. We are only interested in the
fitness function value of the best solution right. So, here we stored in the first column of best
fitness, here we are storing it in the second column, here we are storing it in the third column

right.

So, the input for differential evolution is problem its lower bound and its upper bound the
population size right, the crossover probability and the fitness function. Similarly, for particle
swarm optimization these three are with respect to the problem population size, inertia weight

and the two acceleration coefficient.

For TLBO, we had given only T iterations right. So, here we have specify T, but for
differential evolution and particle swarm optimization, we are providing the number of
iterations as 2 into T. So, in this case T we have set as 100 iterations. So, we will run TLBO
for 100 iteration, but we will execute TLBO for 100 iteration, but for differential evolution

and particle swarm optimization. We will execute it for 200 iterations right.

So, only then the number of fitness function used by TLBO, differential evolution and particle
swarm optimization would be identical right. So, remember we want to compare the results of
these three algorithms, but the termination criteria cannot be the number of iterations, then
TLBO will be using more number of fitness function evaluation compared to particle swarm

optimization and differential evolution right.

In order to avoid that we are executing differential evolution as well as particle swarm
optimization for twice the number of iterations as compared to teaching learning based

optimization right. So, this will complete execution of all the runs right.

(Refer Slide Time: 36:44)

he L e =i, [Dl e S
- b Ll

e g e

17= HRunz = &
18- bestfitness = Wl (¥Runs, 3) ;

22 = for i = liNRuns

23 = oog (i, "twister') rolling the rand

218 I~ beatfitnesa (i, 1), =% =] = TLBO(prob, 1b, ub,Np, T1:

25

26 = g (1, *ewister?) i ng th ndca AL (pn roused by
27 = [~ bestfitnesaii,2),~,~,~] = DifferentialEvolution (prob, 1b,ub,Np, 2*T,Po, F1;

28

25 = g (i, "twister) itrolling the random number generator used by rand, randi
0= [~ bestfitnasa (i, 3),~,%,*] = P50 (prab, Lb,ub, Np, 2*T,4,c1,c2)

i1

i2- ond

1

3=~ staki:,1) = ninfbestfitness);

/= Statii,2) = max(bestfitness);
3= Stat(:,J) = mean(bestfitness);
7= Stat(i,4) = sedian(bestfitness);
3= Stat(:,5) = std(bestiitness); \ Determining the standard di

1% v
=

So, here we have the statistical analysis right. We are finding the best fitness of all the three
algorithms right. So, when we do min of best fitness it will give us a column vector right. So,
the first column of the variable stat right. So, this is just a variable name, we are saying that the

first column of the variable stat is the best value obtained by each of the algorithm right.

So, that will have three rows right and the first column will contain the best objective function
value. The second column similarly for all the three algorithms we will contain the worst
fitness function value. Remember all these three algorithms have been written for minimization
right. So, this is max of best fitness and then similar to what we did previously mean for each
algorithm, median for each algorithm, standard deviation for each algorithm considering the 5

runs which we are executing right. So, let us see what happens if we execute this right. So,

here I had kept a break point right let me remove that breakpoint. So, it takes a little while to

solve.

So, now, we have the result correct. So, the first toe is for teaching learning based
optimization right. So, the best value obtained by TLBO is minus 400, because it is in the first
column right. So, the first column gives the best solution with respect to each of the three
algorithm, the second column gives us the worst solution with respect to each of the three
algorithm, the third column gives us mean fourth median and the fifth one gives us standard
deviation right. So, remember our previous discussion that for the current problem the fitness

function will have to have a negative value for the solution to be even feasible.

So, in this case we can see that differential evolution is not able to obtain any feasible solution
right. Because, the best solution obtained by differential evolution in all of the 5 runs right is
positive value; that means, there is some penalty which indicates that the solution is not
feasible with respect to the best solution obtained by the three algorithm. The best algorithm is
particle swarm optimization because it discovers a solution of minus 546.28. Whereas, TLBO

is able to determine solution which has a fitness of minus 400.59 right.

So, if one way to implement a production plan right, they would prefer to choose the solution
given by particle swarm optimization right. So, similarly if we compare the worst value, the

worst which is determined by TLBO is better than what is determined by PSO right.

(Refer Slide Time: 39:21)

e et ..+ ————

L it s RIS M >> stat

1 “

17= HRuns = §; Stit =

18~ bestfitness = Nal(NRuns, 3);

13 -100,59 -322.08 -372.10 -360,20 .18
20 ' R [1006 § ; 1 L1650649403534127744.00 310173156414076616704.00 44661A584437752374784.00 500000000000000000000
2 - 546,78 -205,63 420,77 138,12
22= [far i = l:NRuns

23= g (i, "twister') 5 beatlitaess

- [~ bestfitnesaii, 1),=,~

2% bastfiteess =

26~ g (i, "ewister)

27= [~ bestfitness(i,2), =~ 364,34 50000000000M000000000, 00 =369, 24
i -400,59 17237796R65M4TE938752.00 -438.12
28= g (i, "twister') 300,20 533635303080060256256.00 265,63
- = besttitnass (i, 30+, -322.08 9101731564 14076616704, 00 =546,28
1 -393,31 116906494035340127744.00 464,59
2= end

1 LES

M= Stat(:, 1) = min(bestfitness

3= Stat(:,2) = max(bestfitness

36 Stat(:,3) = nean(bestfitnes

7= stat(i,4) = median(bestfitn

g~ Stat(:,5) = std(bestfitness

[ceaaten]

So, we can actually look at this best fitness. So, these are the results of the 3 run. The first
column indicates TLBO, the second column indicates D, the third column indicates particle
swarm optimization right. So, in this case the best value was minus 400.59 and the worst is
minus 322.08. Whereas the worst in this is minus 285.63 right though particle swarm
optimization discovers a better solution than teaching learning based optimization for this set

of settings.

But the standard deviation across the 5 runs of TLBO is less than particle swarm optimization,
but the standard deviation of TLBO is less than that of particle swarm optimization right.
Again, remember this set of result is only for the set of parameters right. So, if we change this

parameters of differential evolution, the solution might even improve right.

So, for an arbitrary problem it is not possible to say what is the best value of Pc, F, w, c1 and
¢ 2 right. So, when we execute an algorithm we need to try with multiple values of this tuning
parameter right. Though we have shown your statistical analysis right it is very preliminary
right because we are also supposed to change this parameters and then we are also supposed

to analyze the impact of these user defined parameters.

In this case we showed you preliminary comparison of these three algorithms right. So, if we
have code of ga and abc in which we can specify the number of functional evaluation. The
algorithm would stop after utilizing that many number of functional evaluation. We can also

include them over here.

Right now, we know how many functional evaluation we took for TLBO all right. So, that is
Np plus 2 Np T right. So, that value can be calculated and it can be given to that specific code
of genetic algorithm and artificial bee colony optimization. So, in that case all the five
algorithms utilize the same number of fitness function evaluation and similar statistical analysis
can be performed right. So, that concludes the comparison of algorithms for this production

planning problem.

Many times what happens is we want to solve the same problem with different set of data. For
example, in the case study which we were discussing so far, the budget value was 1000 and

the raw material 1 that is available was 500, the raw material 2 that was available is 500 right.

(Refer Slide Time: 41:48)

So, this is what we were having, let me say this as case 1 right. So, for case 1; the budget that
is available is 1000 right and the raw material 1 that is available is 500 and the raw material 2
that is available is 500 right. So, for this let us say we get some profit right. So, depending

upon which algorithm we are working with, we will get some value of profit over here right.

So, same problem we want to solve, let us say with budget as 1000 right. And the amount of
raw material 1 that is available is not 500, but it is 1000, the amount of raw material 2 that is
available is also 1000. So, we will get some profit over here let us term this profit that we get
over here as x 1 and the profit that we get over here in case 2 as x 2 right. So, if you think
about it, here we have only increase the resources right. Some 500 to 1000, we have only
increase the resources. So, any solution which is feasible over here is also feasible for this one

right. So, because we are only relaxing the problem right.

So, we should at least get a solution which has a profit of x 1. We can get a solution which
may have a better profit than x 1, but it should not happen that x 2 is inferior to x 1. Because x
2 is the solution for a relaxed problem right. So, similarly for this study we have two more
cases right. Where in the budget is increased to 2000, the raw material is at 500 right and the
4th case is the budget available is 2000 and the raw material that is available is 1000. So, let us
call this as profit as x 3 and x 4 right. So, over here if we see X 4 cannot be inferior to any

other value right. Because x 4 is a relaxed version of any of the other three problem.

So, any solution which satisfies these three cases would also satisfy this. We should not have a
solution whose profit is inferior to any of this three. Now, the question is how do we
implement this? Right. So, remember for each of this case, we need to run multiple times right
because case 1 is a individual optimization problem, case 2 is an individual optimization

problem similarly, case 3 and case 4.

So, now, we will see how to execute such a problem. Over here if we see the first figure
shows the approach without correction. The second figure shows the approach with
correction right. So, whatever we are discussing holds true for both of them right. If you look
at our implementation we had those metaheuristic technique that was sending the value of X

and it was receiving the value of f right.

And we had the script file right. So, through the script file we were passing the algorithm
parameter and problem details right. So, every time what we were getting from the solution of
metaheuristic technique was the best solution its corresponding objective function, the final
population, the fitness function corresponding to the final population and the best fitness
function value obtained in every iteration, that was what we use for plotting convergence
curve. So, this is what we were receiving from the metaheuristic technique right. So, now,
what we can do is; when we pass this problem details, we can also pass the values of budget,

the amount of raw material 1, the amount of raw material 2, that is required.

So, previously we are only passing the upper bound, lower bound and name of the fitness

function file right. So, this B, R 1, R 2 can be pass to the metaheuristic technique right, but

this B, R 1, R 2 is actually required in this fitness function right. So, we will have to now
change our metaheuristic technique rightto receive this input from the script file right and as
well as transfer that data to the optimization problem. So, now, we will say that what we get
from the metaheuristic technique is x as well as we will say what are the resources right. So,
this three put together let me call it as variable Res. So, this Res can be pass to the

optimization problem.

So, the fitness function which could previously receive only X should now also be capable of
receiving Res right. So, what we are discussing here is more with respect to the
implementation right and not necessarily with respect to optimization But, since
implementation becomes a part of the optimization study that is why we are discussing it over

here.

So, this is also true for even if we have correction right. So, we will have to pass B, R 1, R 2
every time right. So, we have 4 sets; sofirst time we will pass the first set, second time we will
pass the second set. So, that will pass 4 times and this metaheuristic technique along with the
decision variable will pass the parameters and those parameters will be utilize in fitness
function and the corrected fitness value and corrected solution will be returned back to the

metaheuristic technique right.

So, this is one way of doing it. Otherwise in MATLAB a direct communication can be
establish between these two files right using a global variable. So, we will not use that
approach. So, this is the file that we were working with right. So, here let us get rid of things
that we do not want. So, we do not want this. Now, we are working only with the correction
approach right. Let me uncomment this right. So, these are the 4 cases that for the first time
we need to pass 1000, 500, 500, for the second time we need to pass 1000, 1000, 1000, for
the third time we need to pass this value and the for the fourth time we need to pass this value.

So, every case is a row now right.

And we have four such problems. So, we will put another loop over here and now in addition
to this we need to pass Res, that is the name of the variable in which we have defined the 4

cases right. The j th row we need to pass and all the columns right. So, these 3 are details with

respect to the problem, these 2 are details with respect to the algorithm right and again this is

a detail with respect to the problem.

So, so far we were saying the input to the algorithm is just fitness function lower bound and
upper bound, but we can also pass other parameters. But this will not be used in the algorithm.
Since algorithm happens to be in between our script file and the fitness function file, we are

passing it to the algorithm and subsequently the algorithm will pass it on to the fitness function
right.

So, over here we have change the algorithm right. So, our algorithm is over here. So, this
should be capable of receiving that variable right and wherever we call the objective function,

we need to pass this value.

(Refer Slide Time: 48:01)

Rl #e ki J§ D e
- - -

-
o o glwh e — g)

i S
#% D@ |+ 0 g o ks o G s .
e Ty
[=" = I
16 &
17 A% Itaration leop
1 fort=1: T
1%
26 - for { = 1:8
21 W Teacher Phase
22 - dmean = moaniP):
23
24 - [=,ind] = minif):
25 - ¥weat = Plind,:):
26
27 - TF = randi([1 2,1,10:
26
28 - Anew = P(L,:) & pand{l,D),*(¥beat - TF*Mmean): & Genarating the new
1)
| Anew = min(ub, Xnew); Boanding the £
32 - Anew = max(lb, Knew): Bounding the viclating variablea to their lower bow
n
M- [Emow, Xnew] = puclul-ﬂr|nu—,l‘u.—h;
15
3~ i (fmewr < £(1)) \ Gready a6 ian
7- Pil,2) = Xpov: 1 | Inciuds the v solut
3 - Eil) = fnaws
#nd

15 = v
‘ _
O R

So, we call the objective function here and then over here in the teacher phase and in the

student phase right.

(Refer Slide Time: 48:13)

H‘h Tt bt LB

So, Res, we are not actually using it right its Res; if you see we are not actually using it in the

algorithm. So, going back to this problem right. So, over here we will get Res right.

| - | Ao ¢ syl ¢ Rssasrgina ¢ | 8y =) 4 |
46 V Ensuring that the current mesber is not the partner
47~ il | == p
48 = p = randi([1 Hp],1,13: W Selection of randem parter
8=
50
51 = if tid)e fep) ¥ Salect the appropriste equaticn to be used in Leacne: phase
52~ Amow = Pil, i) + eand(l, D).*(P{L,:) = Pip,i)): ¥ Generating the nev solutios
53~ e
54~ ¥oew = Pil,:) = rand(l, D).*{P{l,:) = Pip,:)); ¥ Generating the nev solution
55 - 0
56
57~ Hnew = miniub, ¥new); § Bound P boul
58 - Xnow = max(lb, Knew): § Bounding the viclating va thelr lower bow
5%
i =~ [frww, Enew] = prob (Xfew, Res) ; b Evaluating the fitness of the newly gene
il
62 - i (fmew < LN § Gresdy selection
i3 - Pli,2) = Xmaw: § Include the m solution in population
id - fil) = fnaw: % Include the fitness function value of the new solut
65 - wnd
i€
7 - nd
i

(Refer Slide Time: 48:26)

WDl de MeBA Y e

o S NS 8

[- i b - +
I1= probc = §9K3_ProductionPlanningc) Fitn et = > ¥tk
12
13 %% Algoriths parassters dtat =
M= bp =505 T = 100
15= Pom 0.8; F = 0.85 650,34 §55.02
6= we08cl=l.S7e2=lYy Inortia weight, Acceleration fricier 1%0.78 168,78
17 1066.33 936.25
1= NRuns = & 136027 -1282.62
15 \ bastfitng il (KRuns, 3) 7
20= bestfitnessC = Wal (NRuns,3): > bastEltneast
21
22= Res = [1000 500 500; 1000 1000 1000; 2000 500 500; 2000 1000 1000); bestiitnessC =
23= Cfor § = 1:4
24 - for i 55,02 783,05
25« mgid, ‘tuistar’) ntrolling tho random nusbor qemarator used by 639,34 760.79
26 - [+, besttitnesscii, i), =,=, =] = TLB0Correction(probC, b, ub, kp, T, Rea (], 110 663,16 717.50
27 699,20 790,78
28 | I 464,56 786,33
29 = and
1= end A
3l
3z= stati:, 1) = min{pestfitnessCl;
3= stat(:,2) = max{bostfitnossc);
M= Stat{:, 3} = mean({bestlitnessC);

0 Y ST

So, these values are to come from the variables. So, we have written in such a way that the
first value contains the budget right. The second value contains the amount of raw material 1,

that is available and the third value contains the amount of raw material 2 that is available to

us.

So, now from the script file we can run all this 4 cases. Now, we have defined this outer loop
right. So, this outer loop we will take care of the four problems that we have and for each of
the problem we need to implement 10 runs right and this is the statistical analysis part which
we are doing over here right. So, right now we are not saving the best solution or the values
for the convergence curve or the final population. We are only storing the fitness function
value right; so best fitness C. So, the first time it will be the first column right. So, instead of

this 1, we need to give j. So, that we will get 4 columns right and we will have 5 rows.

So, each row corresponds to a particular run and each column will correspond to these cases
right. So, for the first case, second case, third case and the fourth case right. So, if we execute
this it will take a little while right. So, now, we have the command prompt. So, we can look at

this variable stat right.

(Refer Slide Time: 49:43)

13 % Algoriths parassters
H= Fp=50 T=100;

15= Pom 0.8 F 0.8 -699.38 655,02 680,36 664,56 s
6= we0.8cl=l.8 c2=l.h T80, 78 16879 T8l.29 83, 05 #,50
17 1066.33 936,25 950,01 952,21 W
18- MRuns = § 1360.27 1282.62 1316.01 130477 %82
15 i bastfitns dal (R, 3) ¢

20= bestfitnessC = MaMi{NRuna,3); »» bastlitnessC

21

bastfitneasC =

32= Res = [1000 300 500; 1000 1000 1000; 2000 *
23= Cfor § =114

4= for i = 1:NRans 655,02 183,05 1360, 27
25 = mgid, "tuister’) 699,38 68,79 1354,30
6= [, bost fitnessCii, j),=,~, =] = TLAOY 663,16 177,50 128,12
27 i 699,20 790,70 -1262.62
28= ' ond 1 604, 56 186,33 1304.17
%

0= - = min{bestfitnossC); % Dt)‘ﬂ >

3= Stat(:,2] = max(bastfitnessc);
32= Stat{:, 3} = mean{bestiitnesaC);
33= Stat{:,4) = median(bestfitmasac);
3= Stat{:, %) = std(pestfitnessC);

n i _

So, each row indicates a particular run. So, if we look at best fitness right. So, these are the 4
cases which we have right, case 1, case 2, case 3, case 4. So, the first column of best fitness ¢
is case 1. So, for the case 1; we see that the values in 5 run are the 5 rows of the first column.
Similarly, for the second problem right. Second problem in the sense with the budget of 1000,

raw material 1 available being 1000 and the amount of raw material 2 available being 1000.

So, these are the results of 5 run. Similarly, the third case and the fourth case right. Now, if we

implement a statistical analysis of this. Let us say the best value that we obtain is for case 1 is

minus 699.38 right. So, that is what is over here right. So, the first column indicates the best

values, because over here if you see stats the first column indicates the best value right.

So, the third value this minus 1066.33 corresponds to the best value of the 5 runs for case 3
and similarly for case 4 right. The second column of stat indicates the worst value, the third
column indicates the mean, the fourth one indicates the median and the fifth one indicates the
standard deviation right. So, here we have shown you only for TLBO right. So, even in that

case we get a table right.

(Refer Slide Time: 51:10)

WDl de MeBA Y e

o S NS 8

[- i b - +
I1= probc = §9K3_ProductionPlanningc) Fitn et = > ¥tk
12
13 4% Algoriths paraseters Stat =
M= Hp= 50T =100
15= po=0.8; F=0.8% \ DE crossover probability & Scaling factor 69938 §55.02
16= we 0.8 cl=l.bre2nlh ¥ Inertia weight, Acceleraticn coefficier 190,78 68, T4
” 1066.33 936,25
1B= MRuns = % 1360.27 -1282.62
15 \ bastfitng il (KRuns, 3) 7
30= bestfitnessC = WaNiNRuns,3);
21
22= Fes = [1000 500 500; 1000 1000 1000; 2000 500 500; 2000 1000 1000); bestiitnessC =
23= Cfor § = 1:4
24 - for i = 1:NRuns £55.02
25« mgid, ‘tuistar’) ntrolling tho random nusbor qemarator used by 639,34
26 - [+, besttitnesscii, i), =,=, =] = TLB0Correction(probC, b, ub, kp, T, Rea (], 110 663,16
27 699,20
28 | I 68456
29 = and
0= lend &=

3z= stati:, 1) = min{pestfitnessCl;
33= Stat(:,2) = max(bostfitnessc);
M= Stat{:, 3} = mean({bestlitnessC);

0 Y ST

So, what you can do is in addition to TLBO you can also run the problem with particle swarm
optimization, differential evolution, genetic algorithm and artificial bee colony optimization.
This is how we can run the same problem with different set of data for any number of specified

runs with a particular algorithm. With that we will conclude the session.

Thank you.

