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Welcome to the MOOCs course advanced thermodynamics. The title of this lecture is 

fugacities in gaseous mixtures part 2. So, we have been discussing different types of equations 

of state and then their connection with intermolecular potentials, etc., and then we also seen 

how to obtain the fugacity coefficient of a component i in the mixture or a fugacity coefficient 

of pure component, etc., those relations and all that we have seen and then we have seen that 

most of these equations of state, either equations of state you call or intermolecular potentials 

you take or you take the fugacity expression that finally you got, they are having some kind of 

limitations. 

 

One or other kind of limitations, maybe valid at moderate densities, etc., those kinds of things 

or limitations may be having, right? So, now, what we do? We go further in details to find out 

fugacities in gaseous mixture, especially at higher densities, right? So, that is what we are going 

to discuss, how to take care of fugacities of a component in a mixture, especially if the mixture 

is of a higher density, those kinds of things we are going to see now, right? 

(Refer Slide Time: 01:39) 

 

We have already seen that virial equation of state that we have been discussing for quite a few 

lectures for last couple of weeks, right? We understand that this is one of the best equation of 



state especially because of the reason that the coefficients or the constants associated with the 

equations of state, the virial equation of state, are directly having a relation with intermolecular 

potential of species that we have taken that is one advantage. Another advantage is that we do 

not need any kind of mixing rules in order to find out this coefficient for the mixture, right?  

 

So, because of these advantages, we realize that it is one of the best equation of state that is 

available, right? But again it is also having some kind of disadvantages. Disadvantages 

something like that it is valid only at low to moderate densities only, it is not validated higher 

densities, right? So, that is one of the disadvantages. So, though virial equation of state has 

many advantages, it has also a severe disadvantage of its inapplicability of gases at high 

densities that is what we have already seen, right? 

 

For that the density range for practical applications of virial equation is again dependent on the 

range of temperature because virial equation of state if you see these virial coefficients are the 

functions of temperature only. But they are independent of pressure or densities those 

coefficient, but the density of a system that depends on the range of temperature. So, we cannot 

specify directly under what range of temperature these equations are going to be a kind of better 

equations, under what range these equations are going to be not good one such kind of 

specifications we cannot make based on the temperature. 

 

That is the reason we are making this based on the densities because densities are directly 

related to the temperature and the second and third virial coefficient, whatever the coefficients 

of this virial equation of state are there, they are again function of temperature. Since these 

coefficients are function of temperature, so rather saying that this equation of state is valid for 

certain low temperature or certain high temperature rather saying that one, we are saying in 

terms of densities because density is directly related to the temperature and the temperature is 

affecting these virial coefficients, okay? 

 

It has been found that frequently it has been observed that virial equation of state is not useful 

especially when the density of the mixture is larger than about 50 % of the critical density, then 

under such conditions usually third and higher virial coefficients are neglected and then when 

you use only this z = 1 + 
𝐵

𝑣
, up to this part only that is up to second virial coefficient only, then 

obviously it is not going to give a kind of a reliable information. 



 

Similarly, even though if the densities are up to 75 % of the critical density, then even if you 

have including this third virial coefficient also, then also the results are not going to be much 

reliable compared to the experimental results, right? So, even as you go towards the more closer 

and closer by critical density, critical point, then what happens you know, the reliability of this 

even virial equation is going to decrease even when you have a kind of up to third virial 

coefficient also included in the equation. 

 

Then we know that these constants B and C that second and third virial coefficient, data is 

available sufficiently for second virial coefficient, but third virial coefficient data is very 

scarcely available even for pure components, right? Because of such limitations, first of all data 

is limited for the third virial coefficient, even if the data is available and then you include the 

third virial coefficient or up to the third virial coefficient term in the virial equation and do the 

calculations, you may not get appropriate results by virial equation of state. 

 

Appropriate in the sense matching with experimental results when the density of the mixture 

is almost up to 75 % of its critical value, right? So, then what you may think if the density is 

even less than that at the critical point, then let us say even if you go up take only 50 % of the 

critical density, then what happens? Then also if you take only up to the second virial 

coefficient, then again the accuracy of the results obtained by the virial equation of state is not 

going to be good enough especially when compared to the experimental results. 

 

So, these are the important points one has to keep in mind and then why we have to keep in 

mind these points because we have already seen in one of the lectures, the equation of state, 

the reliability or the suitability of equation of state or superiority of any equation of state 

depends on how much it is matching with the experimental results, especially at or near critical 

point, okay? If the results obtained, thermodynamic properties obtained by equation of state 

are matching with experimental results at the conditions which are close or at the critical point. 

 

At critical conditions or near critical conditions if the thermodynamic properties obtained by 

equation of state are matching with experimental results, then you can say such equation of 

state are going to be much more reliable than the others, that is what we have seen. Why is this 

problem is coming, especially at critical or near critical point? Because what happens, the 



properties near critical point changes drastically with slight change in the temperature or 

pressure something like that.  

 

Because of such reasons, we cannot have a kind of equation of state which may be covering 

the whole range of low temperature, low pressure to the high temperature, high pressure 

crossing this critical temperature critical point, etc., those kind of thing. So, because of such 

reasons, the validity of any equation of state depends on how good it predicts the experimental 

results at critical or near critical point conditions.  

 

Let us say if you have the system at around 50 ℃. Then if you increase the temperature to the 

50 to 55 ℃, then density may not vary much, dielectric constant of the system may not very 

much, right? But the same system you take and then your operating temperature is near the 

critical condition, let us say critical point for fluid is around 370 ℃. So, critical temperature is 

370 ℃ and then for the same fluid for the same system if you measure the variation in the 

density at this 370 ℃. 

 

If you decrease this temperature from 370 to 365 ℃ just by decreasing by 5 ℃ or if you increase 

this temperature 370 to 375 ℃ thus just increasing by 5 ℃, the density is going to be vary 

much more drastically. So, because of that reasons, one cannot have a kind of equation state 

which may account for such kind of drastic changes in the properties. That is the reason you 

know many of the equations of state are not valid at a critical point conditions for many cases, 

okay? 

 

So, that is the reason this validity of any equation of state has been demonstrated by comparing 

the results obtained by such equation of state at critical conditions by comparison with the 

experimental results. So, that is the reason this critical point has been taken as a kind of 

reference point for establishing the reliability of any equation of state. In other words if the 

experimental results at critical point can be reproduced by any equation of state at critical 

condition, then we can say that particular equation of state is going to be much more reliable 

than any other equation of state. 

 

So, further obviously, this disadvantage follows primarily from our limited knowledge 

regarding the third and higher virial coefficient. As I already mentioned, the available data for 

a second virial coefficient is sufficiently there, but third and higher virial coefficient the data 



or available data is very scarce. So, but at present, gas phase fugacities at high densities can be 

best calculated by using semi-empirical methods. So, this actually we have discussed all these, 

how, what is this method, etc., how to apply for this mixing rule, etc. 

 

When we find out the fugacity of the component in mixture, those kind of things we have seen 

but without discussing much details why are we using that one. So those principles we are 

using it. Basically at higher densities, we are going to use an approach which is called as a kind 

of semi-empirical methods which we have already used for the few cases, but without 

understanding what is this semi-empirical method. So, those things we are going to see now. 

For example, theorem of corresponding states can be extended to mixtures utilizing that it is 

often called a pseudocritical method. 

 

If you recollect the corresponding states theory, whatever the corresponding states theory that 

derivations, etc., we have done for the equation of state or you know developing a kind of 

equation of state in reduced coordinates which is kind of universal function for all the gases 

which obey that particular equation of state, right? So, let us say Van der Waal’s equation of 

state is obeyed by many gases.  

 

So, we have developed a kind of a universal function or universal Van der Waal’s equation of 

state in terms of reduced temperature and reduced pressure which is going to be same for all 

fluids, which are obeying the Van der Waal’s equation of state including those constants. Those 

constants are related to the critical temperature and critical pressure as we have already seen. 

So, all those things have been done for a kind of pure components, for a kind of pure 

components only that corresponding states theory. 

 

Whether it is 2 parameters corresponding state theory or you know higher parameter 

corresponding theory or extended corresponding state theory, they are valid for the pure 

component. For those pure components only we have developed, but this semi-empirical 

methods or which is also known as the pseudocritical method, according to this one, this theory 

can also be extended to mixtures. 
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According to this method, configurational properties of a mixture may be calculated from the 

generalized reduced parameters or reduced properties of pure fluids by expressing 

characteristic reducing parameters as a function of mixture composition. So, whatever these 

reduced parameters of pure fluids are there that are going to be generalized one and these 

generalized ones are expressed by characteristic reducing parameters, which are again 

functions of composition of the mixture, this is what it says. 

 

This is easily illustrated by using 2 parameter corresponding state theory that expresses 

compressibility factor as universal function of reduced temperature and reduced pressure as      

z = Fz (
𝑇

𝑇𝑐
,

𝑃

𝑃𝑐
), right? So, here pseudocritical method assumes that these same universal function 

Fz applies to the mixture also, right? Actually as per the corresponding state theory whatever 

the z as function of TR, PR or 
𝑇

𝑇𝑐
,

𝑃

𝑃𝑐
, this is valid for the pure components. 

 

But according to this pseudocritical method or semi-empirical method, what we can say this 

universal function Fz whatever is there it is also applicable to mixtures also, but when this Tc 

and Pc are taken not as a kind of true critical temperature, critical pressure of the mixture, but 

as some kind of composition dependent constants. Then we can say this particular thing is also 

valid, this particular corresponding theory or this particular universal function whatever is there 

for compressibility that is also going to be valid for mixtures by taking this Tc and Pc are not 

as a true critical temperature and true critical pressure of the mixture. 

 



But rather as a pseudocritical constant that is characteristic parameters that depend on the 

composition of the mixture, pseudocritical constants. So, that is the reason this method is also 

known as the pseudocritical method, okay? So, now it says whatever the Tc and Pc of the 

mixture are there, they are dependent on the composition. So, how are they dependent? What 

is the function between Tc and composition and then Pc and composition? Is it a linear or non-

linear? That again has to be answered appropriately.  
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Further in this method according to pseudocritical method, it is assumed that the Tc and Pc are 

linear functions of mole fractions, although other functions relating Tc and Pc to composition 

are also consistent with this idea, okay? Though this method whatever the pseudocritical 

method that is there for the mixtures are the method which we are calling as a pseudocritical 

method, it says that the universal function Fz of compressibility which is valid for pure 

component is also valid for a mixture of those components. 

 

But only thing that the critical temperature and critical pressure of these mixtures are 

composition dependent ones and then they are linearly dependent on the combination. But 

however, it has been found that this relation between the critical parameters and composition 

though if it is not linear, then also it has found that the results are consistent with this particular 

idea of a pseudocritical method, okay? Pseudocritical method and other empirical methods are 

reliable for many cases, but not for all cases, okay? 

 

Let you have n number of mixture, n number of or n combinations of mixtures of several gases, 

then you can find this pseudocritical method may be suitable for many cases, but one cannot 



guarantee that this method is going to be useful for all cases. These observations are by 

experimental reliability or by matching with experimental results. Let us say we have a 

corresponding state theory, you apply this corresponding states theory to the mixtures because 

the original corresponding state theory is developed for the pure fluids. 

 

Now, we are making a kind of pseudocritical parameter estimation by finding this Tc and Pc as 

functions of composition. Now, using this Tc and Pc as function of composition of the mixture, 

we apply the same corresponding state theory to the mixture, then we call it as a kind of 

pseudocritical theory, okay? So, it has been found when we apply this pseudocritical method, 

it has been found that it is reliable or applicable for many cases, but not all cases. Obviously, 

we can understand when it is going to be reliable or provides a good approximation or 

satisfactory comparison with experiments. 

 

So, what we can understand clearly we have been seeing that for the small simple non-polar 

gases many things are again simple and straightforward. So, under such conditions, this 

pseudocritical method is also expected to perform well and it has been found by experimentally 

the same thing that is for mixtures of small non-polar gases at not near critical conditions, okay? 

Slightly away from the critical condition. 

 

For mixtures of small and non-polar gases, it has been found that whatever the results obtained 

by the pseudocritical method are there, they are providing very good results compared to the 

experimental ones, but reliability is frequently uncertain for mixtures of polar components. 

Polar components even for the pure components several difficulties are there, you know very 

few models, etc., are available.  

 

So, again if such a less accurate approach for pure component is there for a polar component, 

but the same less accurate polar components approach whatever is there the corresponding 

sates theory, then if the same thing if you apply for the mixture of polar components, it is going 

to be uncertain, it is not going to be certain, right? So, we have seen that for polar component, 

this acentric factors etc., all those things are coming into the picture, especially for non-

spherical or larger polar molecules, right?  

 

So, when we brought in additional things into the corresponding theory, we found it even for 

pure components, but if the component is polar component the reliability is very less, is not 



that good, right? If for pure component the reliability is not good, so obviously that approach 

is not going to be match well, may not provide certain reliable information for mixtures when 

you apply this pseudocritical method.  

 

Further for all mixtures, whether it is polar or non-polar, at or near critical conditions regardless 

of molecular complexity, whether the simple spherical molecules, non-spherical molecules, 

whatever the calculated fugacities are there they are likely to be in error. So, one thing is clear 

that from this pseudocritical method is not going to be useful for the cases if the mixture is at 

the conditions of close to the near critical conditions or close to the critical conditions, right? 

 

So, that means this pseudo empirical method can be used as a kind of a first order 

approximation for simple non-polar molecules at conditions away from the critical conditions. 

If you take the system closer and closer to the critical conditions, whether the molecules are 

simple or non-simple or complex molecules whatever you take, the reliability is going to be 

questionable. So, why this inconsistency even for small molecules if we go towards the critical 

conditions? So there must be a reason. So, there are 2 reasons.  

 

First reason is that for complex molecules, intermolecular forces, the information or knowledge 

about intermolecular forces is very small that is one reason, but most important reason is that 

at critical conditions or near critical conditions, we are unable to predict the behavior of fluids 

in a simple and easy manner. That is the important thing that because of this reason we are not 

able to get the reliability which is missing at or near critical condition because we are unable 

to describe the behavior of fluids in the vicinity of the critical state. 

 

Why because as I already mentioned at the critical state even if the temperature, pressure 

changes slightly, as I mentioned if the temperature let us say changes, increases or decreases 

by 5 ℃ or even sometimes 2-3 ℃ near the critical condition, then these properties such as 

density, dielectric constant, etc., are going to vary drastically, they may increase or decrease 

depends on the system, right?  

 

So, such kind of sharp changes in the properties because of small changes in the temperature 

or pressure near critical conditions are not able to be captured by existing equations of states. 

So, that is the reason these problems are existing, okay? That is the reason reliability is 



questionable, especially at higher densities if you do not use appropriate cases, appropriate 

expressions or appropriate methods. 
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So, now coming to the estimation of fugacities, we have already seen general and exact 

equations for the calculation of fugacity from volumetric properties. We have these 2 equations. 

If you have an equation of state in a kind of form that molar volume is one side, then other 

conditions like temperature, pressure and then constant associated with the equation of state 

whichever you have taken in order to bring the real behavior, non-ideal behavior of the system, 

if you write in this particular form, right? Then from here what you can do? 

 

You can find out what is (
𝜕𝑉

𝜕𝑛𝑖
)

𝑇,𝑃,𝑛𝑗

and then that you can substitute here and then find out the 

required ln ϕi expression that is fugacity coefficient of component i in the mixture by using this 

expression. Similarly, if equation of state if you write in a pressure explicit form that pressure 

is one side and then all other terms like the temperature, molar volume, and then constant 

associated with the equation of state like a, b, etc. 

 

Then from that equation of state again you can find out (
𝜕𝑃

𝜕𝑛𝑖
)

𝑇,𝑉,𝑛𝑗

 and then that if you substitute 

here and then simplify, you can find out what is ϕi that is fugacity of component i in the mixture 

using this expression. These things we have already derived. These things are a generalized 

expression. These 2 expressions are generalized expression without making any assumption of 



what kind of equation of state it is, right? So, depending on the equation of state you can find 

out either 
𝜕𝑉

𝜕𝑛𝑖
 or 

𝜕𝑃

𝜕𝑛𝑖
, substitute them here and then find out ϕi expression. 

 

Then any equation you use whether this equation you use or you use this equation, you are 

going to get the same answer for fugacity component i in the mixture, okay? Now, thus for 

mixtures, it is better to use phenomenological equations of state that is the equation of state 

based on intermolecular interactions such as Van der Waal’s equations, which may bring in the 

effect of non-ideality in the system appropriately. There are other equations of states are also 

we have seen, Redlich-Kwong equation, Peng-Robinson equation, etc. 

 

Those kinds of things we have seen, but what we have seen, we have seen these equations are 

valid for pure fluids only, right? All these equations of state they are valid for the pure fluids 

only, but it can be extended to mixtures upon making some simplifying assumptions. You can 

have a kind of some simplifying assumptions and then make a kind of mixing rule to get the 

equation of state for the mixtures with appropriate constants a, b, etc., for the mixtures, but as 

we are saying that simplifying assumptions, so these mixing rule are going to have some kind 

of limitations. 

 

Accordingly there are many mixing rules are available, but we have been using a few mixing 

rules without knowledge, but mixing rule has to be used with knowledge and then that 

knowledge may be coming with the experience or maybe by thoroughly understanding the 

nature of the equation of state and nature of the molecules, etc., and accordingly one has to use 

which equation of state or which mixing rule is going to be appropriate for a given equation of 

state for a given system like that one has to make a clear reliable stand before using these 

equations of state for the mixtures.  
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One key assumption is the one fluid theory of mixture. You assume that the mixture is a kind 

of one fluid, okay? It assumes that the configuration and properties of a mixture are same as 

those of hypothetical pure fluids. It is not a pure fluid, but hypothetical fluids. So, let us say a, 

b constants for Van der Waal’s equations that we have as functions of Tc and Pc that we have 

derived, right? So this Tc and Pc for the pure component. So for the pure component, Tc and Pc 

if you know, then you can find out what is this a, b constant. 

 

Likewise for the mixtures also, you know what are these Tc, Pc by whatever the pseudocritical 

method that we have been discussing. Then accordingly these a, b be constants can be found 

for the mixtures also. Now but this method when we have this one fluid theory, what we are 

assuming? We are assuming that mixture is having is a kind of one fluid rather than treating as 

a kind of mixture of 2 different or more than one component, 2, 3, or whatever.  

 

It is rather assuming that is a mixture of these many components, you are taking as a kind of 

one particular fluid and then assuming the properties, the configurational properties of mixture 

are same as those of a hypothetical fluid for which this a, b relations as function of Tc and Pc 

are also valid and then whose characteristic constants such as a, b in Van der Waal’s equation 

for example we are taking are some composition dependent average of characteristics of pure 

components in the mixture, okay?  

 

This is the primary assumption of this one fluid theory of mixture. So, composition dependence 

of constants of equation of state are given by mixing rules that are again mostly empirical and 

then using one fluid theory equation of state, we can write it as something like                                    



P = F[T, v, a(y), b(y),….]. If it is pure component, then what we have written, just in the 

previous slide we have written P = F [T, v, a, b, etc.], this is what we have written.  

 

Now here in the case of mixture, similar form we are writing, but we are writing this a and b 

are dependent on the composition, so for which we are using mixing rules, okay? Here v is 

nothing but molar volume of mixture, a(y) is nothing but constant depends on composition, 

b(y) is also a constant depends on the composition, y is the mole fraction of the system that we 

have taken and these constants are often expressed in terms of critical temperature, critical 

pressure, and acentric factor as we already seen in corresponding states theory, right? 

 

So, these are the things that one has to make sure, that is if let us say if you are using same 

equation of state let us say P = 
RT

𝑣−𝑏
−  

𝑎

𝑣2
, the Van der Waal’s equation of state if you are using 

for pure components, then a and b should be related to the Tc and Pc of that particular pure 

component. If you are using for the mixtures, then this a and b are composition dependent 

constants, that is they are also in addition to this a and b are functions of a11, a22 and then a12, 

b11, b22 if it is a binary mixture.  

 

This a and b depends on these things by having some kind of relation with no composition. For 

example, we have seen a for the mixture is nothing but  𝑦1
2 a11 + 2 y1 y2 √𝑎11𝑎22 + 𝑦2

2 a22, this 

is what we have seen like this, okay? Similarly b also we have seen a certain kind of mixing 

rules. So, those mixing rules we have to use for this constant if we are applying this equation 

of state for the mixtures, okay? So, how to get it done? We take a couple of example problems 

and then see this. 
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Example 1. A gas phase mixture of nitrogen which is designated as component 1 and n-butane 

which is designated as component 2 at 460 Kelvin and 40 bar contains 49.74 mole % of nitrogen 

and 50.26 mole % of n-butane, almost like we can say 50-50 % mole fractions, right? So, 

calculate the fugacity coefficient of nitrogen and n-butane in the mixture assuming pure 

components and the mixture to follow the Van der Waal’s equation of state. Also calculate the 

fugacity of the mixture, okay? 

 

So, we have to find out ϕ1 for component 1, ϕ2 for component 2 and then ϕ for the mixture, 

okay? So, these are the things we have to find out, fmixt we have to find out. f1, f2 also we have 

to find out. We have to find out first f1 f2 and then we can find out whatever the required fmixt, 

okay? So, we need obviously Tc, Pc data. So, for nitrogen Tc is given, Pc is given, similarly for 

n-butane also Tc is given and then Pc is given, okay? 

(Refer Slide Time: 32:44) 



 

So, now we have to find out this thing. So, what we see here Van der Waal’s equation of state, 

we know this is P = 
RT

𝑣−𝑏
−  

𝑎

𝑣2 where a and b are composition dependent constants, this we 

know, okay? For pure components, these constants are related to Tc and Pc as per these 

equations a = 
27𝑅2𝑇𝑐

2

64𝑃𝑐
 and b = 

𝑅𝑇𝑐

8𝑃𝑐
. These things also we have already derived from the 

corresponding states theory in one of the previous lecture, okay?  

 

Then fugacity of a component in a mixture of gases obeying Van der Waal’s equation of state 

also we derived, this we derived in the second week of this course, so where we have this 

expression. What we have done? We have taken a gaseous mixtures having m number of 

components and not only those individual components, m number of components as well as 

the mixture obeying the Van der Waal’s equation our state. Then for a component i in the 

mixture, the fugacity coefficient we have already derived in one of the lectures in the second 

week and that expression is nothing but this one.  

 

So, you need to find out f1, f2, right? So, that means if you have to use this equation, y1, y2 is 

given, P is also given, okay? So, now here b is for the mixture. So, for the mixture constant b 

we have to find out, v is also again for the mixture, so molar volume of the mixture you have 

to find out. bi that is b1, b2 so that is for the pure component b constant you have to find out and 

then here ai aj that is for the pure component this a1 a2 you have to find out, right? Then 

similarly, a for the mixture also you have to find out and then there is z, zmixt compressibility 

factor zmixt = 
𝑃𝑣𝑚𝑖𝑥𝑡

𝑅𝑇
 also you have to find out. 

 



Then you can substitute all of them here in order to find out what is fi. So, first what we do? 

We find out this a1, a2 or ai, aj and then bi, bj we find out. Then we find out this a constant and 

b constant. Then we will be solving this. Once this a constant and b constant for this Van der 

Waal’s equation of state, then from here you can find out what is v because P and T are all 

given here, a and b you are just finding out. So, once you find out the vmixt, then you can find 

out the zmixt = 
𝑃𝑣

𝑅𝑇
.  

 

So once all those things are obtained, we substitute here, so simply you can get fugacity of that 

particular component or fugacity coefficient of that particular component in the mixture, okay?  
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So, first what we do? We find out this constant for component 1.Component 1, I am calling it 

a1, b1. For component 2, I am calling it a2, b2. You can also call it as a11, b11, a22, b22. So, now 

here a1 = 
27𝑅2𝑇𝑐

2

64𝑃𝑐
. This Tc and then Pc now you have to substitute for the component 1 that is for 

the nitrogen, then you will get a11 is this value. Similarly, b1 or b11 if you write it as b11 is 

nothing but  
𝑅𝑇𝑐

8𝑃𝑐
, here again Tc Pc you have to use for component 1 that is for the nitrogen, then 

you have b1 this value, right?  

 

Then for component 2 if you do a2 similarly, but using here the Tc whatever the Tc information 

is there that is for the second component 𝑇𝑐2
, okay? And then this Pc whatever is there that is 

also for the second component that is 𝑃𝑐2
 that is for n-butane, right? Similarly, b22 also here, 



this is for the second component Tc and this is the second component Pc that information is 

given. So, when you substitute, you will get a2 and b2 like this, these numbers, right?  

 

Then we also need for the mixture, for the mixture we know that a = this mixing rule we have 

been using, indeed that derivation whatever I have shown for ln ϕi in the previous expression 

or 𝑙𝑛
𝑓𝑖

𝑦𝑖𝑃
 that expression we have, while deriving that expression we needed this a information, 

so there we have used this mixing rule. So, then we have to use this mixing rule again without 

any change. So, this is a = 𝑦1
2 a1 + 2 y1 y2 √𝑎1𝑎2 + 𝑦2

2 a2, then you have this information. 

 

Then similarly for the b of the mixture, there are several mixing rules are there, we have seen 

two of them, but in deriving that 𝑙𝑛
𝑓𝑖

𝑦𝑖𝑃
 expression that I have shown in the previous slide, we 

have used this mixing rule. So again while solving this problem you have to use this mixing 

rule only, right? So, in the derivation if you have used this mixing rule, so problem solving also 

we have to use this one only. So, if you substitute y1 = 0.4974 and then y2 = 0.5026, then you 

get this value for a and b, right?  
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Then a and b, a1, b1, a2, b2, a and b for the mixture we have found. Now we will be finding vmixt 

and then zmixt, okay? So, if these two also you find, then everything is available to find out the 

ln ϕ1, ln ϕ2. So, this whatever the P = 
RT

𝑣−𝑏
−  

𝑎

𝑣2 is there, first what I am doing, both the sides I 

am multiplying by v, then both sides I am dividing by RT, so that I can have 
Pv

𝑅𝑇
 = z that can be 

as a kind of 
v

𝑣−𝑏
−

a

𝑅𝑇𝑣
.  



 

Now, if you have the vmixt, so straightforward 
𝑃𝑣𝑚𝑖𝑥𝑡

𝑅𝑇
 if you do, you can get the zmixt or if you 

use this equation here in the place of here v, you use the vmixt and then here you use bmixt and 

then here use amixt, right? So, then that way also you can calculate, any ways possible. So now 

zmixt you can calculate only when you know the vmixt, vmixt we can calculate from the equation 

of state, either this equation number 1 or this equation number 2 or any equation you can use 

it because now we can use any of these equations of this. 

 

We can use this equation of state because you know a and b we have already found for the 

mixtures. So, everything is known in this equation of state at given temperature and pressure 

except the molar volume. So, we can expand this equation in the cubic form like this, this also 

we have done previously, and then solve this equation by substituting T = 460 K and then           

P = 40*105 Pascal, these are given, right? Then obviously, when you substitute, a and b you 

already got, T and P you are substituting this value, R also you know. 

 

So, then this will be a cubic equation in v only, so 3 root should be there. So, out of those 3 

roots, you will be having only one real root here and then remaining two are going to be 

imaginary. So, this is the vmixt, right? So, now once we have the vmixt, so then zmixt can be easily 

found by 
𝑃𝑣

𝑅𝑇
 expression that is going to be 0.918. So, now in 𝑙𝑛

𝑓𝑖

𝑦𝑖𝑃
 expression or ln ϕi expression 

that we have seen in the previous slide, everything is not known in the right hand side. So, 

simply substitute and get ln f1, ln f2 values. 
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So, 𝑙𝑛
𝑓1

𝑦1𝑃
 = ln (

𝑣

𝑣−𝑏
) + bi is nothing but now 

𝑏1

𝑣−𝑏
−

2√𝑎1

𝑣𝑅𝑇
 , ∑ 𝑦𝑗√𝑎𝑗  is nothing but 𝑦1√𝑎1 + 

𝑦2√𝑎2 − ln z. So, now you substitute all the values here, so because now everything is known, 

v is known, b is known, b1 is known, a1 is known, a2 is known and then z also known, so 

everything is known, temperature is anyway given. So, simply if you substitute, you will get  

ln ϕ1, that is 𝑙𝑛
𝑓1

𝑦1𝑃
 is nothing but 0.0553. 

 

That means ϕ1 = 1.057 and then f1 = 21.03 bar, straightforward once you have these constants 

and then vmixt and zmixt, simply substitution and getting them, right? Similarly, for the second 

component if you do 𝑙𝑛
𝑓2

𝑦2𝑃
 = ln (

𝑣

𝑣−𝑏
)+ bi, so now i = 2, so then it should be 

𝑏2

𝑣−𝑏
− 2√𝑎𝑖, i = 

2, so 
2√𝑎2

𝑣𝑅𝑇
 and then ∑ 𝑦𝑗√𝑎𝑗 is nothing but 𝑦1√𝑎1 + y2 √𝑎2 because it is a binary mixture – ln 

z is as it is.  

 

So, everything is known here also. If you substitute ln ϕ2 you will get minus 0.2212. That means 

ϕ2 = 0.8016 and then f1 is nothing but 16.12 bar. So, we have 3 parts in the question. One is 

obviously f1, another one is the obviously f2, right? And then third one fmixt also we have to 

find out, fmixt we have already derived this expression in one of the previous lecture as a kind 

of example problem. So, ln fmixt is going to be y1 𝑙𝑛
𝑓1

𝑦1
 + y2 𝑙𝑛

𝑓2

𝑦2
, this also we have derived in 

one of the previous lecture. 

 

So, now f1, f2, y1, y2 are known, you substitute here, so then you get ln fmixt is nothing but 

3.60545. That means fmixt is nothing but 36.7982 bar, okay? That means ϕmixt is nothing but 

𝑓𝑚𝑖𝑥𝑡

𝑃
, so that is 0.92. So, what you can see here? The non-ideality is very less for the mixture 

especially because you know ϕ value is 0.92 and then fmixt is not far away from the total 

pressure, total pressure is the 40 bar of the system, but now here fmixt is approximately 37 bar, 

36.8, so that approximately 37 bar we can say. 

 

So, the fugacity of the mixture is not far away from the total pressure, so then we can say the 

non-ideality in this particular system is very less, okay? This is how we can analyze from the 

result also, right?  
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Now, we take another example problem. What we are going to do? We are going to do the 

same problem example 1, but only change that we are going to make, we are making or we are 

taking that the individual components as well as the mixture of 2 components are obeying 

Redlich-Kwong equation, right? So, then what could be the answers, just wanted to check 

because for this system when we are using Van der Waal’s equation of state we are finding that 

the non-ideality is very less. 

 

Then we know Redlich-Kwong equation is improved, much is a kind of better equation of state 

compared to the Van der Waal’s equation of state. So, can we have a kind of a much better 

reliability or much better understanding about the fugacity or non-ideality of the system by 

applying a better equation of state, for that purpose only we are doing the same problem with 

different equation of state, right?  

 

So, composition and then data everything are going to be same because critical conditions are 

not going to change for any component by changing the equation of state but they are property 

of the system. So, everything is same except this Redlich-Kwong equation of state that we are 

going to use.  
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We know this Redlich-Kwong one equation as P  = 
RT

𝑣−𝑏
−  

𝑎

𝑣(𝑣+𝑏)√𝑇
, this we already know, 

right? Now here T is given, P is given, right? If you know a and b, then you can find out what 

is v, right? So, for that a and b for the mixture whatever are there that we have to find out in 

order to get the vmixt, okay? This a and b we know that they are composition dependent 

constants, right? For pure component, these constants can be related to the critical temperature 

and pressure as a = 
0.42748𝑅2𝑇𝑐

2.5

𝑃𝑐
 and b = 

0.08664 𝑅𝑇𝑐

𝑃𝑐
.  

 

These things are also we have already derived for Redlich-Kwong equations when we are 

discussing corresponding states theory, okay? So, now, if you apply the same mixing rule and 

then try to find out what is ln ϕ1, ln ϕ2, then you get this expression, this we have not derived 

actually. This we have not derived but it is not very difficult as I mentioned, we have this 

equation RT ln ϕi = ∫ [(
𝜕𝑃

𝜕𝑛𝑖
)

𝑇,𝑉,𝑛𝑗

−
𝑅𝑇

𝑉
] dV − 

∞

𝑉
RT ln z and integration from v to infinity, right? 

This we know. 

 

So, now from here this equation of state whatever it is there, you find out what is 
𝜕𝑃

𝜕𝑛𝑖
 for ith 

component, general expression you can find out, then you can use it for the binary system. 

Then this 
𝜕𝑃

𝜕𝑛𝑖
 you substitute here and then simplify the expression, then whatever this part is 

there you integrate and then what is z in terms of 
𝑃𝑣

𝑅𝑇
 etc., those things you find out, then you 

substitute this z also here, simplify, then you are going to get this expression. 

 



For component 1, you are going to find out this expression, for component 2 you are going to 

find out this expression or you are going to find out ln ϕi for generalized one is nothing but   

𝑏𝑖𝑖

𝑣−𝑏
 − 𝑙𝑛 (𝑧 −

𝑃𝑏

𝑅𝑇
) +

𝑎𝑏𝑖𝑖

𝑏2𝑅𝑇
3
2

 {𝑙𝑛 (
𝑣+𝑏

𝑣
) − (

𝑏

𝑣+𝑏
)}. These two terms are being multiplied by this 

particular term and then last term is going to be −
2 ∑ 𝑦𝑖𝑎𝑗𝑗

𝑅𝑇
3
2𝑏

 𝑙𝑛 (
𝑣+𝑏

𝑣
), where a and b without any 

subscript are for the mixtures, whereas the a and b with subscript ii or jj are for the component 

i and j, pure component i and pure component j. 

 

So, this you can derive, you can do yourself and you get this thing. We are not going to derive 

this thing because we have done several such kind of things already. So, now if you wanted to 

find out ln ϕ1, ϕ2 what you need to find out? You need to find out a11, a22, then amixt, then b11, 

b22, then bmixt, and then vmixt and zmixt you have to find out. a11, a22, b11, b22, you can find out by 

Tc, Pc information for pure component, a and b also you can find out by using mixing rules 

because y1, y2 are given. 

 

So, once these things are known, vmixt you can find out from the equation of state. Once vmixt is 

known, then zmixt can be known by = 
𝑃𝑣𝑚𝑖𝑥𝑡

𝑅𝑇
 because R, T, and P are known, v you just 

calculated, straightforward same as a previous problem that is what we are going to do now. 

Now unlike the previous problem, now I am using a11, a22, b11, b22, so that we can be 

comfortable with both kind of notations.  
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So, for the component 1, a11, if you substitute Tc and Pc of component, you will get this value 

and then similarly b11 again if you substitute Tc and Pc values of component 1, you get this 

value for b11. Similarly, for component 2, a22, b22 we are getting these values. We need to know 

cross coefficient that is √𝑎11𝑎22, then we have this information because we know we need it 

a12 in mixing rule because a is nothing but 𝑦1
2 a11  + 𝑦2

2 a22+ 2 y1 y2 √𝑎11𝑎22  or √𝑎12. 

 

So, when you substitute everything because all these things are known including the y1, y2, 

then you will get a for the mixture as this number and then similarly b = y1 b11 + y2 b22, then b 

you will get this number for the mixture, right? 
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So, once a and b are known, what you can do? You can expand the equation of state in a kind 

of cubic and molar volume expression because in this equation of state now except the molar 

volume everything is known including a and b, a and b we found, T and P are given. Then we 

solve this cubic equation, then you will be having 3 roots out of which only one is the real root 

that is 8.8*10−4 meter cube per mole. So vmixt is also obtained. Once vmixt is known, then zmixt 

is straightforward that is 
𝑃𝑣𝑚𝑖𝑥𝑡

𝑅𝑇
 that we get 0.92, right? 
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So, now in ln ϕ1, ln ϕ2 expression everything is known except the f1 value, so that you can 

obtain in the right hand side by substituting all these numbers, a11, b11, a, b, v, z, etc., whatever 

the required information you substitute in this expression in the right hand side, so that left 

hand side ln ϕ1 you will get 0.069, that means ϕ1 = 1.071 and then ln ϕ2 similarly if you 

substitute all these b22, a22, a11, b11, a, b, v, and z for the mixture in this right hand side of this 

expression, then you will get ln ϕ2 as minus 0.2315.  

 

That means, ϕ2 is nothing but 0.793. Then, for the mixture, we know that ln ϕmixt is nothing but 

y1 ln ϕ1 + y2 ln ϕ2. That means you get ϕmixt is nothing but 0.921. That means, again we are 

getting the same value as we have considered the Van der Waal’s equation, then whatever the 

ϕmixt there the same thing we are getting now also 0.921. In the previous problem also when we 

have taken Van der Waal’s equation of state, then also ϕmixt we got it as 0.921.  

 

So, that means, the system is not having much non-ideality. So, whether you use the Van der 

Waal’s equation of state which is slightly less accurate compared to the Redlich-Kwong 

equation, you are going to get the same results, okay? Otherwise for the mixture also you can 

find out this expression for the ln ϕmixt the similar way. Then also you are going to get the 0.921 

same expression for a fugacity coefficient of the mixture, right? This is how we can do the 

problems for the mixture of gases at higher densities.  

 

So, in the next lecture, we are going to take much more complicated issues of fugacities in 

gaseous mixture, okay? When we have a kind of solubility of a liquid or a solid in compressed 

gases, those kind of thing we are going to discuss in the next lecture. 
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So, the references for this particular lecture are nothing but Koretsky, Engineering and 

Chemical Thermodynamics; Prausnitz et al, Molecular Thermodynamics of Fluid Phase 

equilibria; Sandler, Chemical, Biochemical and Engineering thermodynamics; and Smith et al 

Introduction to Chemical Engineering Thermodynamics.  

Thank you. 


