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Virial Coefficients from Potential Functions 

 

Welcome to the MOOCs course advanced thermodynamics. The title of this lecture is virial 

coefficients from potential functions. We have already seen in previous lecture that virial 

equation of state is better compared to the some other equations of state because of 2 reasons, 

one is that the parameters or the constants that are associated with the virial equation, the 

second, third, and fourth virial coefficients and so on. Those virial coefficients are directly 

related to the intermolecular interactions.  

 

That is one reason and then other reason is that because of this direct relation between 

intermolecular potentials and then virial coefficient, the required mixing rules for mixtures are 

not composition dependent or the mixing rules you do not need to worry for mixture of gases. 

If you are applying virial equation of state, then you do not need to worry about the mixing 

rules because of such reason that virial coefficients are directly related to the intermolecular 

interactions. For the mixture these virial coefficients are not dependent on the composition. 

These are the advantages. 

 

Then we have already seen these equations, whatever the equations required for obtaining this 

virial coefficient from intermolecular potential that we have seen, they are derived from the 

statistical mechanics. So, from those equations, we understand that if we know the 

intermolecular potential, then we can directly calculate, what are the values for these virial 

coefficients? We have also seen that the virial coefficients are dependent only on temperature 

and then independent of pressure and density, etc.  

 

So, that is another advantage. So, having these advantages, it is always better to see more details 

how we can explore this virial equation of state. So, that is the reason in today's lecture we are 

going to calculate or obtain virial coefficient, especially second virial coefficient from 

intermolecular potential and then we see a few example problems followed by third virial 

coefficients, etc. 
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So, we have already seen from the statistical mechanics the second virial coefficient can be 

related to the intermolecular potential that Γij given by this equation that is                                            

Bij = 2𝜋 𝑁𝐴 ∫ [1 − 𝑒−
Γ𝑖𝑗(r)

𝑘𝑇 ] 𝑟2𝑑𝑟
∞

0
, this k is nothing but the Boltzmann constant. So, what Bij 

indicates? It indicates whatever the non-ideality that is coming into the picture because of 2 

molecules interaction. So, that information we can get from this Bij.  

 

So, now if you know this Γij that is potential function, then you can find out this Bij for any 

case, and then similarly, Cijk that is the third virial coefficient or the coefficient that depicts the 

deviation from ideal behavior because of 3 molecular interactions that is i molecule, j molecule, 

and k molecules are interacting, right? However, in the Cijk, whatever the interactions or 

whatever the potential function Γijk is there that is kind of simplified as a kind of summation of 

Γij + Γik + Γjk. 

 

That is 3 different combinations of two body interactions taken individually and then added 

together to get the three body in directions Γijk. This is the assumption that is present in deriving 

this expression Cijk. So, that is the reason this is again a kind of approximation and then it may 

not be very accurate as compared to the Bij information. In these expressions fij = 𝑒−
Γ𝑖𝑗

𝑘𝑇 − 1 and 

then fik = 𝑒−
Γ𝑖𝑘
𝑘𝑇 − 1, fjk = 𝑒−

Γ𝑗𝑘

𝑘𝑇 − 1, right? 

 

Then we understand this Γij is nothing but the intermolecular potential for spherically 

symmetrical molecules ij. These derivations have been done kind of the case or the limitation 



that they are applicable. They are derived based on the assumption that the molecules are 

spherically symmetrical molecules. However, it has been founded they are also valid for 

complex molecules as well. 

 

Because these complex molecules for those complex molecules whatever Γij is there that if you 

substitute here in place of Γij in this expression, so then whatever the virial coefficients are 

found, they are also found to be reliable or matching better with the experimental results. So, 

for the complex molecules also if we use these expressions in order to get second and third 

virial coefficients and then compare with them the experimental results, it has been found that 

validity is good despite this derivations are derived only for spherically symmetrical molecules. 

 

Then ij may not be chemically identical as well, okay? So, if Γij is known, then Bij can be found 

from equation 1 by simply integrating this equation. Similarly, if you know Γij, Γik, and Γjk, 

then Cijk that is third virial coefficient can also be found by integrating this equation number 2, 

alright? So, now what we need? We need these functions Γ the intermolecular potential as 

function of radial distance that we need to have and then we understand there are so many 

intermolecular potentials are there.  

 

So, we have taken a few intermolecular potential models in one of the previous lecture and then 

we will be taking some of them as a kind of example, and then using those intermolecular 

potential, we try to obtain the second virial coefficient.  
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So, hard sphere model we start with. Hard sphere model what it says? It talks about 2 spherical 

molecules which are very hard like billiard balls, right? So, they are not having any 

interpenetrating electron clouds etc., right? So, the size of this molecule is σ and then so what 

does it mean? Center to center distance between 2 molecules can be σ only, minimum σ, it 

cannot be less than σ because they are hard sphere kind of billiard balls kind of thing that is 

billiard balls moment they touch each other, they repel, they go away from each other, so that 

is the repulsion force is there. 

 

So, when this intermolecular separation distance r = σ that is collision diameter, then there is a 

repulsive force and then that repulsive forces are very high that is Γ = ∞, right? But moment 

these billiard balls they move away from each other, there is no interaction, how far, the 

distance may be very small, then also there is no interaction at all. There will not be any 

attraction force or repulsive force. So, the same is true in the hard sphere model. 

 

So, moment this r is larger than the σ, then there is no interaction at all between these molecules, 

that means Γ = 0 if r > σ. So, this is about the hard sphere model, right? Mathematically, we 

can write Γ = ∞ for r ≤ σ and Γ = 0 for r > σ. That means, it takes account only repulsive forces 

and repulsive forces also a vertical line that is Γ = ∞, but it does not involve any kind of 

attractive forces. 

 

So, if we assume that the intermolecular potential between 2 molecules is given by hard sphere 

model, so then what is the second virial coefficient? Okay, so, this Γ versus intermolecular 

separation distance r we can represent like this graphically like this, this is Γ → 0 when r = σ, 

right? And then after here Γ → 0 when r > σ, okay? So, there is no attraction that is there are 

no negative Γ values at all.  

 

So, now here Bij = 2𝜋 𝑁𝐴 ∫ [1 − 𝑒−
Γ𝑖𝑗(r)

𝑘𝑇 ] 𝑟2𝑑𝑟
∞

0
. In this equation if you substitute Γij for these 

2 conditions 0 to σ and σ to ∞ and then simplify, then we get second viral coefficient for that 

particular system provided that intermolecular potential is having only repulsive forces as 

designated or described by hard sphere model. So, let us take i = j, that means both the 

molecules of the same system, then we can call Bij as simply B, then 𝑒−∞= 0. 

 



So, (1 – 0) 𝑟2𝑑𝑟 between r = σ and then 𝑒0 = 1. So, 1 - 1 multiplied by 𝑟2𝑑𝑟, this is for                  r 

= σ to ∞. So, when you do the integration and substitute the limits, so then what you can have? 

You can have simply 
2𝜋

3
 𝑁𝐴𝜎3 because second term is anyway 0, only from the first term if 

you integrate you have 
𝑟3

3
 under limits 0 to σ. So 

2𝜋

3
 𝑁𝐴𝜎3you will get, right? For mixtures, if 

you have mixtures, then Bij = 
2𝜋

3
 𝑁𝐴, the σ has to be the average of σi and σj, then you have this 

thing.  

 

Now what you can understand from here clearly that this B or Bij whatever, it is independent 

of temperature, there is no temperature term at all and it is approximation which is highly far 

away from the real situation, real conditions in general because the virial coefficients are strong 

functions of temperature though they are independent of pressure or density, right? So, this is 

a kind of highly oversimplified approximation, so then it may not be true for many cases, right? 

And obviously because of this assumption, experimental validity is very poor. 

 

These results does not agree much with the experimental results obviously because of the 

limitations of the hard sphere model, but the second viral coefficient obtained by hard sphere 

model will not give a better approximation, but give me a rough approximation for the behavior 

of simple molecules, but a temperature far above the critical temperature and at high reduced 

temperature, the hard sphere model provides a reasonable but rough approximation again, 

okay? 
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So, next we take Sutherland potential. So, this potential is nothing but improvement over a hard 

sphere model. So, hard sphere model only repulsive forces are there, now Sutherland potential 

takes into the account in addition to this infinite repulsive forces there is also a kind of London's 

dispersion attractive forces or Van der Waal’s attractive forces that is having this form 
𝑘′

𝑟6
 , this 

form is there if you draw a potential between intermolecular potentials versus the separation 

distance r, right? 

 

So, what is this? When r ≤ σ, then the σ is the again collision diameter that is the center to 

center distance between 2 molecules and then the σ is known as the collision diameter, okay? 

So, that means the moment they touch each other, there is a kind of infinite repulsive force, but 

moment they slightly go away from each other, then there will be kind of attractive forces and 

then further if you go away, these attractive forces decreases. 

 

Then there will be situation where attractive forces will become close to 0, that means 

indicating almost like no intermolecular potential and that is represented by this thing, this is 

also we have seen previously. So, mathematically if you write for r ≤ σ, Γ = ∞, for r > σ,            

Γ = - 
𝑘′

𝑟6. This is what we have, okay? So, this also we have seen. Now, if you make use this Γ 

expression and then obtain second virial coefficient, what you get that is what we are going to 

see now. 

 

So it is a combined hard sphere model and London's theory of dispersion which includes 

attractive forces according to London’s theory of dispersion. Then Bij we are having this 

expression, right? Now, here this Γij between r = 0 to σ it is ∞, between r = σ to ∞, this                   

Γij = - 
𝑘′

𝑟6. So, that if you substitute for the case when you take i = j, then we have B, now it is 

obviously we can see it as a function of temperature which was not in the previous case of hard 

sphere model, right? 

 

So, first case Γij = ∞, second case Γij = - 
𝑘′

𝑟6
. We substitute them here. Then, if you integrate 

first one is anyway this is 0. So, 𝑟2𝑑𝑟, integration of 𝑟2𝑑𝑟 is nothing but 
𝑟3

3
and then limits 0 to 



σ if you substitute 
𝜎3

3
 - 0, so that is first term is 

2𝜋

3
 𝑁𝐴𝜎3, NA is the Avogadro’s number, right? 

Now, the second term is 2 Π NA ∫ [1 − 𝑒
𝑘′

𝑘𝑇𝑟6]
∞

0
𝑟2𝑑𝑟.  

 

Now, if you have very high temperature or if you have the conditions such a way that this 

exponential of this term whatever is there if it is small, so then we have 𝑒𝑥 form and then for 

small x 𝑒𝑥 can be written as 1 + x + 
𝑥2

2!
 and so on so we can write. So similarly, for small value 

of  
𝑘′

𝑘𝑇𝑟6
 , then exponential of this term we can write 1 +

𝑘′

𝑘𝑇𝑟6
 + 

𝑘′2

2(𝑘𝑇)2𝑟12
 and so on so like this 

we can write.  

 

So, this is the simplification we are doing, so that we can integrate this equation and then see 

the information, right? So, then we have B as function of temperature that is second virial 

coefficient as function of temperature this one, right? Integration of this one. So, now 
𝑟2

𝑟6 first 

term is nothing but 𝑟−4. Integration of 𝑟−4 is 
𝑟−3

3
, likewise all other terms also if you integrate 

and then substitute the limits 
𝜎−3

−3
  another case the ∞ power so that term will anyway be 0, 

okay? So that we are not considering.  

 

So then another case is 
𝜎−9

−9
  you get. Another term you get 

𝜎−15

−15
   you will get, okay? So, that 

means B as a function of temperature you will get this expression, this series expression like 

that is 
2

3
𝜋𝑁𝐴𝜎3 + 

2

3
𝜋𝑁𝐴

𝑘′

𝑘𝑇𝜎3 and so on so. Now this part is nothing but, first part is nothing but 

when only repulsive forces are there.  

 

So, that is according to hard sphere model, but when there is a kind of attractive forces because 

of London's dispersion attraction terms are there, so these additional terms are coming, okay? 

So, this is the modification over the hard sphere model by the Sutherland potential, okay? 
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ε  

So, now we take Lennard-Jones form of Mie’s potential. So, we have seen this is having this 

form Γ = 4 ε[(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]. This is also we have seen. It is having similar to kind of this 

Sutherland potential, but here in this case what it is, it is not having a kind of vertical repulsive 

line, rather it is having some slope, that means repulsive forces are not infinite at for r = σ or   

r < σ rather it decreases with r value increasing from 0 to σ, right?  

 

How it decreases, it represented by this one, right? Pictorially if you see, so now you can see 

this Γ, Γ is decreasing with increasing r between r = 0 to σ, earlier it was infinite, it was ∞ for 

all values of r between r = 0 to σ. Now, between r = 0 to σ, it decreases with certain slope and 

then after that other case in Sutherland potential for r ≥ σ, suddenly attraction force starts and 

then that gradually decreases with increasing the intermolecular separation distance. 

 

But now, for r ≥ σ, the attraction force gradually increases that is going towards the other 

negative minimum value like this, this is ε minimum. So, that means, it is the position where 

the attraction force is maximum, right? So at r minimum, and after this point it starts decreasing 

as the separation distance increases, right? So, this is what Lennard-Jones form of Mie’s 

potential. So, now here what does mean by when r ≤ σ? 

 

This Γ is decreasing that means now they are not a kind of hard spheres, rather the molecules 

are having a kind of electron cloud such a way that there is a kind of interpenetration into each 

other. So, that is that molecules that r < σ is also possible. That means if you have let us say 



hard sphere like this, the minimum distance is possible between 2 molecules is only σ provided 

if this is 
𝜎

2
 and this is also 

𝜎

2
 because they are not interpenetrating, right?  

 

So, that is in the case of hard sphere. This is in the case of hard sphere model right, but now 

for r < σ also, this Γ is decreasing, that means here in the case what happens? So it is a kind of 

system like you know where some portion may be overlapping like this of the molecule, so the 

center to center distance between 2 molecules though their radius is 
𝜎

2
for each case, these r2 that 

is center to center distance between these two can be possible that r < σ is also possible and for 

that r < σ, there is a kind of repulsion, right? 

 

So, that means, when it is possible if they are hard spheres, they immediately repel. If they are 

not immediately repelling, they are interpenetrating into each other to certain distance. That 

means, the molecules are not kind of hard sphere, but they are kind of soft spherical core kind 

of thing, okay? So, that is what this equation says that is the modification over the Sutherland 

potential and then hard sphere model and this is one of the best model that is available, which 

is having 2 parameters.  

 

There may be other models but they may be having more than 2 parameters. Now, here we 

have only two 2, okay? εo ε minimum and then σ, these are the only 2 parameters they are 

present in this case, okay? So, where ε is nothing but depth of this energy well or the minimum 

potential energy or the maximum attractive force that is possible, okay? And then σ is the 

collision diameter that is the separation distance where Γ becomes 0.  

 

Γ becomes 0 at this location that is after overcoming the repulsive force and then started 

developing this attractive force, but it is not somewhere very far, here also Γ is approximately 

0, but this is not the case, right, far away. So, this collision diameter is taken at this point at this 

point or at this distance where the molecules are overcoming the repulsive forces and then 

before starting the attractive force that point, that junction that Γ becomes 0 that is the collision 

diameter, okay? These are the 2 parameters.  

 

So, obviously this is best 2 parametric potential for small non-polar molecules. Repulsive wall 

is not vertical but has a finite slope. That is if 2 molecules have very high kinetic energy, then 

they may be able to interpenetrate to separations smaller than the collision diameter σ as well. 



That is the reason this model is also known as the soft sphere potential, right? Now, if you 

make use this expression and then try to find out Bij and then see the difference compared to 

the other models, so you can realize which the better model is by comparing with the 

experimental results, okay? 
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This model predicts the second virial coefficient much better because at high temperature or a 

temperature very much larger than 
ε

𝑘
, ε is the minimum potential energy and then k is nothing 

but the Boltzmann energy. The ratio of these two is a kind of temperature units. So, at a 

temperature very much larger than the 
ε

𝑘
value, second virial coefficient must go through a kind 

of maximum and that behavior this model predicts. This model, LJ model predicts that behavior 

as well. 

 

Then temperature at which this second virial coefficient becomes 0 is called the Boyle 

temperature. By substituting this LJ model in the Bij expression, integration is not a simple and 

straightforward as in the case of previous things. So, that is the reason what we have, we have 

a kind of a numerical solution and then that numerical solution we have plotted 
B

𝑏𝑜
 versus 

𝑘𝑇

ε
. 

This 
B

𝑏𝑜
 is nothing but reduced or dimensionless second virial coefficient, right, where bo is 

nothing but 
2

3
𝜋𝑁𝐴𝜎3 that is the B value as per the hard sphere model. 

 



This 
𝑘𝑇

ε
is nothing but the reduced temperature that is 

ε

𝑘
is having temperature unit, so T by some 

temperature unit should be there. So, that is the reason this 
𝑘𝑇

ε
 is known as the reduced 

temperature, right? So, now you can see at larger values of 
ε

𝑘
or the temperature very much 

larger than 
ε

𝑘
, what we have? We should have a kind of this virial coefficient should go through 

the maximum and that we can see here in this range, okay?  

 

So, second viral coefficient as well as other thermodynamic and transport properties have been 

interpreted and correlated successfully with the LJ potential for many gases, that is the reason 

it has been found this LJ model is a better one compared to the any other intermolecular 

potential which are having 2 parameters, right? So, like this we can take n number of models 

and then associated second virial coefficient we can obtain, if possible by hand calculation, if 

not possible by the numerical solutions we can do and then we can make comparisons, okay? 

But we cannot keep taking n number of models, it is not possible.  
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So, now what we do? The next one is this square well potential. What we have seen 

mathematically LJ potential is not simple to do the integration, we have just now seen. So, in 

order to overcome such kind of limitation what have been done, square well potential have 

been developed, so which gives a kind of similar shape as LJ potential for the case of Γ versus 

r separation distance, right? But it is having mathematical simplicity, form is same but it is 

having mathematical simplicity that is possible by the square well potential, right?  

 



Then pictorially we can have this square well potential like this. So, pictorially this 

intermolecular potential Γ versus separation distance r if you plot, square well potential will 

have this kind of form like this. So, for r < σ, there is an infinite repulsion, for r = σ to r = R σ 

distance, this distance there is a constant attractive force right, and then when r > R σ, this is 

traction force suddenly drops to the 0 and there will not be any kind of intermolecular potential.  

 

So, now you can see like LJ model what we have, we have this kind of potential. Now, it is 

mathematically simplified, so that one can do a kind of a mathematical integration easily that 

is the only purpose, though it is a kind of unrealistic simplification because it has several 

discontinuities like this. So, it is not possible to have them, they argued that these are going to 

be much reliable, but obviously it is mathematically simple and flexible to use for practical 

calculations, right?  

 

It is known as the square well potential because there is a kind of a well kind of shape which 

is having a square shape like this, okay? That is the reason it is known as the square well 

potential. Now, mathematically, this for r ≤ σ that is for collision diameter or < that one, there 

is an infinite repulsive force and then r > R σ that is there is no intermolecular potential, then 

Γ = 0, but between r = σ to r = R σ, there is a constant attractive force of well potential ε, okay?  

 

So, Γ = - ε for this case. So, flexibility of this model is only because of 3 important adjustable 

parameters as per requirement. Let us say your intermolecular potential is like this, accordingly 

you can have a kind of what could be the σ, what could be the ε, and then what could be the R 

value so that this model can be much better way represented by this square well potential. Let 

us say if you have a model like this, right? Then again here in this case σ, ε, R are going to be 

different.  

 

So, according to the real situations one can have a kind of adjustable parameter. So, then these 

can be adjusted and then a kind of simplified square well potential can be developed, okay? 

So, where we can adjust the σ, ε, and then R as per the problem that we are considering or as 

per the system that we have taken. 
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Now, mathematically if you apply this square well potential in second virial coefficient 

expression and do the integration, you can get the values like this. So, first case between r = 0 

to σ, Γ = ∞; between r = σ to R σ, Γ = - ε; between R = R σ to R = ∞, Γ = 0 that we have 

substituted in place of Γ as a function of r. Now, this is 0 and then this is 1. 

 

So, altogether this integration does not have any this thing. So, then first term we have this        

σ 
𝑟3

3
, so, 

𝜎3

3
. Second term, we have integral 𝑟2𝑑𝑟, so 

𝑟3

3
, so 

(𝑅𝜎)3

3
 - 

𝜎3

3
and then next is - 𝑒

𝜀

𝑘𝑇 as a 

constant and then 𝑟2𝑑𝑟 integration is 
𝑟3

3
. So, 

(𝑅𝜎)3

3
 - 

𝜎3

3
 and then this one is exponential of 0 is 

1 and then here in the third term this exponential of 0 is 1, so altogether this 1 - 1, 0, so then 0 

we are having here. 

 

So, now, what do you do? You can simplify this term like this 2 ∏ NA you can take common 

and this 
𝜎3

3
, this 

𝜎3

3
 can be cancelled out and then further if you simplify this equation you can 

have B = bo 𝑅3 {1 −
𝑅3−1

𝑅3 𝑒
𝜀

𝑘𝑇} where bo is nothing but second virial coefficient according to 

the hard sphere model that is 
2

3
𝜋𝑁𝐴𝜎3 which encounters only repulsive term, right?  

 

So, because of the attractive terms whatever the additional term is there, the second part is 

coming into the picture. So, like that for any model for any intermolecular potential one can do 

such kind of simplification and find second virial coefficient and when can cross check with 

the experimental results how good, they are matching with experimental results and then 



whichever is matching better with the experimental region that model can be taken as a kind of 

a better intermolecular potential for a given system. 

 

Then we cannot have a kind of generalized conclusion which intermolecular potential is going 

to be more reliable unless if you see the details of the system of consideration. 
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So, now we see a few example problems, okay? Now consider a container of a fixed volume 

V is at a temperature T and has n1 moles of gas in it. Now, add isothermally n2 moles of gas 2 

to this container and the pressure change is ΔP. Initially in a container you have taken n1 moles 

of gas 1 at temperature T. So that pressure is nothing but let say some initial pressure. Then 

what you have done, isothermally you added, maintaining the constant temperature you added 

n2 moles of another gas 2.  

 

So, initially it was a pure gas, next you have added something, so now it is a mixture, but the 

temperature and volume are maintained constant because of that one pressure is going to 

change and then whatever the change in pressure is ΔP. Assume that the conditions are such 

that the volumetric properties of gases and their mixtures are accurately described by virial 

equation neglecting the third and higher coefficient and second virial coefficients of pure gases 

are known.  

 

Pure gases that means B11 and B22 are known, right? 11 for in the sense like you know for gas 

1 whatever the pure gas 1 is there for that condition second viral coefficient is known, 22 means 

that is the only pure gas 2 is there. So, then whatever the second virial coefficient is there that 



is nothing but B22. These things are known. Then find an expression to calculate the cross virial 

coefficient B12, 11 is interaction between 2 molecules of gas 1, 22 is two molecular interaction 

between 2 molecules of gas 2, 12 is nothing but two molecular interactions between 1 molecule 

of gas 1 and another molecule of gas 2. So, this cross virial coefficient we have to find out. 
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So, initial pressure let us take Pi, so for n1 moles of gas 1 at T and V that is constant temperature 

and volume, then the virial equation of state is nothing but 
𝑃𝑖𝑣

𝑅𝑇
 = 1 + 

𝐵11

𝑣
, B11 we are writing 

because it is pure gas initially. So, now molar volume I convert into the total volume because 

the volume of the system is constant, right? So, then I can get 
𝑃𝑖𝑉

𝑛1𝑅𝑇
 = 1 + 

𝑛1𝐵11

𝑉
. Now here it is 

V that is total volume, right? So, then if you rearrange this equation Pi is nothing but 
𝑛1𝑅𝑇

𝑉
 + 

𝑛1
2𝑅𝑇

𝑉2  B11. 

 

Now, isothermally you are adding n2 moles of gas 2 to this container maintaining the same 

temperature and volume. So, if you maintain the same temperature and volume, obviously 

when you add the additional thing, the pressure is going to change that final pressure let us say 

Pf, right? Then the same equation initially it was like this and now Pf because moles are n1 + 

n2 because n2 moles are added now. So, that is the only change you are going to get here and 

then this B is going to for mixture because n2 moles of gas 2 is now added here. 

 

So, that B for the mixture we already know it as a kind of B mixture is nothing but 𝑦1
2 B11 + 2 

y1 y2 B12 + 𝑦2
2 B22, this is what we know for the B mixture, okay? Now, this y1 if you write 



𝑛1

𝑛1+𝑛2
 and then y2 you write 

𝑛2

𝑛1+𝑛2
, then we can have (𝑛1𝑛2)2 B = 𝑛1

2B11 + 2 n1 n2 B12 + 𝑛2
2 B22. 

This now, what you do? The change in pressure is given as ΔP, so Pf - Pi is nothing but ΔP. So, 

that means from this expression if you subtract this expression, then you will get 
𝑛2𝑅𝑇

𝑉
 + 2 n1 n2 

B12 + 𝑛2
2B22 

𝑅𝑇

𝑉2
. 

 

So, ΔP is given or known that is mentioned, right? In the right hand side everything is known 

are in the maintained constant temperature, volume are maintained constant, n1 n2 are known 

and then B11, B22 are known. So only unknown in this equation is B12. So, B12 you can find out 

as B12 = 
1

2𝑛1𝑛2
(

𝑉2𝛥𝑃

𝑅𝑇
− 𝑛2𝑉 − 𝑛2

2𝐵22). So, in the right hand side everything is known, then B12 

one can calculate using this expression, right?  
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So, now we take another example. One mole of a binary gas mixture containing ethylene and 

argon at 40 degrees centigrade is contained to a constant volume container. Compute the 

composition of this mixture that gives the maximum pressure. Assume that third and higher 

virial coefficients are negligible, right? Virial equation of state P = 
𝑅𝑇

𝑣
 + 

𝑅𝑇𝐵𝑚𝑖𝑥𝑡

𝑣2 , this is what 

we know or we have 
𝑃𝑣

𝑅𝑇
 = 1 + 

𝐵

𝑣
. So, this one if you rearrange P = 

𝑅𝑇

𝑣
 + 

𝑅𝑇𝐵

𝑣2 , this is what you get, 

now this B is for the mixture. 

 

Then you have this expression. We are writing in this form because we wanted to have the 

composition which provides the maximum pressure. So, B mixture we know it, we will do it. 

So, now the composition at which the pressure becomes 0 if you wanted to find out you how 



to differentiate this above equation with respect to the composition and then equate it to the 0 

at constant temperature and volume, then you get it. 

 

So, we know this B mixture is a function of composition, it is independent of composition, but 

for the mixture because they are based on composition, you can find out. This we know, we 

know it as 𝑦1
2B11 + 2 y1 y2 B12 + 𝑦2

2B22. So, this y, y, etc., are known, so that means 
𝑅𝑇

𝑣2
(

𝜕𝐵𝑚𝑖𝑥𝑡

𝜕𝑦1
) 

if you do and then equate to the 0, then you will get the condition or the composition at which 

the pressure is maximum, right? So, what we have to do?  

 

This B mixture this expression we have to convert in terms of y1 by taking y2 = 1 - y1 and then 

simplifying it. When you do it, you get this one.  
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So, B mixture is nothing but 𝑦1
2 (B11 - 2 B12 + B22) + 2 y1 (B12 – B22) + B22. This expression 

now if you partially differentiate with respect to y1 and maintaining the temperature constant 

T, then you will get 2 y1 (B11 - 2 B12 + B22) + 2 (B12 - B22), right? Now, if you equate this one 

to 0 because for the compression at where the pressure is maximum, this term is also 0, 

𝑅𝑇

𝑣2 (
𝜕𝐵𝑚𝑖𝑥𝑡

𝜕𝑦1
) is also 0 zero, right? That we have just seen in the previous slide. 

 

So, now that means this if you equate to the 0, then you will have y1 B11 - 2 B12 + B22 = 2 B22 

- B12 just reverse way we have written this down, I mean like this - I have taken inside the 

parenthesis, so that I can write 2 (B22 - B12). Now, we wanted to find out what is y1 from here, 



y1 = 
(𝐵22−𝐵12)

(𝐵11+𝐵22−2𝐵12)
. That means, if you know the second virial coefficients of pure components 

as well as the cross virial coefficient if you know, then you can find out the composition at 

which the pressure is maximum by using this expression. 
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Now, we take another example. Following second virial coefficients have been reported for a 

mixture of n-butane, n-butane is designated as 1 and carbon dioxide designated as 2 at 313.2 

Kelvin and their second virial coefficient as well as the cross second virial coefficients are 

given. Obtain the molar volume of a mixture for three cases, one is the 25 mole percent of 

butane in the mixture and then 50 mole percent of n-butane and then 75 mole percent of n-

butane in the mixture at 313.2 Kelvin and 100 bars, right?  

 

So, we need to find out v mixture actually. So, this we can do from this P v by RT = 1 + B′ P, 

this one you can use or any other equations you can use. B′ we cannot use because B′ 

information’s are not given. So, this you can write 
𝑃

𝑅𝑇
 = 1 + B′ is nothing but 

𝐵

𝑅𝑇
 and then P, this 

expression you can calculate. So, this is for the mixture, so basically this B should also be for 

the mixture. So, that means first we have to find out B mixture, okay? For all the three cases 

and then using this expression you can find out v mixture. 
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So, B mixture is nothing but 𝑦1
2B11 + 2 y1 y2 B12 + 𝑦2

2B22 and then 1 is standing for the n-

butane, 2 is standing for the carbon dioxide. So, for the first case y1 is 0.25 and then y2 = 0.75. 

Then when you substitute these values in B mixtures, you will get b mixture = - 158.3 

centimeter cube per mole because B11, B12, B22 are given. Then molar volume of the mixture 

we have to find out, so we have z = 
𝑃𝑣

𝑅𝑇
= 1 + B ′ P. So, then we have v = 

𝑅𝑇

𝑃
+ B′P 

𝑅𝑇

𝑃
. 

 

Now, B ′ we can write 
𝐵

𝑅𝑇
, then we can write this equation v = 

𝑅𝑇

𝑃
 + B mixture, okay? Now, this 

is for the mixture and this is also for the mixture. So, that means we can have v mixture = 
𝑅𝑇

𝑃
+ 

B mixture. So, B mixture you have already found just now that is - 158.3 centimeter cube per 

mole and then this T and P are given. So, then you have B mixture is 2445.645 centimeter cube 

per mole.  
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Similarly, second case when y1, y2 both are equals to 50 percentage, then B mixture you can 

find it out as - 260.25 centimeter cube per mole. Then v mixture is nothing but 
𝑅𝑇

𝑃
 + B mixture. 

So, then when you substitute this B mixture and temperature and pressure here, then you will 

get v mixture as 2343.695 centimeter cube per mole and then similarly third case y1 = 0.75 and 

y2 is 0.25, then again you can find out these numbers B mixture as a kind of - 415.813 

centimeter cube per mole.  

 

This if you substitute in this vmixture = 
𝑅𝑇

𝑃
+ B mixture expression along with the temperature and 

pressure and then simplify, v mixture you can find it as 2188.132 centimeter cube per mole. 

What we can understand if you maintain the same temperature and pressure in the system and 

then keep changing the mole fraction of the system or the binary mixture, then what you can 

see if you are gradually increasing the mole fraction of n-butane, the molar volume of the 

mixture is gradually decreasing. 
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Now, another example consider a binary mixture of species a and species b, which obeys virial 

equation of state at 127 degrees centigrade and 80 bar, and at this temperature second virial 

coefficients of a and b are given as Baa, Bbb and at infinite dilution that is when ya tends to 0, 

what is the molar volume of the mixture? That is the question. Now, since it is infinite dilution, 

that means ya tends to 0 that means whatever the mixture is there that is almost like a kind of 

pure B.  

 

So obviously for B mixture, you can take as a kind of Bbb, B suffix bb are the second virial 

coefficient of b species whatever is there that you can take it as a kind of a second virial 

coefficient of the mixture because it is an infinite dilution, okay? Then virial equation of state 

we know that z mixture = 
𝑃𝑣

𝑅𝑇
= 1 + B ′ P = 1 + Bmixture 

𝑃

𝑅𝑇
. B mixture is now - 101, P is 80 bar, 

temperature is 127 degrees centigrade so that is 400 Kelvin. So, then z mixture is coming out 

to be 0.7571, but z mixture is nothing but 
𝑃𝑣

𝑅𝑇
, that means v mixture is nothing but z mixture 

𝑅𝑇

𝑃
.  

 

So, when you substitute this z mixture, temperature, and pressure here and then simplify, you 

will get v mixture as 314.7255 centimeter cube per mole So, this is how we can play around 

the finding of the second virial coefficient, the problems associated with the virial equation of 

state, how to find out the pressure, composition, mixture, molar volume of the mixture, etc., 

those kind of things we can find out as per these example problems.  
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So, now what we do? About the third virial coefficient from potential functions, Cijk expression 

we have already seen, here fij, fik, and then fjk are given by these expressions, right? As I 

mentioned already, this third virial coefficient expression whatever derived based on the 

statistical mechanics, it has been found whatever the interaction between the 3 molecules let 

us say you have one i molecule, one j molecule, one k molecule, so the 3 molecules are 

interacting.  

 

So, three body interaction are taken consideration as a kind of summation of 3 two body 

interaction that is ij interaction, ik interaction, and jk interactions individually as a kind of 3 

two body interactions and then adding them together whatever summation is there that is the 

Γijk that is the assumption in deriving this third virial coefficient from statistical mechanics. 

Because of this assumption, whatever the Cijk or the third virial coefficients are there, they are 

the kind of approximations.  

 

So, if you have n body system, so then for those n body systems, all possible Γij pairs are there. 

So, there all possible ij pairs are there, for all of them you have to find out what is the two body 

interactions and then add them together, then you can get for n body assembly what is that Γ 1, 

2, 3 and so on so, right? So, it is unlikely that the assumption of additive three body interactions 

is somewhat in error for three body interactions, right? Because you are doing what, 3 two body 

interactions you are taking and then adding them together to say that it is a three body 

interaction. 

 



It is an approximation. So, it may be erroneous many times. So, obviously the third virial 

coefficients that we get using this expression or integrating this expression are obviously a kind 

of approximation. So, they will obviously be less accurate compared to the second virial 

coefficient that we have derived simply by using a few potential models few minutes before. 
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So, let us say, we do not go into the all the details, but let us say we take few cases, let us say 

you have i molecule, you have a j molecule, you have a k molecule. So then, the intermolecular 

separation distance between i molecule and k molecule is rik. Similarly, rjk is the intermolecular 

separation the distance between 1 j and 1 k molecule and then rij is nothing but the 

intermolecular separation distance between 1 i and 1 j molecule.  

 

The angle between these two if you take thetai and then between these two if you take θj, if 

between these two if you take θk, then by using London’s theory of dispersion and then taking 

only first term but by not taking the higher ordered terms, okay? We can find out this ΔΓijk as 

function of rij, rik, rjk can be found it as like this, okay? And then we are taking only that first 

term in the London’s theory of dispersion, we are not taking all the details.  

 

So, this will provide you Γijk information and then this information you can make use in order 

to get the third virial coefficient, okay? This is how one can find out the second and third virial 

coefficients using the intermolecular potential and then by applying the principles of this 

second video coefficients from intermolecular potentials, we can solve any kind of problems 

to get the required information such as cross virial coefficients, maximum pressures, etc all 

those thing as we have seen in few example problems. 
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So, the references for this lecture are Engineering and Chemical Thermodynamics by Koretsky, 

Molecular Thermodynamics of Fluid Phase Equilibria by Prausnitz et al, Chemical 

Biochemical and Engineering Thermodynamics by Sandler and then Introduction to Chemical 

Engineering by Smith et al. The details most of the lectures even the example problems are 

also taken from this reference book. In fact, some of the exam problems discussed here are the 

kind of exercise problems in this book.  

Thank you. 


