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Welcome to the MOOCs course Mechanical Unit Operations. This is about fluidization. 

The title of this lecture is Fluidization part 2. It is a continuation part of the previous 

lecture Fluidization, what we have discussed. So, before going to the additional details 

about the fluidization, we will have just a recapitulation of what we have seen in our 

previous lecture on fluidization. 

So types of fluidization we have seen, different types of fluidization pattern are possible 

depending on the type of fluidizing medium, that is, if the fluidizing medium is a liquid 

then different patterns are possible in general. And then if the fluidizing medium is a 

gas then different flow patterns are possible within the fluidized bed in general, ok.  

That also depends on the density difference, and then velocity, etc and all those things. 

So, we have seen but the fluidization characteristics, or fluidization patterns in general 

may remain same up to certain extent, irrespective of whether the fluidizing medium is 

a kind of gas or liquid, ok. So that is what we have seen. 
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So have a kind of recapitulation. Let us say, you have a bed packed with a kind of 

particles as shown here. Right, so this is kind of bed which is packed with a kind of 

particle. We have a kind of column and then part of this column is packed with the few 



particles. At the bottom, there is a kind of perforation plate so that the particle should 

not fall down. And then from bottom, gas or liquid is flowing upward motion, like this. 

But, if the velocity is low, if the fluidizing medium velocity is low, whether the 

fluidizing medium is gas or liquid, that is not going to affect the packing structure of 

the bed. 

So, if the velocity is as low as possible so that the packing structure of the bed is not 

being disturbed because of upcoming fluid, that is, upcoming fluidizing medium. Then 

we can say, such kind of situations are, you know, fixed bed conditions. Though at the 

top, it is not constrained. The bed is not constrained at the top but however, the velocity 

of the upcoming fluidizing medium is low.  

Then, you know packing structure is not changing much. So, it is remaining kind of a 

similar situation as in a kind of fixed bed, right. So, under such low velocities, we can 

use Ergun’s equations without any difficulty even if it is not packed at the top or even 

if the bed is not constrained at the top, ok.  

So, this is anyway free board area that we have already seen. So free board area will be 

available anywhere for the particles to move on if it has some, if they are moving up. 

So, but subsequently if you gradually increase the velocity, right. So that means the 

arrow direction is increasing velocity we have shown here. So that means from one 

picture to the other picture as we are moving, the superficial velocity of the fluidizing 

medium is gradually increasing. 

So, if we go to low to moderate velocity so, then what happens? The packing structure 

of the bed may be slightly, you know, being disturbed and then that becomes slightly 

looser and start expanding. And then this behaviour can obtain by using both gas or 

liquid type of a fluidizing medium, any fluidizing medium you can use it. So, this 

condition, you know, we call it minimum fluidization under which, you know, the total 

resistance offered by the particle is balanced by the buoyant weight of the bed, ok.  

So, that is the balance under those condition or like you know, when the particles are 

moving, expanding or going away from each other slightly. So, there will be a point. 

The point corresponding to certain velocity. There will be a velocity corresponding to 

which the oral resistance offered by the particle for flow of this fluid is balanced by the 

buoyant weight of the bed. So, that condition we call it as incipient fluidization point 



or minimum fluidization point and then corresponding equations we can get by 

replacing ∆𝑃 =
𝐹𝑔−𝐹𝑏

𝑆0
, ok. So, this is the balance. 

So, after this point onwards, you know, once the velocity reaches certain point, certain 

velocity at which the minimum fluidization started, so from that point onwards even if 

you increase the superficial velocity of the fluidizing medium, the pressure drop is 

going to remain constant. It is not going to change. That is what also we have already 

seen.  

So, that is the reason at minimum fluidization point, pressure drop we are equating by 

𝐹𝑔−𝐹𝑏

𝑆0
 . From there we get 

∆𝑃

𝐿
= 𝑔∆𝜌(1 − 𝜀). And then 𝜀 should be replaced epsilon m 

that is the maximum fluidization, if the bed is under the fixed bed condition and then 

from that point, expansion of the bed takes places.  

So, that is the minimum fluidization if the bed with respect to the fluidization condition 

if you take. So, after this point, further increasing the velocity, the expansion of the bed 

is going to take place and then voidage is going to increase and then bed will no longer 

be in fixed bed conditions, ok.  

So, further if you increase the velocity then the effect of, you know, type of fluidizing 

medium is going to show in the patterns that are going to form. So, let us say if you 

have a, you know, the fluidizing medium is a liquid then further increasing the velocity 

superficial velocity of the liquid fluidizing medium, the bed uniformly expands. So, 

you can say, a kind of uniform expansion is there.  

So, that you know at point within the bed if you take or at any cross-section within the 

bed if you take, the bed density is going to be same or it is going to be remain almost 

constant, that is the, (whatever’s the) at any cross-section, at any position within the 

expanded width, the volume fraction of the particles and then the volume fraction of 

the, you know, fluidizing medium or void space is going to be remain almost constant. 

So, that we call as a kind of particulate fluidization or smooth fluidization.  

However, if your fluidization medium is a gas, then as the velocity increases, there will 

be a kind of situation where you know the bubbles may be forming. Voids or bubbles 

may be forming which are almost you know free of particle. There may be 1 or 2 



particles but in general, these voids are free of particles and then you can see, those 

bubbles are you know are moving up rather, you know, fast compared to the bed.  

You can see, you can compare with the minimum fluidization conditions, the most of 

the particles are you know, you know, they are not raising up, much high much much 

larger height compared to the, you know, minimum fluidization condition. So, you can 

see, only the bubbles are rising up. Only there a few particles beyond this point also. 

What does it mean by bubbling fluidization condition which is obtained by the gas flow 

rate. 

So, if you increase the velocity, most of the velocity, you know, most of the gas that is 

going to form a kind of voids or bubbles and they are moving quite rapidly or the 

expansion of the bed, whatever is taking place, that is primarily taking place because 

of the expansion or the rising of the bubbles or the voids. Or otherwise, the dense face 

or the [particle] particulate face is almost like you know, under the similar conditions 

as in the kind of a, you know, similar height as in kind of minimum fluidization 

conditions. That is what one can say from here, ok.  

And then further the bed density at any location within the bed if you take, it is not 

going to be same. It is going to be different from one location to the other location. 

Then further if you have kind of a, you know, increase in the velocity, fluidizing 

medium is a kind of gas. Now, you make the channel or the column in which you have 

done the packing of the material narrower, bit narrower. Then, this bubbles whatever 

are forming by the bubbling fluidization, they increase in the size and they the kind of 

slugs may be forming out which may be eventually, you know, occupying most of the 

cross-section of the bed.  

This can happen at high velocity for a gas fluidizing medium, but the channel has to 

have a kind of a smaller dimension. The constraint or the narrow channel compared to 

the other cases like bubbling fluidized bed. Then, we can have the slugs. So, these slugs 

can be axial slugs as shown here or they can be almost like, you know kind of, flat slugs 

as shown in the subsequent figure.  

Then, further if you increase the superficial velocity of the fluidizing medium gas then 

you know, the particulate phase and then the bubbles whatever are forming, they will 

under a kind of turbulent conditions. And then turbulent fluidization will take place. 



Under such conditions, particles may even go out of the bed. However, those particles 

in general collected and then sent back to the column again, ok. 

So, if you are recirculating like this then that bed is known as the circulating fluidized 

bed. But at large velocities, at very high velocities compared to the minimum superficial 

velocity, whether you are using a gas or liquid as the fluidizing medium, a kind of a 

pneumatic transport will take place where the particles are farly apart from each other 

and then they may be going out of the, you know, bed and then a kind of transport is 

occurring. So, these are the types of fluidization in general we have seen. And they are 

general observations. They may not necessarily be always be forming always. 

Let us suppose, you know, whatever the pneumatic fluidization that you see in case of 

the liquids, you know, if the ∆𝜌, the density difference between the particle density and 

then fluid density is a kind of a very small then you kind of some kind of bubbles may 

form. Even when use a kind of a liquid as kind of fluidizing medium.  

On the other hand, if your fluidizing medium even if it is gas, but the density difference 

is you know kind of very large, that is, 𝜌𝑃 − 𝜌 . The density difference between particle 

and fluid density is kind of a very large. Then, even using this gas phase as a kind of 

fluidizing medium, you may expect some amount of particulate fluidization. 

So, it depends on these properties. Other properties are also depends sometimes particle 

structure, nature of the particles. They are all going to have a, you know, effect in the 

flow patterns in general. But generally, we can experience this kind of a behaviour.  

Depending on the particle size, type of the particle there are different types of particles 

sizes depending on size of the particle as well as the density difference between the 

particle and fluidizing medium. So, the particles are categorized as A, B, C and D type 

particles and you can have a kind of a mixed behaviour also possible in general, ok.  

Further, what we have seen? In the previous class, we have a developed expressions for 

the minimum fluidization conditions or the equations we have developed for the 

minimum fluidization conditions and then from those equations we can evaluate what 

is the velocity required, minimum velocity, that so that to incur a kind of a fluidization 

within the bed. So, that velocity calculations we have done.  



So, how we have done? So, we have taken a kind of a Ergun equation. In the Ergun 

equation, left hand side whatever 
∆𝑃

𝐿
 by L is there, that is replaced by 𝑔∆𝜌(1 − 𝜀𝑚), 

where 𝜀𝑚 is the minimum voidage at minimum fluidization condition or maximum 

voidage possible for a bed to be behaving as a fixed bed condition.  

Either way, we can say or it is a kind of a cut off between fluidized bed and then packed 

bed. So, at that cut off whatever the void is there, that is 𝜀𝑚. And then corresponding 

velocity is known as the minimum fluidization velocity that we replaced with 𝑣̅𝑜𝑚. That 

is, 𝑣̅𝑜 is replaced by 𝑣̅𝑜𝑚. So that, that is what we have done Ergun equation, right. 
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So, in the Ergun equation, left hand side whatever 
∆𝑃

𝐿
 was there, that we replaced by 

𝑔∆𝜌(1 − 𝜀𝑚) and then right hand side terms, wherever 𝑣̅𝑜 was there, that was replaced 

by 𝑣̅𝑜𝑚. So, there was here (1 − 𝜀𝑚) 2 and then here (1 − 𝜀𝑚)  was there so that (1 −

𝜀)  part can be cancelled out in the left hand side whatever it is possible. So, the final 

equation that we got this one. So, this equation can be used for the entire range of 

Reynolds number.  

Let us say if you know the packed bed Reynolds number or the Reynolds number in the 

packed bed when a fluid is flowing through a bed. That 𝑅𝑒𝑝 if you know, then different 

equations we can use if 𝑅𝑒𝑝 is less than 1 and then 𝑅𝑒𝑝 is greater than 103 . If 𝑅𝑒𝑝 is 

less than 1, only this term is going to be important and this term can be, second term 

can be neglected. Because that is because of the convection.  



If 𝑅𝑒𝑝 is greater than 103, this first term can be considered in the right hand side term 

and then we can have only the second term in the right hand side because we need only 

convection part. So, we know that, the in the right hand side, first part first term is 

indicating about the viscous losses and then second part indicating about the kinetic 

losses.  

So, viscous losses are predominant at small Reynolds number. Kinetic losses are 

renounced at larger Reynolds numbers. So, in order to have simplification and 

mathematical equations to develop for 𝑅𝑒𝑝 less than 1, we have taken left hand side is 

equals to first term of the right hand side and then we simplify. So then we got this 

equation. 

Similarly, if 𝑅𝑒𝑝 is greater than 103, then left hand side we keep as it is, and the right 

hand side we have only taken this second term and then simplified the equation for 

minimum fluidization velocity that we got this equation. So, if you know the Reynolds 

number for packed bed condition then if it is less than 1 this equation you can use this 

for a minimum fluidization to occur or the to calculate the velocity for minimum 

fluidization to occur.  

And then if you know that Reynolds number for packed, packed bed conditions, it is 

greater than 103 then you can use this third equation, you know, to get what is the 

minimum fluidization velocity, you know, so that you know fluidization start occurring. 

Or bed expansion start occurring.  

So, if you do not know Reynolds number, this entire equation you have to use. You 

substitute the fluid properties and then geometry and then particle characteristics here. 

And then simplify this equation, you will get quadratic equation for 𝑣̅𝑜𝑚. If you solve 

that equation, you get minimum fluidization velocity.  
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Minimum fluidization velocity can also be calculated in terms of Galileo and Reynolds 

number. For that, what we have done? Whatever the equation, that previous equation 

number 1 is there, that equation both sides we multiply it by 
𝜌𝐷𝑝

3

𝜇2 (
𝜀𝑚

3

(1−𝜀𝑚)2). Then we 

right hand’s items, we simplified. Left hand’s terms we keep, we kept it as it is. Right 

hand’s terms, when we simplified, we got here 150 × 𝑅𝑒 for packed bed +1.75 × 𝑅𝑒2 

for packed bed. But this Re is at minimum fluidization condition so 𝑣̅𝑜𝑚 and then 𝜀𝑚 

are used here, ok.  

So, this equation for spherical particle if you write, Galileo number is equals to Ga = 

150Rem+1.75 Rem
2. Rem I am using is because this Reynolds number at minimum 

fluidization condition or the corresponding velocity that has been used to get this 

Reynolds number is the minimum fluidization velocity, where this left hand term of 

this equation is known as the Galileo number. And then Rem as I already told, it is the 

Reynolds number for packed and fluidized bed conditions but at minimum fluidization 

conditions. 

Further, we have seen Galileo number. This is quite similar to our k factor. k factor 

what we had in our single particle settling conditions. 𝑘 = 𝐷𝑝 √
𝑔𝜌∆𝜌

𝜇2

3
 . That is what we 

have seen. So that 𝑘3 = 𝐷𝑝
3 (

𝑔𝜌(𝜌𝑝−𝜌)

𝜇2 ). So that you know, 
𝑔𝜌∆𝜌𝐷𝑝

3

𝜇2  term is also there. 

And then there is additional correction for a kind of a packed and fluidized bed 

conditions. So, is there any connection between this? That one has to find out, ok. 



Anyway, but this, actually here k we have found, you know, in case of single particle 

if it is less than 2.6 then we say it is a Stokes regime and then corresponding free settling 

velocity we have used. If it is greater than 68.9 or between 68.9 and 2300, then we say 

that the settling velocity is under Newton’s flow regime and corresponding velocity 

equation we have used. But in the case of packed and fluidized beds, there is no such 

kind of a sharp transition from one flow pattern to the other flow pattern. So we cannot 

have this less than this Reynolds number is a kind of a laminar flow.  

So, some people say Rep less than 1 is going to be a kind of laminar flow for packed 

bed but even some researchers argue that up to Rep 5 to 10 also, the bed remains as a 

kind of you know, laminar flow conditions. So, those kind of ambiguities are there. So 

that is the reason corresponding limit numbers for Galileo number we cannot have for 

these conditions. Though by mathematical appearance, this k and g are appearing kind 

of similar way, ok. 
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So, now we take a problem. This is what, you know, what we have studied in the 

previous class about the fluidization summary. Now we take a problem, example 

problem. A bed consists of uniform spherical particles of diameter 3 mm and density 

4200 kg/m3. What will be the minimum fluidizing velocity in a liquid of viscosity 3 

milli Newton second/metre2  that is you know 3 milli pascal seconds, so that is 3 x 103 

pascal second. And density is 1100 kg/m3. Assume voidage at minimum fluidization 

condition as 0.4. 



Then, calculate what is the minimum fluidization velocity, that is the question. So, 

particle size is given, its density is given, 𝜀𝑚 is also given, then fluid viscosity, fluid 

density are also given. So, we can calculate Galileo number, correct. Galileo number 

𝐺𝑎 =
𝑔𝜌𝐷𝑝

3(𝜌𝑝−𝜌)

𝜇2
[

𝜀𝑚
3

(1−𝜀𝑚)2
].  

If you substitute all these terms here. You know, this is g, this is 𝜌, this 𝐷𝑝
3 and then 

this is 𝜌𝑝, this 𝜌, this is you know 𝜇2 and then this is 𝜀𝑚
3  and then (1 − 𝜀𝑚)2 this is. 

Now, (1 − 𝜀𝑚)2, so then if you substitute all these values and then simplify. Ga Galileo 

number, you will be getting as 17841.12. 
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Now this one you substitute in the equation that we have derived. Galileo number is 

equals to 150 Rem + 1.75 Rem
2. And then you simplify this equation further. And then 

solve this equation to get the roots of this, you know, this Reynolds number so that you 

get Rem. 1 positive 1 negative value you will get. Negative value is not having any 

meaning here. So, so we take positive value as the answers. So that comes out to be 

66.8319.  

So now, Rem we know, as you know
𝐷𝑝𝜌𝑣̅0𝑚

𝜇(1−𝜀𝑚)
, so that you, I know, use it here. So Rem, 

we know 
𝐷𝑝𝜌𝑣̅0𝑚

𝜇(1−𝜀𝑚)
 for packed and fluidized beds. So, here this you equate to 66.8319. 

So, in this equation 𝐷𝑝 is known, Re is known, μ is known, 𝜀𝑚 is known. So you can 

calculate 𝑣̅0𝑚. It comes out to be 0.03645 metre per second or 36.45 millimetre per 

seconds. So, that is the minimum fluidization velocity.  
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We will take another problem. Similar problem but now we directly use the equation to 

get the minimum fluidization velocity rather than the Galileo number calculations. So 

consider a column packed with spherical beads, diameter 1.1 mm, having density 1240 

kg/m3. Fluidizing medium is water with density and viscosity as given as 1000 kg/m3 

and 0.01 poise respectively. Viscosity is given in poise, ok. So, what is the minimum 

fluidization velocity with 𝜀𝑚 being 0.4?  

(Refer Slide Time: 22:23) 

 

Exactly the similar problem what we have done previously, but we other way we 

calculate. So, this is the equations. Minimum at minimum fluidization condition this is 

the equation. 
150𝜇𝑣̅0𝑚(1−𝜀𝑚)

𝜙𝑠
2𝐷𝑝

2𝜀𝑚
3 +

1.75𝜌𝑣̅0𝑚
2

𝜙𝑠𝐷𝑝𝜀𝑚
3 = 𝑔(𝜌𝑝 − 𝜌). Here, except 𝑣̅0𝑚 everything is 



known. We can substitute all these quantities. And then for a change we do this in CGS 

unit, ok. So, when you substitute all these numbers here, we can get the equation for 

minimum fluidization velocity. By solving that equation, we can get the minimum 

fluidization velocity.  

So, 150 here. This is constant. Viscosity is 0.01 poise. 𝑣̅0𝑚 is not known. 1 - 0.4 = 0.6. 

𝜙𝑠
2 is 1 because spherical beads. 𝐷𝑝 is the 1.1 mm so 0.11 cm2 and then 𝜀𝑚 is 0.4 + 

1.75, ρ is 1000 kg/m3 so 1 gram per cc. 𝑣̅0𝑚
2 , do not know, divided by 𝜙𝑠 1. Dp is 1.11 

mm. So, 0.11 centimetre and the m3 is 0.43, g is 980 and then (𝜌𝑝 − 𝜌) is (1.24 – 1). So 

that is 0.24, ok. 

So, when you simplify you get this equation and then when you solve for 𝑣̅0𝑚, you will 

get 0.194 cm/s because we have solved it in CGS units, ok. So, corresponding Reynolds 

number at minimum fluidization velocity if we calculate, it comes out to be 4.41 which 

is, you know, slight behind the, you know, laminar flow region. 
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Another example. An oil of density 900 kg/m3 and viscosity 3 milli newton second/m2 

is passed vertically upwards through a bed of catalyst consisting of approximately 

spherical particles of diameter 0.1 mm and density 2600 kg/m3. At approximately what 

mass rate of flow per unit area of bed will fluidization and transport of particles occur? 

So it is not asking the minimum fluidization velocity. Corresponding mass rate it is 

asking per unit cross-section area, that is in kg/m2s. 



So, that is 𝜌𝑣̅0𝑚  we have to calculate. And then transport of particles in general that 

occurs at free settling velocity of the, you know, particle. So for those particles, free 

settling velocity we have to find out. Assume voidage at incipient fluidization as 0.48. 

𝜀𝑚 is given 0.48 
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So fluid properties are given. Particle properties are given. Bed voidage is given. So, at 

what mass rate of flow per unit area of bed, fluidization will occur. So that is, density 

multiplied by minimum fluidization velocity, that we have to calculate. That we call it 

as a mass velocity or G. So, whatever this equation is there here. So, this equation you 

multiply by ρ and divide by ρ in the right hand side. So, 𝜌𝑣̅0𝑚 you can right it as G.  
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So this one. So, in terms of G, you can write this equation like this. So here also now 

except G everything is known so you substitute all the values. So then you get this 

equation. When you solve this equation, you get G is equals to 0.071 kg/m2s. 
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Now, similarly transport of particles occurs when velocity is equal to terminal velocity 

of particles. So we have to find out the terminal velocity of particles. But which 

equation should we use? We should we use the equation corresponding to Stokes 

regime or corresponding to Newton’s regime, we do not know. So first we have to find 

out. That, how we find out? 

We have to find out k value as we seen one of the previous chapters. So, 𝑘 =

𝐷𝑝 (
𝑔𝜌(Δ𝜌)

𝜇2 )
1/3

. So you substitute all these values here. Then you will get k value 1.186 

which is less than 2.6. That means it is settling in Stokes regime. So, Stokes law is 

applicable. Under the Stokes law, the settling velocity 𝑢𝑡 =
𝑔𝐷𝑝

2(𝜌𝑝−𝜌)

18𝜇
.  

So there you substitute all the values. g, 𝐷𝑝
2, (𝜌𝑝 − 𝜌) and then 18𝜇. Simplify, you will 

get settling velocity as 3 x 10-3 metre per second. So but this transport also, it was asked 

like you know, at what mass rate per unit cross-section area. So, that is G you have to 

find out. So whatever the 𝑢𝑡 that you get from here, that you multiply by density of the 

fluid that is 900 kg/m3. Then you will get g as 2.7795 kg/m2s ok. 
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Now we take another example problem but you know the problem is quite similar but 

here we use short cylindrical particles where D and H of the particles, cylindrical 

particles, are equal to each other and then that value is 0.0127 metres. Density of the 

particle is given. Fluidizing medium is air. Density of air, viscosity of air are also given. 

The minimum fluidization velocity has to be found, if the minimum fluidization 

voidage or voidage at minimum fluidization condition is 0.4. 

So, everything is known here but only the particle is not a spherical particle. So we have 

to find out sphere volume equivalent diameter 𝐷𝑝 and then we have to find out 𝜙𝑠. 𝜙𝑠, 

we have already found in one of the previous chapter for the short cylinder as 0.847. 

That is, 𝜙𝑠, the shape factor or sphericity does not depend on the size of the particle. It 

only depends on the shape of the particle for short cylinders. The sphericity is 0.847. 

That we have already done previously so we can use it.  
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So now, sphere volume equivalent diameter 𝐷𝑝, you can find out by 
6𝑉𝑝

𝜙𝑠𝑆𝑝
. So, 6/𝜙𝑠 is 

0.847. Vp is nothing but 
𝜋𝐷2

4
𝐻. Now H is also equals to D. And then Sp is 2𝜋𝑟2, that 

is, 2 (
𝜋𝐷2

4
) + 𝜋𝐷(𝐷), H is now D anyway, so 𝜋𝐷(𝐷). So H is equals to D. So that you 

substitute here. So when you do simplification because now everything is known here 

so this what you get here? From here, you get 𝐷𝑝 is equals to D/0.847. So, that is 

0.0127/0.847 that is approximately coming out as 0.015 metres. So this value you have 

to use in the corresponding equation for a minimum fluidization. 
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So, minimum fluidization equation is this one. That is, you know, we have been using 

the same equation. So here also we have to use the same equation. g, 𝜌𝑝,𝜌 , μ, 𝜀𝑚, 𝐷𝑝, 

𝜙𝑠, everything is known here also in this equation also. So, you get minimum 

fluidization velocity as 3.084 metre per second. Quite high minimum fluidization 

velocity compared to the other previous example problems, ok.  
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One more example problem. Here what we do? Minimum fluidization velocity if it is 

known we have to find out the voidage at minimum fluidization condition. So that is 

what we have to find, ok. So, consider a column of diameter of 0.61 metre and height 

2.44 metre is packed with spherical particles of diameter 12.7 mm and particle density, 

1500 kg/m3. Air flows through the bed at a rate of 0.358 kg/s, ok.  

So, the velocity flow rate is not given in a kind of, in terms of velocity, but it is given 

as mass rate in terms of kg/s. And it incurred minimum fluidization, when the air is 

flowing at this mass rate, so that that is providing, you know, minimum fluidization. 

So, this mass rate is corresponding to the minimum fluidization velocity, ok. The 

density and viscosity of the air are given. So calculate the voidage of the bed at 

minimum fluidization conditions, ok. 

So, we need to find out what is G because here you know in the problem the 𝑣̅0𝑚 is not 

given directly, right. So in the equation we cannot use directly. So, what we do? That 

equation, minimum fluidization velocity or equation corresponding to minimum 



fluidization. That we write in terms of G and then G we can find out from here, by 

dividing this mass rate by the cross section area of the column. 
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So, first we have to find out the cross-section area of the bed, that is, 
𝜋𝐷2

4
 that comes out 

to be 0.2922 m2. Then mass velocity G that is corresponding mass velocity is 

corresponding to the minimum fluidization. It is given in statement. So, 𝜌𝑣̅0 should be 

𝜌𝑣̅0𝑚 because at this corresponding to at this mass flow rate, the minimum fluidization 

has occurred. So, we have to take 𝜌𝑣̅0𝑚. So, air flow rate divided by the cross-section 

area, so 𝜌𝑣̅0𝑚 or G we get as 1.1225 kg/m2s. 

So at minimum fluidization condition, we have this equation. Now again here we, right 

hand side, you know, we multiply and divide by the density so that we have a kind of a 

𝜌𝑣̅0𝑚 terms. Those terms we can replace by G. So that this equation would be, you 

know, in terms of G or you know G is already we have calculated.  
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So, in this equation everything is known. This is nothing but G. This is nothing but G2 

So, g we have already calculated as 1.1225 and rest all the properties are also known 

here, ok, except the voidage at minimum fluidization condition. Except 𝜀𝑚, everything 

is known. So, if you substitute all the numbers, you get equation for 𝜀𝑚 like this here. 

This equation if you solve, you will get 𝜀𝑚 closely 0.219, ok. 

So voidage at minimum fluidization condition is 0.219 for this condition. So, the same 

equation, different problems we have taken. Different way, different quantities we can 

calculate using this equation. So, this is about the minimum fluidization and then 

corresponding problems on minimum fluidization.  

Now, we go to the next part of the lecture, that is, other types of fluidization. What we 

can get? So expansion of fluidized beds. So you know the superficial velocity, when it 

is increasing, whether it is a in a gas or liquid fluidizing medium. The bed is expanding. 

The bed is, bed height is expanding. That is what we have seen, right. So now, how 

much is increasing, the bed height, or how much expansion is taking place. That we 

have to find out or when the minimum fluidization velocity, beyond the minimum 

fluidization velocity if you increase the superficial velocity, the due to the expansion, 

bed voidage is also increasing. How much, that is increasing, 

So, that 𝜀 that expanded conditions or height of the expanded bed, that is L are 𝜀 for the 

expanded bed. For expanded bed velocity is much more higher than the minimum 



fluidization velocity, ok. So now, what is that here? The velocity is not a kind of a 

independent variable. It is input condition, dependent variable, right.  

Independent variable is either L, bed height or you know voidage of the bed at expanded 

conditions. So those things we are going to find out for a different types of a beds, ok. 

Or different types of fluidization. Especially for expanded fluidized beds and then 

particulate fluidization and then bubbling fluidization. For three cases we are going to 

do this one.  
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Expansion of fluidized beds. That we have seen irrespective of fluidizing medium, 

whether gas or liquid is the fluidizing medium. That is for both gas-solid system and 

then liquid-solid system, the bed expands as the superficial velocity increases. And then 

once the fluidization you know minimum fluidization has occurred, so as you increase 

the superficial velocity, pressure drop remains constant. It does not change with the 

superficial velocity, but the pressure gradient decreases as the 𝜀𝑚 or as the 𝜀 increases. 

So, so pressure gradient decreases as voidage increases because initially the voidage is 

low but now the velocity is increased, the superficial velocity is increased beyond the 

minimum fluidized conditions, right. 

So that is the reason you know, the voidage is increasing. Bed expansion is taking place. 

Particle volume is remaining same so when the bed expansion is taking place, overall 

volume of the bed is increasing, but the particle volume is same. Corresponding, you 

know, the voidage volume will increase. So that means 𝜀 will increase.  



So when 𝜀 increasing though the pressure drop is remaining constant but pressure 

gradient is decreasing according to this equation. That is what we have been using. Ok, 

so this is the equation one can solve and get the details of the, you know, voidage etc. 

That depends on the how much is the expansion, ok. 
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So, let us say now particulate fluidization. Particulate fluidization we just you know 

recapture. Here, you know, a kind of uniform expansion of the bed is taking place, right. 

So particulate fluidization first of all it occurs. Then the fluidizing medium is a kind of 

liquid. And then across the cross-sections, you know, the bed is, you know, so 

uniformly expanding that across the different cross-sections or at different locations in 

the bed if you try to measure the bed density, it is going to be almost constant, ok. That 

is what we have seen.  

So now, what we see? So, if this expansion, pictorially it shows like you know it is 

almost like you know very, entire column has been, particles are reaching almost to the 

top of the column. But assume this, you know, let us say if you assume this 

corresponding to the initial packing height, right. The expansion is only small. It is 

uniform but it is expansion is only small. Initial bed height was this one, but now it is 

expanded. Slightly expansive, we are not taking that expansion is taking so much.  

Why? Because we are making some kind of simplification so that we can use the 

existing equation to find out what is this expansion. How much it is expanded or how 



much, you know, the voidage has increased because of the expansion? That we can 

calculate, ok. 

So the bed is so uniformly expanding that it is almost like is a kind of a packed bed 

structure only it is there. There is no abnormality across the different levels in the bed. 

As you move up from bottom to top or top to bottom, you know, at any location the 

uniformity of the bed is there almost. So, what we can say? Whatever the, whatever the 

Ergun’s equation is there, that can also be used even for the particulate of fluidization 

provided the expansion is only slight expansion it is not large expansion. That is only 

slightly expanded beyond the minimum fluidization condition. Then, we can use the 

Ergun equation also here, ok. So, if you do that one what we get? 
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Here, what we can see, expansion is uniform so Ergun equation is expected to hold 

approximately well for slightly expanded bed. Not very largely expanded particulate 

fluidization but only slightly expansion we are considering. Under those conditions 

only these, these equation whatever Ergun equation we are going to use to get the things 

will be valid. So then for laminar flow conditions, the first term of Ergun equation leads 

to the following form for the expanded bed. So this is the Ergun equation, ok. 

So this Ergun equation, this first, this is the Ergun equation here. Now in place of 
Δ𝑃

𝐿
, if 

you replace 𝑔(1 − 𝜀)(𝜌𝑝 − 𝜌) then that will be corresponding to the, you know, 

expanded bed conditions, right. So, now if you equate this particular part, right. So, if 



you equate these two terms. What you will get? You will get an expression for 𝜀. So 

you can write 
𝜀3

1−𝜀
=

150𝑣̅0𝜇

𝑔(𝜌𝑝−𝜌)𝜙𝑠
2𝐷𝑝

2 .  

So, remember here, this equation here, you know, exactly same as a kind of equation 

for the minimum fluidization velocity. But when you use the same equation, this 

equality whatever we have done here, so when you use it for the calculation of minimum 

fluidization velocity. There 𝜀𝑚 or the voidage at minimum fluidization velocity is 

known. It was not independent variable. It was dependent variable and known variable, 

input variable. That is what we have seen. And then superficial velocity corresponding 

to minimum fluidization, that is the 𝑣̅0𝑚 was independent variable so we equated, we 

used this equation to get the 𝑣̅0𝑚 from here. 

Now in this condition, expanded bed condition, the superficial velocity is beyond the 

minimum fluidization velocity but the expansion is very small. Expansion is very slight 

so then we are using the same equation. Here we are trying to find out what is the 

voidage, right. Because now the velocity is known. It is beyond the superficial velocity, 

some known velocity you are giving, ok. So corresponding 𝜀 we have to find out, that 

is the unknown now. Ok, L and 𝜀 are unknown, ok. 

So, this is what we can see here. So, now you can see, this equation number 2 and then 

this equation for minimum fluidization velocity. They are, you know, same, similar to 

each other indeed, right, ok. So but only thing is that here in the minimum fluidization 

velocity is independent variable whereas in the present case you know, 𝑣̅0 is a kind of 

independent variable and then 𝜀 is a kind of dependent variable. Whereas in the 

minimum fluidization condition, you know, this 𝑣̅0𝑚 is dependent variable and 𝜀𝑚 is 

known and independent variable. That is the different.  

So, the same equation we are using here to calculate the minimum fluidization velocity. 

Same equation here, we are using to get the voidage for a expanded bed which is beyond 

the minimum fluidized conditions. So, superficial velocity is known. So, that means 
𝜀3

1−𝜀
 

is proportional to the superficial velocity, provided the superficial velocity is greater 

than minimum fluidization velocity, ok. If 𝑣̅0 is equals to minimum fluidization velocity 

then 𝜀 is nothing but 𝜀𝑚.  
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So now bed height if you wanted to calculate for the expanded bed then we have two 

equations. Indeed, one equations only. So, under the expanded bed conditions, 
Δ𝑃

𝐿
, we 

can write 𝑔(1 − 𝜀)(𝜌𝑝 − 𝜌) but now Le , 𝜀𝑒 I am writing just to indicate this is for the 

expanded conditions.  

But the same equation is valid under the, for the minimum fluidization condition. Or 

from the minimum fluidization point onwards, whatever the velocity you increase, 

whatever the bed expansion takes place, the pressure drop is remain constant, ok. And 

then pressure gradient is equals to 𝑔(1 − 𝜀)(𝜌𝑝 − 𝜌). So, under two, same equation, 

under two conditions we are using. 

So, now this is here 𝜀𝑚, 𝐿𝑚 we are using because these equations are now under 

minimum fluidized bed conditions, right. The equation exactly same but one is at the 

expanded condition, another one is the minimum fluidized condition. Expanded 

conditions are beyond the minimum fluidization conditions so that the enough 

expansion is taking place but that expansion is not too high so that Ergun equation can 

be used. 

So, from these two equations what we can write 𝐿𝑒 = 𝐿𝑚 [
1−𝜀𝑚

1−𝜀𝑒
]. So, that means from 

this equation if you wanted to find out the height of the bed expansion. How much 

expansion of the bed has been taken? If you wanted to know, you should know what is 

the voidage of the bed at that expanded conditions or the voidage of the expanded bed 



that you should know. Otherwise you cannot use, ok. Otherwise this equation is not the 

good enough to use. So, what we do here?  

(Refer Slide Time: 45:11) 

 

You know, there are some kind of empirical correlations based on the experimental 

studies are there, between superficial velocity and then, you know, voidage for 

expanded bed conditions. So, for expanded bed conditions, superficial velocity is equals 

to voidage of expanded bed power m, this m is a constant, which depends on the particle 

Reynolds number, right. It depends on the particle Reynolds number, not the Reynolds 

number for the packed bed. It depends only particle Reynolds number. It is similar like, 

you know, we have n vs 𝑅𝑒𝑝 for the hindered settling case, right. Similarly, m vs 𝑅𝑒𝑝 

is available for the expanded beds also. Similar like that. 

If you remember that hindered settling conditions, there also suspension velocity 𝑢𝑠 is 

equals to 𝑢𝑡, that is, free settling velocity of single particle multiplied by 𝜀𝑛 and that n 

was depending on the particle Reynolds number. Similarly, here also, for packed bed 

or expanded fluidized beds, there is a relation between the superficial velocity and then 

voidage and then this power m is dependent on the particle Reynolds number.  

So if you know the Reynolds number, 
𝐷𝑝𝑣̅0𝜌

𝜇
, this is for the particle because we are not 

dividing by (1 − 𝜀), right. If you know this thing from this graph, you can know m. So 

once m is known then you can calculate the required things, ok.  
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So, how to calculate, we see an example here. So, bed of spherical beads, diameter 1.1 

mm, having density 𝜌𝑝 is equals to 1240 kg/m3. Fluidizing medium is water with 

density and viscosity of 1000 kg/m3 and 0.01 poise respectively. So, what is the 

minimum fluidization velocity with 𝜀𝑚 equals to 0.4. Indeed, up to this part we have 

already calculated in one of the example problem. But here again we need to calculate 

because that is required for the next part of the problem. 

Next part of the problem is what is the superficial velocity if you want to have 25 

percent expanded bed. So, initial bed whatever there, let us say, you know, initial bed 

is let us say you know some like a 1 metre. So then if you wanted to have 1.25 meters 

of the bed height so how much superficial velocity should you provide and then 

corresponding voidage is what. That is what you have to find out.  
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So minimum fluidization velocity. This is the equation. We have done several 

problems, right. Here everything is known except the minimum fluidization velocity 

𝑣̅0𝑚. Now here in this equation you substitute all the terms and then simplify, ok. I have 

done this one in CGS units, ok. So then you will get 𝑣̅0𝑚 as 0.194 cm/s, ok. 
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So, now second part. Superficial velocity at 25 percent expanded bed calculation. So, 

we have this equation for you know 𝑣̅0, for expanded beds. But we do now know what 

is 𝜀𝑒. If we know that one, we can calculate it, ok. So, and then we do not know m also. 

So, we have to calculate both. m we can calculate from the graph, m versus 𝑅𝑒𝑝. So 

first let us calculate𝑅𝑒𝑝. 𝑅𝑒𝑝, if we calculate, substituting all the values again in CGS 



units, you will get 𝑅𝑒𝑝 as you know 2.646 and then from the graph for the 

corresponding, you know, 𝑅𝑒𝑝 is equals to 2.646. What is the m value? That is you read 

from the graph as 3.9. So this equation under 2 conditions if you apply for 𝑣̅0 and then 

𝑣̅0𝑚. So then what will have? You will be having (
𝜀𝑒

𝜀𝑚
)

𝑛

 because this condition is valid 

from the minimum fluidization condition onwards till the expanded bed.  
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So, that is what this equation we can have. is equals to (
𝜀𝑒

𝜀𝑚
)

3.9

=
𝑣̅0

𝑣̅0𝑚
, m is 3.9 that is, 

we know it actually. Why we are writing it here? Because 𝑣̅0 is nothing but 𝜀𝑒 power 

3.9  but how to find out 𝜀𝑒? For that, we may be needing this expression, ok. So, at 25 

percent expansion, that means, Le is equals 1.25 Lm.  

So, after minimum fluidization 1.25 percent it has expanded so 1.25 times the height at 

the minimum fluidization conditions. That is what you mean by the statement, ok. So 

then from here, 
𝐿𝑒

𝐿𝑚
 you can write it as, I know, this equation already we have got it, you 

know, previously derived it. So here in this equation for 
𝐿𝑒

𝐿𝑚
  you substitute 1.25. So, 

[
1−𝜀𝑚

1−𝜀𝑒
] is 1.25. From here (1 − 𝜀𝑒), you will get 0.48 means 𝜀𝑒 is 0.52. So, now this 

equation 𝜀𝑒 is also known. So, you can find out what is this one.  

So, when you substitute this one you will get, you know, 𝑣̅0 as 5.40 mm per second. 

5.40 mm per second you will get, you know, superficial velocity that is when you 



maintain superficial velocity of 5.4 mm per second then the bed expansion, 25% 

expansion of the bed will take place.  
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Now, bubbling fluidization. So, let us see the picture again. What happened? So, this is 

the initial fixed bed conditions, ok or initial height of the bed, it is like this, ok. So, now 

when the superficial velocity or the fluidizing medium when you use gas and then 

superficial velocity when you increase beyond the, you know, minimum fluidization 

velocity. So, bubbling fluidization is taking place here. 

So now you can see most of the bed, you know, these voids are forming or bubbles are 

forming and they are rising up, ok. They are rising up. So most of the expansion of the 

bed here what we can see that is because of the expansion of the bubbles.  

Whereas the particles are more or less remaining it is not exactly initial position, so 

they are more or less corresponding to the bed height at the minimum fluidization 

condition, whatever were there. Up to that one only they are, you know, mostly, you 

know, expanding. Beyond that is a more or less, you know, gas is only expanding. Of 

course there are a few particles but there are very few.  

So what does we can say? Even under the bubbling fluidizing conditions, particle phase 

or dense phase is at minimum fluidization velocity conditions only. And then bubble 

phase or bubbles are at certain average bubble velocity 𝑢𝑏. So whatever the bubble 

fraction if you know or the volume fraction of the bubble if you know.  



So what you can write, the total superficial velocity you can write it as, you know, 

bubble fraction multiplied by the average velocity of the bubble fraction. So, what is 

the remaining fraction other than the bubble is there? That would be the particle fraction 

or the dense fractions. So that would be (1 − 𝐹𝑏), and that dense phase is at minimum 

fluidization condition, ok.  

Similarly, L, whatever the bed is there so Lb, bed expansion. Now b I am using in order 

to distinguish in terms of you know you know the bubbling fluidization. So that would 

be (1 − 𝐹𝑏) only. (1 − 𝐹𝑏) is the particulate phase and that phase is rising almost to the 

height of the bed at minimum fluidization conditions, is not it. So that means 𝐿𝑚 =

𝐿𝑏(1 − 𝐹𝑏). So these are the approximations we are using. Approximation, but reliable 

approximation you can see from these pictures anyway. 

So the bubbling fluidization where you know, most of the bed expansion is taking place 

because of the, you know, expansion of the voids or bubbles are forming. Whereas the 

dense phase is almost like you know expanding as a kind of minimum fluidization 

conditions only, ok. So under those assumptions we try to develop equations here. 
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So this is the assumption that we are having. So then, we get this equation as I already 

described, ok. So here now, how to find out this minimum fluidization the bed height 

corresponding to the expansion. What is the expansion height and then what is the 

corresponding voidage? Those things we are going to calculate for this bubbling 

fluidization condition as well.  



So here, as I mentioned, Fb is the fraction of bed occupied by the bubbles or bubble 

volume fraction. Then 𝑢𝑏 is the average bubble volume velocity. So this equation if you 

wanted to know, if you wanted to know this equation, you should know 𝑢𝑏. What is the 

average bubble velocity? That is again a very difficult to find out experimentally for 

each and every experiment. So there are a few experimental studies have been done. 

And there are empirical correlations are available. That we will see anyway. 
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So, bed expansion also we can see. You know, the height of the expanded bed times 

the fraction of dense phase must equal to the bed height at incipient fluidization 

conditions as I explained using the figure just now, ok. 
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So, these equations when you combine together, from equation 5 we are having this 

equation, ok. So you expand this equation so that you can write 𝑓𝑏 =
𝑣̅0−𝑣̅0𝑚

𝑢𝑏−𝑣̅0𝑚
. From 

here, (1 − 𝑓𝑏) you get this thing. Why are getting writing (1 − 𝑓𝑏)? Because if you 

wanted to know height of the expanded bed under the bubbling fluidization condition, 

that Le if you wanted to know, you should know (1 − 𝑓𝑏). Because 𝐿𝑚 = 𝐿𝑒(1 − 𝑓𝑏).  

So, there that equation 6, 𝐿𝑚 = 𝐿𝑒(1 − 𝑓𝑏). Here, 
𝐿𝑏

𝐿𝑚
, you can write it as 

𝑢𝑏−𝑣̅0𝑚

𝑢𝑏−𝑣̅0
. And 

then this Ub, you need to know. You need to know as I mentioned from experimental 

studies, each and every experimental studies finding them is very difficult.  
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So already there are empirical correlations are available like this. 𝑢𝑏 is approximately 

0.7√𝑔𝐷𝑏 ,  𝐷𝑏 is nothing but equivalent bubble radius. Because in general, these voids 

are forming. They do not form the voids or bubbles which are rising through the impact 

area, you know. They are not in a kind of, you know, spherical shape. In general, they 

are in a something like, you know, mushroom-like shape or elliptical shape. Like that 

only they are there in general. So, that is the reason equivalent spherical diameter of 

bubble is considered here.  

So, 𝑢𝑏 is known so then you can use that equation number 7 previous equation to get 

Le, ok. So, this is about the bubbling fluidization. So, there are more other details are 

possible for each and every type of, you know, fluidized bed. So, fluidization is a kind 

of very complex and turbulent, very complex behaviour. Many times repeatability is 



also kind of very different task. So, most studies one can be seen as a kind of separate 

course on fluidization. So but at this course level, this information is sufficient about 

the different types of fluidization.  
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Now, before concluding the fluidization part we seen some applications in terms of 

advantages and disadvantages also we will see of this fluidizations. Coming to the 

applications, fluid-bed catalytic cracking in petroleum industry is the very famous one 

where the fluidization is used. Many catalytic processes such as synthesis of 

acrylonitrile etc or many polymeric reactions or many gas-phase reactions SO2 

conversion to SO3 etc, there also we use fluidized beds.  

Many solid-gas reactions, fluid-bed coal combustion. Coal combustion is in general 

done in a kind of fluidized bed reactor so that whatever the gases effluents carrying the 

energy are there, they are collected and then they will be used for the electricity 

production, right. Fluidized bed coal combustion is also used as a mean of reducing 

boiler cost and decreasing pollutants emission in general. 
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For roasting of many mineral ores before processing to the subsequent unit processes, 

drying of many fine solids, adsorption of several gases also done in fluidized beds. And 

then there is rigorous mixing of solids and fluids in general, so because of that there is 

no temperature gradient in the bed even with quite exothermic or endothermic reactions 

in general.  

Rigorous motion of solids also gives high heat transfer rates to the wall or to the cooling 

tubes immersed in the bed in general. And then due to the fluidity of solids, these 

particles are easy to pass from one vessel to the other vessels.  
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However, there are several disadvantages are also there with this fluidization. First of 

all, uneven contacting of gas and solid especially in bubbling fluidization as we have 

seen or (slug) slugging fluidization etc, those we have seen. There we have seen, there 

you know the contact is not even as even we have seen. The contact is very even in kind 

of particulate fluidization. So, for the gas-solid system, uneven contact is a kind of 

disadvantage. And then, that is generally because the gas passes through the bed as 

bubbles and directly contacts only small amount of solid in the thin shell, known as the 

bubble cloud etc.  

As we have seen, these voids whatever the bubbles are forming, they are almost free of 

particles and sometimes, they are expanded so much, you know, they are having contact 

with the less number of particles. And then small fraction of gas passes through the 

dense phase which contains nearly all the solid, unevenity there is no evenity. 

Interchange of gas between bubbles and dense phase by diffusion and or by turbulent 

processes such as bubble splitting and coalescence occurs. Those things was again a 

kind of disadvantage. However, overall conversion of gaseous reactant is generally 

much less than the same that obtain using a ideal plug flow reactor at a same 

temperature. 
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Average bed density in turbulent fluidization is lower than in bubbling fluidization in 

general. However, in turbulent fluidization mass-transfer between gas and solids is 

much better than compared to bubbling fluidization. Especially, that is going to be 



useful in improving performance of chemical reactors. The finally very important one, 

the scale up of fluidizing bed reactors is very uncertain, is very, very uncertain.  

And then erosion of vessel internal parts and attrition of solids leading to loss of fines 

also occurs sometimes in this kind of a fluidized bed which may be taken as a kind of 

disadvantages in several cases.  
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References for this lecture are, you know, McCabe, Smith and Harriot. Ortega-Rivas, 

Richardson and Harker. Geankoplis, Brown et al and then Badger and Banchero. But 

primarily, most of the lecture is prepared from McCabe and Smith and some of the 

problems are Richardson and Harker and then Geankoplis. Thank you.  

 


