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Lecture - 09
Integral Method of Analysis of Batch Reactor Data - Part 2

Welcome to the third lecture of module 3, in this lecture we will discuss the analysis of the batch

reactor data, so before going to this let us have brief recap on our previous lecture.

(Refer Slide Time: 0:45) 

In our previous lecture the following topic we have covered under integral method of analysis,

one  is  we  have  considered  nth  order  rate  equation  and  we  have  fitted  the  data  with  the

experimental results and we found that what is the actual order of the reaction. Then we have

considered several other cases, one is zero order reaction where we have seen that rate of the

reaction is independent of the concentration of the reactants, then we have considered overall

order  from the half-life  and this  half-life  method we can consider  any fractional  life  of  the

reactants.  So  we  have  considered  then  fractional  life  method  and  also  we  have  considered

irreversible reaction in parallel where we have encountered multiple reactions.
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So as we have started with the multiple  reactions  in this  lecture  we will  consider again the

integral  method  of  analysis  for  a  constant  volume  batch  reactor  data,  we  will  consider

homogeneous catalyzed reactions. Here also we will see multiple reaction taking place, then we

will consider autocatalytic reaction, irreversible reaction in series, first order reversible reaction,

second order reversible reactions.
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So, let us consider homogeneous catalyzed reactions. In this case the rate of the reactions will be

depend on the un-catalyzed reactions as well as the catalyzed reactions. Let us consider a simple

homogeneous catalyzed reaction that is 

1KA R

Now, A can also can be react in the presence of catalyst C to form R plus C 

2KA C R C  

with a rate constant 2K  here C is the catalyst. So we can write the corresponding rate equations

for this elementary reaction we can write 

1
1

A
A

dC
K C

dt
 

  
 

Similarly for the second reactions we can write, 

2
2

A
A C

dC
K C C

dt
 

  
 

as  we can  see even if  there is  no catalyst  the reactions  will  proceed so and in  presence  of

catalysts the reactions again will be faster, so this rate of reactions from the second equations we

can see that it is directly proportional to the catalyst concentration.
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Now, let us write the overall disappearance of component A, so we can write for the reactions 

1KA R

and 

2KA C R C  

So for this we can write the disappearance of A is 

1 2
A

A A C

dC
K C K C C

dt
  

 this we can write 

1 2( )C AK K C C 

CC  is the catalyst concentration. So if we integrate this relation by integrating we can consider

catalyst concentration CC remains unchanged. 

So in that case, if we integrate we can write 

1 2
0

ln ln(1 ) ( )A
A C

A

C
X K K C t

C
     



So which we can write 

observedk t

So, how to find out 1K  and 2K  from this relations? So, first what we have to do? We have to run

the  experiments  and  we  have  to  plot  the  concentration  profile  that  means  we  have  to  plot

concentration versus time and that means if we plot 
0

ln A

A

C

C
  versus time we will get a straight

line passing through the origin, so the slope of this would be observedk . 

So now, we can plot different observedk  versus time, versus concentration of the catalyst. So if we

perform the experiment  with the different  concentration of the catalyst  and for each catalyst

concentration we can calculate the observed K the rate constant values. So for each catalyst

concentration we have rate constant values and if we plot the K observed versus the catalyst

concentration we will find that the curve will fit like this with a slope, so slope of this curve is

2K  and this 

1 2observed Ck K K C 

So if we calculate slope 2K  and we can for a particular concentration catalyst concentration we

can calculate 1K , this way we can calculate the different rate constants that is 1K  and 2K  for the

homogenous catalyzed reaction.
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Now, let  us  consider  autocatalytic  reactions,  what  is  autocatalytic  reaction?  In a  reaction  in

which one of the product of reaction is acts as a catalyst. Let us consider an example of simplest

kind. So if we have A as the reactant and which produce R so the product R is reacting with A,

so this is the product itself reacting with the reactant and forming the product again. 

A R R R  

So this is known as the autocatalytic reaction, this is of simple kind. 

So if we write the rate of the reaction we can write 

A
A A R

dC
r kC C

dt
   

RC  is  the  catalyst  concentration  and  AC  is  the  concentration  of  A.  Now,  because  the  total

number of moles A and R will remain constant throughout the reactions, so for any time A and R

will remain constant. So with that we can write at any time 0C  is the total concentration would

be 

0 0 0A R A RC C C C C    = constant



That means at any moment the total concentration remains constant  0AC  and 0RC  is the initial

concentration of the reactants and the products.

Now this, if we put this over here our rate equation would be 

0( )A
A A A

dC
r kC C C

dt
    

So from here we can calculate  0R AC C C   and if we substitute this RC  over here so our rate

equation would be this. 
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Now, we can obtain the integral form of rate equation by integrating the earlier equations. So we

have 

0( )A
A A A

dC
r kC C C

dt
    

Now, if we rearrange it and break down into partial fraction, so rearranging this equation would

be 

0( )
A

A A

dC
kdt

C C C
 





Now, if we integrate this we would obtain, so if we first break down into fractions this would be

0 0 0

1

( )
A A A

A A A A

dC dC dC
kdt

C C C C C C C

 
      

  

Now, if we integrate this we would obtain 

0 0 0
0

0 0 0

( ) /
ln ln

( ) /
A A R R

A A A A

C C C C C
C kt

C C C C C


 



and then we can write 0C  is nothing but the total concentration which was initially present that is

0 0( )A RC C kt 

Now,  in  terms  of  conversion  if  we  denote  that  0

0

R

A

C
M

C
  then  in  terms  of  the  product

conversation this equation we can write 

0ln ( 1) kt
(1 )

A
A

A

M X
C M

M X


 



and then we can write 0 0( )A RC C kt . 
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So for autocatalytic reactions, how the concentration and time or rate concentration curves look

like? For any autocatalytic reaction to start with initially there must be some product should

remain  to  catalyze  the  reaction.  So  we  need  to  have  a  very  small  quantity  of  the  starting

concentration of the product at the start of the reaction. 

Now, as the reactions proceeds the concentration of the product will gradually increase and the

concentration  of  the  reactants  will  fall  and at  a  certain  time  where  the concentration  of  the

products will reach a maxima and that will happen when the reactant concentrations would be

equal  to  the  product  concentration.  After  that  reactant  concentration  will  fall  even  if  the

concentration of the product is higher the rate will fall.

So the concentration time, if we plot this equation 

0ln ( 1) kt
(1 )

A
A

A

M X
C M

M X


 

 0 0( )A RC C kt 

So, if we plot conversion versus time so the conversion can achieve upto one maximum and the

conversion versus time curve will look like. So as we can see at the beginning of the reactions

the rate of reaction is very low and then in this region from here to this, this region the rate is

high and then it fall, so this is low rate again. 



Now, if we plot the rate versus concentration it would like this. So rate will start at a very low

rate and then it will increase reach a maxima and then it will fall,  so this is a starting point

because we have started with a high concentration here that is 0AC  we have started with that is

one and taking small amount of R, so the reaction start over here with a initial concentration of

0AC . 

So than the rate slowly increases and reaches maxima and it  is fall  down. So the maximum

concentration which attains is over here that is means it is A RC C . So this is the maximum rate

and  the  reaction  progression  is  like  this  and  so  you  will  get  a  parabolic  profile  for  the

autocatalytic reaction.
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Now, how to tEST the autocatalytic reactions? We take the, we have the equations which is 

0
0 0 0

0

ln ln ( 1) kt ( )
(1 )

R A A
A A R

A R A

C C M X
C M C C kt

C C M X


    



So now, if we plot 0

0

ln R A

A R

C C

C C
 or ln

(1 )
A

A

M X

M X




 if we plot versus time and if this gives the straight

line passing through the origin then the reaction is autocatalytic in nature with a slope we can

calculate which is 0C k . So this way we can notice the autocatalytic reaction. 
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So let us consider irreversible reaction in series, so this we can consider uni-molecular reaction

of first order in series. So if we write 

1 2K KA R S 

so the reaction reactant A with a rate constant 1K  producing R, R is again dissociating forming S

with a rate constant 2K  so this is first order reaction in series, so the rate of the 3 component A,

R and S we can write as 

1
A

A A

dC
r K C

dt
  

for R which is producing as intermediates we can write 

1 2
R

R A R

dC
r K C K C

dt
  

for formation of S we can write 

2
S

S R

dC
r K C

dt
 
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So now from the first one, first rate of reactions we can calculate the concentration profile of A

so let us find the concentration profile of A. So assume the initial concentration of A 0AC  and we

assume that the concentration of R or S initially is zero that means no R or S initially present, so 

0 0 0R SC C 

With this, if we take the rate equations 

1
A

A

dC
K C

dt
 

and if we integrate we would obtain 

0
0

ln ktA
A A

A

C
kt C C e

C
   

So this is the concentration profile of component A. Now to calculate the concentration profile of

R which is also dependent with the concentration of A we have to substitute this concentration in

the rate equations of R so let us do that.
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So for R the rate of reaction is 

1 2
R

A R

dC
K C K C

dt
 

this we can write 

2 1
R

R A

dC
K C K C

dt
 

Now the concentration profile which we have obtain for AC  if we substitute it would be

2
R

R

dC
K C

dt
  1

1 0
K t

AK C e

Now, this is the first order linear differential equation. So this is of the form 
dy

Py Q
dx

  , so this

is of this form. 

Now the integrating factor for this form is 

. .
Pdx

I F e



and the solution of this differential form is 

.
Pdx Pdx

y e Qe dx   constant

So if we apply for this rate form, then the integrating factor, so 

2 RP K C

1
1 0

K t
AQ K C e

So now, if we write the integrating factor would be equal to 2K dte . So this would be equal to

2. .
K dt

I F e

So for this equation we will have the integrating factor is 2K t . 
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Now, if we consider solution of the equation should be 

2 21
1 0

K dt K dtK t
R AC e K C e e dt   constant

Now this, if we can simplify this would be 

2 1( ) t
1 0

K K
AK C e dt  constant

So if we integrate this will be 

2 1( ) t1 0

2 1

K KAK C
e

K K
 


constant

Now, if we apply the conditions at t = 0, we assume that initially RC  = 0. So if we apply in this

relation we would obtain this side is 

1 0

2 1

0 AK C

K K
 


constant

So from here, we can get 



 constant 1 0

2 1

AK C

K K
 



So if we substitute in this relation this constant values, then we would obtain 

2 1

2 2

( ) t1 0 1 0

2 1 2 1( )e ( )e
K KA A

R K t K t

K C K C
C e

K K K K
 

 

So if we rearrange this, this will give 

1 2t t1 0

2 1

K KAK C
e e

K K
    

which we can write 

1 2t t

1 0
2 1 2 1

K K

A

e e
K C

K K K K

  
  

  

so this is the concentration profile for intermediate product which is R. 
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Now, we can also, similar way we can find out the concentration profile of S so that we can

calculate we know the concentration profile of A and R from the stoichiometry we know that is 



0A A R SC C C C  

so we can write 

0S A A RC C C C  

So if we substitute we would obtain 

1 2t t2 2
0

1 2 1 2

1 K K
A

K K
C e e

K K K K
  

   
  

So this is how we can obtain the concentration profile of A R and S. 
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Now, let us consider different limiting cases. Now if 

1 2t t2 2
0

1 2 1 2

1 K K
A

K K
C e e

K K K K
  

   
  

So if we apply two limiting cases, in 

Case 1: 2 1K K

So from here we can write 

1 t
0 (1 )K

S AC C e 

So from here we can see if 2 1K K , then this part would be 0 and then from this part, so this

will be - 2K  this portion should be approximately equal to - 2K , so in this case it will be 1 t1 Ke .

t. 

So at a very high rate constant of the second reactions that means from R to S, so we had 

1 2K KA R S 



so if the second reaction is very fast the first reaction will control the overall rate of the reaction.

And in Case 2: 1 2K K , similar way we can write 

2 t
0 (1 )K

S AC C e 

that  means the slowest step for the series reaction  is  the second step which will  govern the

overall rate of the reaction. So in general in a series reaction the slowest step governs the overall

rate of the reaction. 
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So now, as we have seen that the values of 1K  and 2K  will govern the location of the location

and maximum concentration of R that is the intermediate. Now this can be obtained with the

differentiation of the concentration profile of R. So concentration profile of R as we derived 

1 2t t

1 0
2 1 2 1

K K

R A

e e
C K C

K K K K

  
  

  

so this is a relation or the concentration profile for R. 

Now, if we differentiate this equation and say 0RdC

dt
  at maximum, then we would obtain 

2 1
max

log 2 1

ln( / )1

mean

K K
t

K K K
 



And the maximum concentration we can get if you substitute this  maxt  in this equation we will

obtain 

2

2 1
1

max 0
2

K

K K

R A

K
C C

K

 
  

 



So this way we can calculate the maximum time and the maximum concentration. 

Now, how the characteristics curve will look like? So, if we plot concentration versus time we

would see that the concentration of A will fall that is AC  we start at 0AC  and initially there was

no R, so R will form and it will reach maxima and then it will decrease. So this is R, then S

would also form slowly at the beginning and then concentration of S would increase, so this is

for S, so this is the maximum concentration that means maxRC , this is maxt  and this is maxRC . 
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Now,  let  us  consider  first  order  reversible  reaction.  As  we  know for  most  of  the  chemical

reactions are none of the reaction goes to completion and there is really any reaction which is not

reversible in nature. 

So for reversible reaction, let us consider general reversible reaction of first order which is

1

2

K

K
A R   

CK is  the  equilibrium  constant,  capital  CK .  So  this  reactions  the  conversion  never  goes  to

completion and if we consider 



0

0

R

A

C
M

C


we can write 

0 1 2
R A A

A A R

dC dC dX
C K C K C

dt dt dt
    

So we can write this is 

1 0 0 2 0 0( ) (M )A A A A A AK C C X K C C X   

So now, this relation 

AdC

dt
 1 0 0 2 0 0( ) (M )A A A A A AK C C X K C C X   

this relation if we write at equilibrium the AdC

dt
 at equilibrium will be zero. 
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So at equilibrium AdC

dt
= 0, so we can write 

1 0 0 2 0 0( ) (M )A A Ae A A AeK C C X K C C X  

AeX  is the equilibrium conversion minus. So from here we can write 

0 01

2 0 0

M M

1
A A Ae Ae

A A Ae Ae

C C X XK

K C C X X

 
 

 

so this we can write is 

Re M

1
Ae

C
Ae Ae

C X
K

C X


 


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Now, if we combine these three, this equilibrium ratio that is  1K , 2K  and this one we would

obtain let us combine these 

1 2(1 ) (M )A
A A

dX
K X K X

dt
   

1
1 2

(M )
(1 )

/
A

A

X
K X

K K

 
   

 

1

(M )
(1 ) A

A
C

X
K X

K

 
   

 

1

(M )(1 )
(1 )

M
A Ae

A
Ae

X X
K X

X

  
   

 

So this we can simplify it will be 

1

(M )(1 ) (M )(1 )

M
Ae A A Ae

Ae

X X X X
K

X

     
  

 

So if we simplify this, this would be 



1

( 1)
( )

M Ae A
Ae

M
K X X

X


 



so this is that the dXA  equation. 
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Now, if we integrate this we would obtain, so our equation is now 

1

dX ( 1)
( )

M
A

Ae A
Ae

M
K X X

dt X


 



So if we integrate with separation of the variable we would get

1
0

1
ln 1 ln

M
A AeA

Ae A Ae Ae

C CX M
K t

X C C X

   
     

  
.
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Now,  if  we  plot  we  will  get  the  concentration  profile.  So  we  can  plot  ln 1 A

Ae

X

X

 
  

 
 or

0

ln A Ae

A Ae

C C

C C





, so if we plot this versus time it will give us straight line passing through the

origin, so with a slope would be equal to 1

1

M Ae

M
K

X




. 
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Now, for the second order reversible reaction there are different type of second order reversible

reactions we can write that is 

2

2 2

2

A B R S

A B R

A R

A R S

 











for all of these if we put the restriction that 0 0A BC C  and 0 0 0R SC C   the integral from of all

these rate equation should be same identical. And we can get 

1 0

(2 1) 1
ln 2 1Ae Ae A

A
Ae A Ae

X X X
K C t

X X X

  
  

  

Now, if we plot this one versus t, so then the rate equations will for that concentration profile

will pass through this origin with a slope is equal to this path. So when we go above the second

order system the analytical solutions become cumbersome. 
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So let us consider reactions with shifting orders. Suppose, if we have 

A R

with a rate of reactions 

1

21
A A

A
A

dC K C
r

dt K C
   



Now, if we consider at high AC  concentration that means, this means that 2 1AK C  . So in that

case this reaction would follow zero order, so this would be rate would be 1

2
A

K
r

K
  , so this will

be zero order. 

Similarly, at low concentration of AC  then 2 1AK C   than these reactions would be first order

1A Ar K C  , so this behavior we can see if we plot the concentration versus time we can see

initially it will follow zero order upto a certain range and then it follow the first order kinetics.
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Now, if we apply the integration to the earlier equation we can get the integral form 

0
2 0 1ln ( )A

A A
A

C
K C C K t

C
  

Now, if we linearize this equations, it would be 

0

0 1 2 0 0

1 1

ln( ) ln( / )
A A

A A A A

C C t

C C K K C C

 
     

  

or we can write 

0 0 1
2

0 0

ln( / )A A

A A A A

C C K t
K

C C C C
   

 
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Now this we can test, this concentration profile in two ways so we can plot 0 0

0

ln( / )A A

A A

C C

C C
, then

we will obtain the curve like this, so where the slope is slope is equal to 1K  and intercept is equal

to is equal to 2K  or we can plot 0

0ln( / )
A A

A A

C C

C C


 versus 

0ln( / )A A

t

C C
. If we plot this we would get

the intercept is  
2

1

K
  and the slope is equal to  1

2

K

K
, so this way we can test and find out the

values of 1K  and 2K . So thank you for attending this lecture and we will consider the differential

method and the integral method for the variable systems from the next class. 


