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Lecture 08
Integral Method of Analysis of Batch Reactor Data- Part 1

Welcome to the second lecture of module 3. In this module we are discussing, analysing the

batch Reactor kinetic data by integral method of analysis so before going to this lecture let us

have brief recap on our previous lecture.

(Refer Slide Time: 0:52)

So, in lecture 1 we consider Introduction to batch reactor data analysis and then we have

considered the constant volume batch reactor kinetic data and then which method of analysis

is  better,  whether  integral  method  of  analysis  or  batch  reactor  or  differential  method  of

analysis, we have discussed among their advantage and disadvantage. And we considered for

certain irreversible reaction systems, we have analysed by integral method of analysis some

of the data.



(Refer Slide Time: 1:33) 

Now in this lecture we will continue our discussion on integral method of analysis of batch

Reactor data and a brief outline of this lecture is integral method of analysis under which we

will consider empirical rate equation of nth order, then we will consider zero order reactions,

we will consider overall order of the reactions from half-life then fractional life method to

obtain the kinetic equations, and we will also consider irreversible reactions in parallel so

parallel irreversible reactions.

(Refer Slide Time: 2:20) 

So, let us start with empirical rate equations of nth order, so when the order of the reactions

of the reaction mechanism are not known for a particular reactions, we can consider a general



order of the reactions and find out what is the actual order of the reaction to fit the particular

nth order kinetics and we can then find out the order of the reactions. 

Now let us form a general form of the rate equation of nth order which is 

nA
A A

dC
r kC

dt
   

Now, if we integrate after separation of the variables like we can write 

A
n
A

dC
kdt

C
 

and then if we integrate with the initial and boundary conditions which is 

0 0

A

A

C t
A
nC
A

dC
k dt

C
  

we will obtain 

1 1
0 ( 1)n n

A AC C n kt   

and this is valid when n is not equal to 1, so for 1n   this integral form of the equation is

valid.

So the calculation of the order of the reaction is not straightforward in this case as you can

see this is a trial and error procedure so order n cannot be found explicitly, a trial and error

method is essential. How we do the trial and error method? Select a value of n, so we need to

select a particular value of n and then calculate k. So if we select n then from the analysis of

concentration versus time history of the batch reactor data we can calculate K. 

Now the values of n which minimises the variation of k is the desired value of n, so we need

to check the value at which values of n which will minimise the variation of the rate constant

or rate coefficient that will be the order of the reactions, we will later analyse this with an

example.
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Now, one curious feature of this rate form is that the rate equations let me write 

1 1
0 ( 1)n n

A AC C n kt   

Now, if you consider case 1, 1n   

If n greater than 1 from this expression you could see that the reactions will never go for

completion so the reaction will never go to completion. 

Case 2, if 1n   what will happen? The reaction concentration will fall to zero and then move

to negative as you increase the time, so it further goes to negative, the negative concentration

is not possible so we should not carry out the integration till a certain time up to which the

concentration of the reactants falls to zero, so that we can calculate when AC  is equal to zero,

the time would be 

1
0

(1 )

n
ACt
n k






So if you substitute 

1
0

(1 )

n
ACt
n k






over here in this rate expression, 

1 1
0 ( 1)n n

A AC C n kt   



if you substitute this t then you will find that AC  would be zero, so we should not carry out

the integration above this time, so 
1

0

(1 )

n
ACt
n k






. So as a consequence of this in the real system

what we observe, the fractional order reaction shifts to first order reaction or the order of the

reaction becomes unity, so in a real system we can observe that fractional order will shift to

unity as the reactant concentration depleted so this we need to consider while analysing nth

order reaction. 
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Now let us consider zero order reaction, as the order of the reaction suggest if it is zero order

reaction then the rate of the reaction will be independent of the concentration of the reactants.

So we can write 

A
A

dC
r k

dt
   

because the rate expression will be independent of the concentration of the reactants. Now if

we  integrate  this  rate  expression  and  we  note  that  the  concentration  AC  will  never  be

negative, in that case we would obtain 

0 0A A A AC C C X kt   , for 0ACt
t



and 



0AC  ,for 0ACt
t



Now if we plot concentration versus time, so we can see that this is AC  and this is t. So if we

plot for this we would obtain so this intersection would be 0AC  that is the initial concentration

and slope of this curve is -k and the time at this location 0ACt
t

 .
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If you plot from here, 

0 0A A A AC C C X kt  

and that is valid for 0ACt
t

 . Now, if we plot AX  versus time, the curve will pass through the

origin so it will pass through the origin and conversion from 0 to 1 say over here it is 1 and so

the data so which you will find that up to time t is equal to 0ACt
t

 , so this is the time you

will get a linear equation in case of zero order reaction with conversion and time plot passing

through the origin and the slope of this curve is 
0A

k

C
. 

And you can note that from the batch reactor data there is some deviation from the zero order

kinetics, so this is the deviation at higher concentration deviation from zero order kinetics. So



it  means that maybe you will obtain the data like this, so that means as you close to the

conversion  1  or  at  higher  conversion  or  higher  concentration  so  when  the  reactant

concentration falls very low level or the conversion goes higher, you will find that there is a

deviation from the zero order kinetics, this means that the zero order kinetics is valid up to a

certain concentration.

(Refer Slide Time: 16:24) 

Now, let us calculate the overall order of the reactions from the half-life method. So consider

the irreversible reaction which is 

.......A B products   

And we can write the rate of the reactions for this is 

.........A
A A B

dC
r kC C

dt
    

Now, if we write at any instant, we can write this 

B

A

C

C






this means that the stoichiometric ratio of the component A and B which was present initially

will maintain the same stoichiometric ratio at any time. 

So we can write 



........
b

aA
A A B

dC
r kC C

dt





 
     

 

So which you can write 

............
b

a b
Ak C




  

  
 

So this we can represent 
b

k




 
 
 

 as 'k  and this we can represent .....a b
AC
 

as n
AC , so this is the

general reaction we can write in terms of the nth order reaction so 

'AdC
k

dt
  .
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Now, if we integrate this relation we will obtain, integrating for 1n   we would obtain 

1 1 '
0 ( 1)n n

A AC C k n t   

So now, if we define the half-life is the time taken for a reactant to reduce its concentration to

half of its value that means from here you can write 

1
1

1/2 0'

(0.5) 1

( 1)

n
n

At C
k n







So the concentration of the reactants which was initially present is reduced to its half of its

value and the time taken to reach that value is the half-life, so half-life is defined with 1/2t . 

Now, if we plot log 1/2t  versus log 0AC , so if we take log of this we will obtain 

1

1/2 0'

(0.5) 1
log log (1 ) log

( 1)

n

At n C
k n

 
    

so this is of the form y a bx  . So if we plot this, we would obtain intersect, so this is of

slope of this curve would be equal to (1 )n , and this is valid for order n less than 1.
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Now, half-life method requires a series of runs each at a different initial concentration. Now,

if we plot with the same plot with a different initial concentration, we would see that when

1n   we would obtain the curve of 1/2log t  versus 0log AC  would be independent of the initial

concentration, so this is for order  1n  . Now for order n greater than 1, we will obtain a

curve like this that means this is for order n greater than 1. 

(Refer Slide Time: 24:10) 

So numerous variations of this half-life method is possible, let us for instance say for you

have large  number of  components  and say we have  one component  in  large  excess,  say

component A in large excess. So in that case we can write the general expression 



'
0
aA
A

dC
k C

dt
 

and this 'k  would be 

'
0( ......)b
Bk k C

and so on and then  BC  would be approximately equal to  0BC ,  so this  way we can have

numerous variations of the fraction in a half-life method and we can obtain the integral forms

of the rate equation which we would be able to solve for the kinetic data obtained from the

batch reactor.
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Now,  let  us  consider  another  variation  which  is  called  the  Fractional  Life  method.  So

Fractional life method from the half-life we can write say for any fraction say consider a

fraction F 

0

A

A

C
F

C


So the concentration of component A drops to any fraction f in  Ft .  So from the half-life

equations we can write 

1
1

0

1

( 1)

n
n

F A

F
t C

k n







.



Now this F we can put any values, it is not 0.5 that is half-life, it can be any value say the 0.8,

0.3 and so on, so this is an extension of the half-life method for any fractional conversion or

any fractional change of the concentration at a particular time. Let us consider an example to

find out kinetics using the factional order method.
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Suppose consider a reactant A which decomposes in a batch reactor as per the following

reactions.  So, we have reactants A to products and the variation of concentration of A at

various times in the reactor is measured and given in the following table. So this is the table

which we can see that in column 1 we have time, at different time the concentration of the

component A. We need to find out a rate equation using the integral method to represent the

data.

(Refer Slide Time: 28:35) 

So variation of the concentration of A at various times in the batch reactor which is given,

this is an example which is taken directly from the Levenspiel. So once we have the data, the

time  versus  concentration  from the  batch  reactor  so  this  is  basically  the  data  which  is



obtained from the experiment. Now, if we calculate  0log A

A

C

C
 and  

1

AC
 we can do that from

this  data  so  0log AC  is  given  which  is  10  at  initial  time  t=0,  0AC =10.  So  the  initial

concentration  is  given as 10 mole per litre,  so we can calculate  
10

ln
10

 is  1  here  0ln A

A

C

C
.

Similarly, 
10

ln
8

 would be equal to 0.2231 and so on for all the other time and concentration

we can calculate the log of initial concentration by concentration at any time. 

Now, we can also calculate  
1

AC
 so which is basically the concentration which is initially

which was present is 10 so 
1

10
 is 0.1 and so on for all other concentrations at various times

we can calculate 
1

AC
. 
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Now the data which is given now, if we plot the time versus 0ln A

A

C

C
, this we have plotted, let

us guess the first-order kinetics. So if it is first-order kinetics, we know the for first order

system 



0ln A

A

C

C
 kt

so we can write 

0ln A

A

C
Kt

C
 

So if we plot 0ln A

A

C

C
 versus time, it should give a straight line with a slope of K so we have

plotted here the column 1 and column 3 so time versus the logarithmic 0A

A

C

C
, so as we can see

the data is not fitted with a straight line so there is a deviation from the straight line so from

this we can conclude that this does not follow the first order kinetics.
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Now, if we consider second order kinetics, so if we consider second order kinetics we can

write 

0

1 1

A AC C
  kt

for the second order kinetics. So if we plot 
1

AC
 versus time, there will be intersect which is

0

1

AC
 and from slope we can calculate k, but this also does not fit with a straight line, so as we

can see it does not follow the second order kinetics as well.
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So now, consider a general nth order kinetics and find out the order of the reaction. So to do

that let us plot concentration versus time feature given and then we can calculate say consider

fractional life method Ft  is equal to say F fractional it reached the concentration to a fraction

of 80%  so that means 0.8, so F = 0.8 so which is we can write 

1
1

0

(0.8) 1

( 1)

n
n

F At C
k n







Now, if we take the logarithmic as we have done before it will be 

1

0'

(0.5) 1
log log (1 ) log

( 1)

n

F At n C
k n

 
    

so this is of the form y a bx  .

Now, if we plot concentration versus time, we obtain the table 0AC  which is say 10, 5 and 2,

and AC  at any time which reaches 0.8 0AC , so that means we can calculate this would be 8,

this  would  be 4 and this  would  be  1.6.  So  the  time  needed  Ft  from this  graph we can

calculate Ft  would be from 0 to 18.5 so it will be 18.5 second, similarly if we see from here it

is 59 seconds at this location so from 59 to 82 so the time change is 59 to 82 which is equal to

23.  

And in this case we can see from 180 to 215, so we will take at any two different points and

we can see the change in concentration with the time periods. So in this case we can see at



this time we have 180 to 215 so which is equal to 35 seconds. So if we calculate  log Ft  of

18.5 which is equal to 1.27 similarly for others it would be 1.36 and 1.54 and similarly we

can calculate 0log AC  which is equal to 1.7 and 0.3.
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So now, this is the log Ft and 0log AC  we have calculated, now if we plot log t  versus 0ln AC ,

this will fit with a slope of ( 1)n   which is about -0.4, so from the slope of this curve we can

calculate that the n = 1.4, so this is order greater than 1 but it is fractional order. Now to

evaluate the rate constant we pick up any concentration say 0AC = 10 mole per litre and Ft  is

18.5 seconds, so if we put in the fractional order method we would get 

1.4
1 1.4(0.8) 1

18.5 *10
(1.4 1)k






From which we can calculate k 

0.4

0.4
0.005

lit
k

mol s
 

So now we can write the complete rate expression which is 

0.4
1.4

0.4
(0.005 )A A

lit
r C

mol s
 



and this has unit of rate is mole per litre second, so this way we can solve a particular kinetic

data which is obtained from batch reactor and we can consider different kinetics and we can

solve for the integral form of the rate equations and finally we can obtain the rate constant

values and order of the reactions and we can propose the rate equations for that.
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Now, let us consider an irreversible reaction which is in parallel reactions, suppose a reactant

which is decomposing into two products that means 

1

2

K

K

A R

A S





Both A and A is producing reactants R and S both are parallel reactions and we will consider

these reactions are elementary reactions. So in that case the rate of the reactions we can write

is 

1 2 1 2( )A
A A A A

A

dC
r K C K C K K C

C
      

Similarly we can write for the formation of R and S, so 

1
R

R A

dC
r K C

dt
 

and 



2
S

S A

dC
r K C

dt
 

so these are the 3 rate expressions; one is for the reactants and then other two is for the

products. Now this is for the first time we are encountering with multiple reactions and if

there are n number of reaction components then a single stoichiometric equation cannot give

the concentration profile so we need to have n number of stoichiometric equations which

would describe the concentration profile.
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So for this system AC , RC , SC  all of these alone cannot give the values of 1K  and 2K , so at

least  the concentration profile or we need to follow the concentration changes of the two

species to get the  1K  and  2K . And this can be done following two species concentration

change with a condition that the total concentration A R SC C C   will remain constant at any

time so then from this we can calculate the, any two concentration profile if we know then we

can calculate the third concentration from the stoichiometric equation this equation. 

So if we consider the first reaction which is 

1 2( )A
A

dC
K K C

dt
  

So if we integrate this relation we would obtain 



1 2
0

ln ( )A

A

C
K K t

C
  

So now, if we plot this 
0

ln A

A

C

C
  versus t if we plot so it will pass through the origin and from

the slope we can obtain 1 2K K , so this integral form of this equation will give combination

of 1K  and 2K .
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Now, if we divide the other two equations that is 

1
R

R A

dC
r K C

dt
 

and 

2
S

S A

dC
r K C

dt
 

if we divide these two we will obtain which is 

1

2

R R

S S

r dC K

r dC K
 

So then we can integrate this equation and we simply obtain 

0 1

0 2

R R

S S

C C K

C C K






So now, if we plot RC  versus SC  then we would be able to get a plot like this, so this is the

initial concentration 0RC , this is 0SC  and from the slope of this curve we will obtain k1 by

k2. So if we know from this 1

2

K

K
, and earlier we have obtained 1

2

K

K
 so then from these two

relations we can calculate 1K  and 2K  individually.
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Now for a typical case of this parallel reactions where 

1

2

K

K

A R

A S





the concentration profile will look like concentration versus time. Concentration of A will

gradually decrease with t so that means it starts with 0AC  and the profile it is for component

A. Now for component R and S both will increase, so it depends on the rate of the individual

1K  and  
2K , so this will be  

RC  if  
1K  is higher and this will be  

SC , so this is the typical

concentration profile for parallel reactions, so thank you very much for attending this lecture

and we will continue our discussion on batch reactor data analysis for other reaction systems.


