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Lecture 07
Analysis of Batch Reactor Kinetic Data

Welcome  to  the  first  lecture  of  module  3.  In  this  module  we  are  going  to  discuss

Interpretation or Analyses of the Batch Reactor Kinetic Data. Before going to this lecture let

us have small recap of our earlier lectures which we had in module 2.

(Refer Slide Time: 0:55) 

In module 2 we have basically covered stoichiometry and introduction to stoichiometry, then

we have considered the limiting reactants in case of stoichiometry. We have considered two

reactors;  one  is  batch  reactor  and  another  is  flow  reactor  and  for  both  cases  we  have

considered constant volume batch and flow reactor and how to obtain the stoichiometry in

that system. And finally we have considered stoichiometry in variable volume batch and flow

systems so each system we have completed with different examples.
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Now, in this lecture we will consider analyses of the batch Reactor Kinetic data. And the

lecture outline would be introduction to the batch Reactor Kinetic data, then Constant volume

batch reactor then we will consider integral method of analysis, so we will consider integral

method of analysis in this lecture and to take the batch Reactor data and then we will analyse

for different Kinetics.

(Refer Slide Time: 2:30)

First we need to know that what is the rate equation? Although we have introduced at the

beginning. Rate equation means it is the dependency of the concentration with the rate of the

reaction, the reaction which happens if we represent them mathematically then we call rate of

reactions. So, how to characterise the rate of reactions? We can characterise rate of reaction



by  suggested  which  can  be  obtained  or  suggested  from  theoretical  consideration  so

theoretically we can obtain the rate expression or it can be obtained results of an imperial

curve fitting.  So in either  case the rate  coefficient  can only be found by experiments,  so

whether it is imperial curve fitting or it is theoretical consideration whatever may be the rate

of the reactions or the rate equation suggests, the constant value or the rate coefficient values

can be obtained only by experiments. So we have to perform the experiments in different

reactors and obtained the Kinetic data.
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How to determine rate equation? So we need to obtain the rate equations, but how we can

obtain  the  rate  equation?  To  obtain  the  rate  equations  we  need  to  follow  two  different

procedures; one of them is the concentration dependency is found first at fixed temperature

and then the temperature dependency is found. So concentration dependency if we have to

find out,  we have to  keep the condition  isothermal,  so we need to keep the  temperature

constant  and  vary  the  concentration  and  obtain  the  kinetics  so  then  dependency  of

concentration can be obtained at a fixed temperature so that is the first thing we can do. 

Now we have to fix the concentration and then we obtain the temperature dependency, we

vary the temperature. So combine these two things will give the overall rate equation which is

a function of temperature and concentration.
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Now experiment  for determination  of extent  of reaction.  So, how to obtain the extent  of

chemical reaction, how to determine experimentally? This can be obtained by two methods;

one is using batch reactor or second is using flow reactor. So in case of batch or flow reactor

the method we generally follow to obtain the extent of reactions we need to follow certain

procedures. 

We  can  do  by  following  the  concentration  of  given  a  components,  so  we  can  see  in  a

particular reactor we can see the change of concentration for a given a component. Or we can

follow the change of some physical properties of the fluid or of the reactants which we have

given. Physical properties like electrical conductivity or refractive index, the change of these

properties we can follow in a particular reactor.

We can also follow the change in total pressure at a constant volume system that means if the

reactions  happen in gas  phase,  we can  see the change of  partial  pressure  of  a  particular

component  at  constant volume systems. Or we can also see the change in volume in the

system if we keep the pressure constant, so this way these four methods we can follow any

type of reactors like batch reactors or flow reactors whatever may be the reactor we choose

but we can see this property change with time.
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Now between these 2 reactors; batch reactors and flow reactors which one we should use for

doing the Kinetic analysis? If you consider batch reactor it is usually operated at isothermal

conditions at constant volume, and it is very simple device and it can be adaptable to any

laboratory  setup.  It  needs  but  little  auxiliary  equipment  or  instrumentation,  so  very  little

auxiliary  equipment  we can  perform the  batch  Reactor  Kinetic  experiments,  very  simple

operation and it is helpful for homogeneous Kinetic data. 

So if our system is homogeneous that means if we have more than one reactants, if they react

together in a homogeneous solvent then this batch reactor is helpful to obtain the kinetic data.

So generally in most of the homogeneous Kinetic data experiments we perform using the

batch reactor.

For flow reactor this is generally used to study the kinetics of the heterogeneous reactions, so

which we will  discuss in the later  part  or it  may be covered in case of your,  you know

Chemical Reaction Engineering II where most of the catalytic and heterogeneous reactions

are covered. So for the time being we will consider batch reactor kinetic data analysis.
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To do the batch Reactor Kinetic data analysis, the two procedures we generally use, one is

called Integral method, in integral method the other method is the differential  method, so

these two procedures we generally used to obtain the batch reactor can take data. In integral

method what we do, we guess a particular form of rate equation, so first we have to guess a

particular form of rate equation. 

Then we need to integrate the equation and manipulate mathematically. So if we integrate the

rate  expression,  we  generally  get  the  concentration  profile  that  means  the  concentration

versus time, how the concentration in a reactor varying with time so we integrate the rate

equations which we guess and then manipulate mathematically.

Now we plot the concentration change versus time, so we plot concentration versus time, if

this yields a straight line then the rate equation is said to be satisfactorily fit the data so the

rate  equation should be a straight  line,  fit  all  the kinetic  data  in a straight  line if  that  is

obtained then we can say that the assumed rate expression or guessed rate expression is the

correct one. 

In case of the differential  method what we do, fit the rate expression to the data directly

without any integration.  So we do not do any integration of the differential  form of rate

expression  because  the  rate  expression  is  itself  a  differential  form and we take  the  data

directly to fit the differential form of the equation which we do not integrate.
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Now, between the integral and differential method which one is beneficial and what are their

advantages and disadvantages? In case of integral method it is very easy to use because we

guess a rate equation and then we integrate it and then we fit the data which we obtain, so it is

very easy to use. And recommended for testing specific mechanisms, so we can assume a

specific mechanism and according to that we can obtain a general order rate equation and

then we test whether it is the mechanism is following as per the guessed kinetics.

It is relatively simple rate expression so or when the data are so scattered that we cannot

reliably  find  the  derivatives  needed  in  the  differential  form.  So  if  the  kinetic  data  are

scattered, it may so happen that generally for kinetic experiments there are large deviation

from getting the kinetic data because it depends on the reactants and depends on the rate of

the chemical reaction, if the reaction is very fast it changes within a period of time, change of

the concentration which is happened within a stipulated period of time, we may not get the

exact kinetics and the change may not get properly so the data generally scattered. So in that

case the derivative method or the differential method we cannot use, in that case the integral

method becomes more easy to apply. 

In case of differential method it is more useful for complicated situations and requires more

accurate or larger amounts of data. So, if we have large amount of data and data are not

scattered, the data are very accurate in that case more complicated situations we can handle

with differential method. It can be used to develop or build up a rate equation to fit the data

so we can use the differential method to develop or build up a rate equation to fit the data.

Whereas, in integral method we have to guess the rate equation, but in case of differential



method we can develop the rate equation. So the general practice among these 2 methods, in

general it is suggested that the integral method of analysis be attempted first. If the integral

method is  not  successful  then we will  use the differential  method,  so this  is  the general

procedure to be followed to obtain any rate expression.
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Now, reaction rate for constant volume batch reactor. So when we talk on constant volume

batch reactor, it means that the volume of the reactant not the volume of the reactor. So the

amount of volume, the amount of reactants and its volume represents the volume of the batch

reactor, but it is not the volume of the reactor so this essentially refers to the constant density

reaction system. 

Constant volume reactor means volume of the reaction mixture and this actually represents

the constant density reaction system. Most of the liquid phase reaction or if the reaction of the

gas phase is happening in a constant volume batch so gas phase reaction in constant volume

batch constant volume bomb, these all falls under constant volume system. 

Now for a constant volume reactant i which is happening in a constant volume reactor we can

write the rate of reaction,

1 i
i

dN
r
V dt



which is equal to 



( / )id N V

dt


because since volume is constant so this we can represent as  idC

dt
. Now if the reaction is

happening in the gas phase and the gas phase is ideal, we can write the concentration term C

for ideal gas phase C would be equal to  
p

RT
 that means p is the partial  pressure of that

component. So we can write this expression,

1 i
i

dp
r

RT dt

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Now, let  us introduce another  term which is  conversion,  the conversion or the fractional

conversion of any reactant say A can be represented with a symbol fractional conversion of

component  A can be represented with  AX  or  we simply call  the conversion of  A.  Now

suppose, we had initially 0AN  moleS of component A so AN  is the initial amount of reactant

A at time t = 0 and AN  is the amount present at any time t. So we can write the conversion

for a constant volume system that is AX  would be the 

0

0

A A
A

A

N N
X

N




so this we can write 

AX 
0

1 A

A

N

N


Now, if we just divide the numerator and denominator here by V for constant volume system,

we can write 

0

/
1

/
A

A

N V

N V


so we can write 



0

1 A

A

C

C


Now, if we differentiate this equation we will have relation between AX , AdX  with AdC . So

we can write 

0

A
A

A

dC
dX

C
 

So this  is  the relation  in  terms of  the differential  form of  fractional  conversion with the

change in concentration.
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Now, integral method of analysis, the general procedure as we have said for any integral

method of analysis, what we need to do? First we need to get the particular form of rate

expression, so we have to get particular rate equation which is to be tested by integration so

we assume a particular rate equation that will be integrated in a particular form and then the

second step is to plot concentration versus time, and that would be with the experimental

data. 

So if you do so, if the fit which we have done with this, if this is satisfactory then we will get

the appropriate rate equations and if it is unsatisfactory then guess another rate form and then

similar procedure would be followed, so this is the general procedure.

Next we will consider the unimolecular first order reactions, irreversible first order reactions.

Let us consider a general reaction which is 

A products

Now, if the as we said this is first order reaction so the rate equations we can write 

A
A A

A

dC
r kC

C
   

If we separate the variables from here we can write 

A

A

dC
kdt

C
 



Now, if we put the integral for both the cases, it would be from 0AC  which was the initial

concentration to  AC  at any time t so initially t = 0 to any time t. So with this limit if we

integrate this expression, it will be 

 
0

ln A

A

C

A C
C kt 

So if we substitute this, this would be 

0(ln ln )A AC C kt  

and from here we can write 

0

ln A

A

C
kt

C
 

so this is in terms of the concentration profile. We can also write 

0

ktA

A

C
e

C


we can write 

0
kt

A AC C e

so this is for concentration profile for first order reaction.
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Now this expression we can write in terms of the conversion. So in terms of conversion we

can write as we have seen earlier that 

0

A
A

A

dC
dX

C
 

So if we substitute in the rate expression that is 

A
A

dC
kC

dt
 

we can write 

0 (1 )A A AC C X 

we can write this expression as 

(1 )A
A

dX
k X

dt
 

Now, if we integrate this expression, we would obtain so by separation of the variables we

can write 

(1 )
A

A

dX
kdt

X




Now, if  we integrate  with a  limit  when t=0,  the  conversion  is  AX =0,  and when t=t  the

conversion is AX . 

0
0(1 )

A

A

t
X

A

X
A t

dX
k dt

X



 

So if we integrate this, this would be 

ln(1 )AX kt  

So from here we can write, 

1 kt
AX e 



So this is in terms of the conversion so we can write both in terms of the concentration or in

terms of the conversion. 

Now, if we plot say this Y axis is time and X axis we can plot 
0

ln A

A

C

C
 or ln(1 )AX , so we

have two expressions; one is this one, another one is 

0

ln A

A

C
kt

C
 

So if you plot 
0

ln A

A

C

C
 verses t in this expression as you can see, it will lead to a straight line

with a slope k. Similarly, from this expression if we plot  ln(1 )AX  versus t, we will get a

straight line. So if we have the rate data obtained from the batch reactor we can fit the data

and it will lead to a straight line passing through the origin with a slope is equal to k. So if the

data fits in a linear curve straight line then the kinetics of which we guessed as a first order

kinetics will be obtained.
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But  if  we look into  the  rate  expression,  although it  is  first  order  but  in  different  forms.

Suppose, if the rate expression is like this, 

0.6 0.4A
A B

dC
kC C

dt
 



So as you can see, the overall order of the reaction is 1 so this is also first-order reaction, so

overall order for this rate expression is 

0.6 + 0.4 = 1,

So although this rate expression is of the first order in nature, but it is not amenable for the

solution using integral method, is not amenable to the integral method of analysis. So the

caution over here is that not all  first-order reactions can be treated as integral  method as

explained before, so not all first order reactions can be treated as discussed.
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Now, let  us consider second order  kinetics,  irreversible  second order  reactions.  So if  the

reaction is second order, let us consider the general reactions which is 

A B products 

If we write the rate expression for the second order reactions, we can write 

A B
A A B

dC dC
r kC C

dt dt
     

Now, the conversion if we consider  AX  for component A the amount of A which will be

reacted is 0A AC X , so this is the amount reacted. And let the initial concentration of A and B;

A is 0AC  and B is 0BC , so we can write the concentration at any time t AC  would be 

0 0A A A AC C C X 

and BC  would be 

0 0B B A AC C C X 

Now if we substitute in this rate expression, we can obtained 

0
A

A A

dX
r C

dt
 



How we obtained AdX

dt
? If we differentiate this expression, 0 0A A A AC C C X   it would be 

0
A A

A

dC dX
C

dt dt
 

So if we substitute here, 

0
A

A

dX
C

dt


in this expression, it would be 

0
A

A

dX
C

dt
=

AkC

In this expression AC  would be 

0 0 0 0( )( )A A A A B A AC C C X C C X  

So then we will obtain 

0
A

A

dX
C

dt
 0 0 0 0( )( )A A A B A Ak C C X C C X   

Now let 

0

0

B

A

C
M

C


so if we assume that 0

0

B

A

C
M

C
 , we can write this expression as 

2
0 (1 )( )A A AkC X M X 

So from here 0AC  out so you will have 

0 (1 )( )A
A A A

dX
kC X M X

dt
  
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Now, if we do the separation of the variables of this  expression, so on separation of the

variables we will obtain the 

0

0 0(1 )( )

AX t
A

A
A A

dX
kC dt

X M X


  

Now we have to break down into partial  fractions of the left-hand side, so breakdown to

partial fractions. So to do that we can write this 

1 1 1

(1 )( ) ( 1) 1
A

A A A A

X

X M X M X M X

 
  

     

Now, if we substitute this over here and then we do integration, we will obtain from here we

can write 

0

0 0

1 1 1

( 1) 1

AX t

A A
A A

dX kC dt
M X M X

 
  

   
 



(Refer Slide Time: 44:23)

Now if we integrate this expression, this will take the form 

0

0

1
ln ln ln ln

1 (1 )
B AB A B

A A B A A

C CX M X C

X M X C C MC

 
  

 

which is equal to 

0 0 0( 1) ( )A B AC M kt C C kt   

So that this equation as you can see this is only valid when 1M  , so when M = 1 this is

undefined so this equation cannot be valid. 

Now, if we plot the concentration versus time, so we will obtain this is ln B

A

C

C
 versus time, so

if  we plot then we will  obtain this is 0, we will  obtain a curve like this which is so the

intersect here is 0

0

ln lnB

A

C
M

C
  and the slope of this curve would be equal to 0 0( )B AC C k . If

we plot like this similarly, this is time and this is ln
(1 )

A

A

M X

M X




 or we can plot 0

0

ln B A

B A

C C

C C
. So

if we plot then we can obtain a curve which is passing through the origin, it is a straight line

with a slope is equal to 0 0( )B AC C k .  



So this way we can interpret the second order rate expression by integral method, and if the

concentration of component B is such that the change of concentration due to the reaction of

A and B, the change of concentration  of B is  negligible  that  means the component  B is

present  in  large  excess,  so  its  concentration  does  not  change  much  so  in  that  case  this

equation will reduce to the pseudo first order reaction. 
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Let us consider two different cautions; one is, if the reactant introduced in equivalent amount

so  equimolar  or  stoichiometry  amount.  So  in  that  case  0

0

B

A

C
M

C
 ,  if  0 0A BC C  that  is

stoichiometry amount then M = 1 and then the treatment which we have done before is not

valid.  Or if the reaction in two moles of A reacting and producing some product will  be

treated in a different way. Like if we have 

2A products

in that case we will get the rate expression is 

2 2 2
0 (1 )A

A A A A

dC
r kC kC X

dt
     

Now, if we integrate this expression then we will obtain 

0 0

1 1 1
*

1
A

A A A A

X
kt

C C C X
  


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Now, if we plot this expression so we would obtain a curve like this. So 
1

AC
 versus time if

we plot for the equation 

0 0

1 1 1
*

1
A

A A A A

X
kt

C C C X
  



so in that case we will obtain a straight line passing through some point on the Y axis. So this

means this is your intersect which is 
0

1

AC
, and the slope of the curve is k. 

Or if we plot the other part that is 

0

1

1
A

A A

X
kt

C X




so in terms of conversion if we plot, this would give t and this part is  
1

A

A

X

X
, so we will

obtain a curve which is passing through the origin with a slope so the slope of the curve

would be 0AkC . So when we have a second order reactions and the reactants are in introduced

in stoichiometric amount we have to treat differently.
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Now, another  caution  for  this  type  of  analysis  is  that  the  kinetics  of  the reaction  or  the

reaction kinetics as well as the stoichiometry how that influence the analyses of the integral

methods. So integrated expression depends on both, the stoichiometry as well as the kinetics.

Let us take an example, 

2A B products 

so this reaction if we assume this is second order that is it is first order with respect to A and

first order with respect to B and overall second order reaction then we can write the rate of

reaction 

A
A A B

dC
r kC C

dt
   

and which we can write 

2
0 (1 )( 2 )A A AkC X M X  

here 0

0

B

A

C
M

C
 .

Now, if we integrate this rate expression, we would obtain 

0
0

0

2
ln ln ( 2)

(1 )
B A A

A
B A A

C C M X
C M kt

C C M X


  



and this equation would be valid when 2M  , so if it is M is equal to 2 this is not valid. 



So when we incorporate stoichiometric amount of the reactants, in that case the integrated

form for stoichiometric amount of the reactants, the integrated form would be 

0 0

1 1 1
2

1
A

A A A A

X
kt

C C C X
  



So this is valid when M = 2. So both from here we can see that both stoichiometry and the

reaction kinetics that is it is for non-elementary reactions. The reactions 

2A B products 

which is considered as non-elementary reactions because we have considered as second order

reaction.
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Now,  if  we consider  irreversible  Third  order  reactions,  let  us  take  an  example.  Say the

reaction is A plus B plus D producing products. So the rate equations we can write for the

third order reactions is 

A
A A B D

dC
r kC C C

dt
   

Now in terms of conversion we can write 

3 0 0
0 0

0 0

(1 )( )( )B DA
A A A A A

A A

C CdX
C kC X X X

dt C C
   



Now, if  we take  this  equation  differential  equation  and if  we separate  the  variables  and

breakdown into partial  fractions then with integration and manipulation we can obtain so

separation of variables then breakdown to partial fractions and integration, this will lead to 

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1
ln ln ln

( )( ) ( )( ) ( )( )
A B D

A B A D A B D B A B D A D B D

C C C
kt

C C C C C C C C C C C C C C C
  

     

So this is the integral form of third order reaction as shown above.

Now, if we consider any one component in large access, the same equation will reduce to the

second order reaction so which we can compare with the derivations we have done, integral

form of the rate equation we have derived earlier for the second order reaction.
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Now another example of third order reaction is 

2A B R 

with rate of reactions 

2A
A A B

dC
r kC C

dt
   

Now same thing we can write in terms of conversion which is 

2 2
0 (1 )( )A
A A A

dX
kC X M X

dt
  



Now if we consider, so here 0

0

B

A

C
M

C
 . 

Now if we integrate this relation we will obtain 

20 0 0 0
0 0

0 0

(2 )( )
ln (2 )A B B B B A

A B
B B B A

C C C C C C
C C kt

C C C C

 
  

so this equation is valid when 2M  . Now for M = 2 if we integrate from here for the third

order reactions then in that case we will obtain 

0

1 1
8

A A

kt
C C

 
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Now similarly, if we consider the another reaction of third order which is 

A B R 

So this is non-elementary reaction and of third order where 1 mole of A is reacting 1 mole of

B producing R, this reaction is considered as third order reaction. So in that case the rate of

reaction if we write 

2A
A A B

dC
r kC C

dt
   

Now if we integrate this equation like earlier, we would obtain 



20 0 0 0
0 0

0 0

( )( )
ln ( )A B B B B A

A B
B B B A

C C C C C C
C C kt

C C C C

 
  

So this equation is valid when 1M  . Now for M = 1 we can get for third order reactions 

2 2
0

1 1
2

A A

kt
C C

 

So these are the two integral forms of the rate equation for third order reactions with different

stoichiometric ratio, which is not equal to 1 and one is the stoichiometry ratio is 1.

So overall we can see that the stoichiometry and kinetics of the reactions are both important

to represent the integral form of the rate equations and analysing the data from the batch

reactor analysis. So thank you very much for attending this lecture, and we will continue our

discussion on the batch reactor data in the next class as well.


