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Lecture 06
 Stoichiometry for Variable Volume Flow System

Welcome to the third lecture of module 3 of Chemical Reaction Engineering I. In this module

we are discussing Stoichiometry. Before going to this lecture let us have brief recap on our

previous lecture. 

(Refer Slide Time: 0:48)

In our previous lecture we have broadly covered this two topics, one is stoichiometry for

constant  volume  flow  system,  and  second  topic  we  have  covered  the  stoichiometry  for

variable volume batch system. In case of stoichiometry for constant volume flow system, we

have seen when v volumetric flow rate   is equal to 0  for a general reactions,

b c d
A B C D

a a a
  

For  this  general  reaction  we  have  seen  how  the  concentration  AC  is  related  with  the

conversion. That means 

0 (1 )AA
A

F XF
C

 


 



X is the conversion. So this is essentially  0
0

0

A
A

F
C


  that is the initial concentration that is

0 (1 )AC X .

Similarly, for component B 

0 ( ( ) )B A B

b
C C X

a
  

and so on. In this case this B  is nothing but 

B
B

A

F

F
 

For stoichiometry for variable volume batch system be have obtained the relations between

volume and the conversion. So the volume for case of batch reactor is V is related with the

conversion as 

0
0

0

( )(1 )( )
P T

V V X
P T

 

So this  is  the  general  expression for  variable  volume batch system where  the volume is

related with the conversion. And then we can relate with the concentration.

Here, if we incorporate constant volume systems we will essentially get the constant volume

batch reactor equation.
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Now in this lecture, we will consider stoichiometry for variable volume flow system and the

lecture outline would be, stoichiometry for variable volume flow system, and then we will

summarize stoichiometry whatever discussed till today.
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So,  let  us  start  with  stoichiometry  in  variable  volume  flow  system.  The  expression  for

variable volume flow system would be similar to that of the variable volume batch system. In

a similar way we can obtain the stoichiometry table. Some examples of variable volume flow

systems are you can see the cooking gas cylinder as you can see with fitted regulator. So if

you just open the regulator the flow will start and the volume will change. So it is the volume

gradually decrease inside the reactor inside this cylinder.



Other examples for variable volume flow systems like if we have fluidized bed at rest and

then we pass you can see the fluidized bed how it looks like at rest. Now, if we pass the

reactant to pass through the bed through the distributor so the bed will expand. So essentially

the volume of this will change so this is another examples of variable volume flow system.

(Refer Slide Time: 6:17)

Now, what we want for this? We want volumetric flow rate small v would be in terms of the

function of conversion. The total concentration at any point in the reactor we can write 

T

P
C

ZRT


Where P is the pressure and Z as defined earlier for the batch system it is the compressibility

factor, R is the universal gas constant and T is the temperature. So the total concentration at

any point in the reactor we can write 

T

P
C

ZRT


Now the same concentration at the reactor entrance, what would be the equation? At reactor

entrance we can write at t = 0. 

So the pressure of the system we can consider 

0
0

0 0
T

P
C

Z RT




0T  is the initial temperature and 
0Z  is the compressibility factor at the reactor entrance and R

is the universal gas constant.

Now, we know for any flow system the concentration TC  can be related with the molar flow

rate by the volumetric flow rate. So CT can be written as 

T
T

F
C




So from here we can write 

T TF C 

Now for 0TC  we can write 

0
0

0

T
T

F
C




0TC  is the concentration at the volumetric flow rate at the reactor entrance and from here we

can write

0 0 0T TF C  7
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Now this we know, if we just write TF  would be 



T TF C 

So 0TC  as we said at the entrance conditions. At the total concentration at any point in the

reactant 0TC  so this will be 0

0 0

P

Z RT
 so if we substitute TC  in place of here so this TF  we can

write 
P

ZRT
 . Similarly for 0TF  we can write 0 0TC   and 0TC  we know from here so we can

substitute this over here and we will get 

0
0 0

0 0
T

P
F

Z RT


Now, if we divide these two relations, 

T T

P
F C

ZRT
  

0
0 0 0 0

0 0
T T

P
F C

Z RT
  

this one and one and we would obtain this relation. So basically, we divide 

0 0
0

0 0

T

T

P
FZRT

P F
Z RT






So if we rearrange this we would obtained   would be 

0
0

0 0 0

( )( )( )( )T

T

PF T Z

F P T Z
 

So if we considered Z, the compressibility factor Z would not change much at the reactor

entrance and at the any point in the reactor so this we can take as 1. 

0

1
Z

Z


So in that case we would obtain this relation.



0
0

0 0

( )( )( )T

T

PF T

F P T
 
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Now we have this relation and we know TF  is related with the stoichiometry of the reactions

as 

0 0T T AF F F X 

So, if we substitute TF  in this relation we would obtain   would be 

0 0 0
0

0 0

( )( )( )T A

T

F F X P T

F P T


 




So this equation we would obtain. 

Now, if we just rearrange this relation we can write as 

0 0
0

0 0

(1 )( )( )A

T

F X P T

F P T


  

Earlier we have discussed that 

0
0

0

A
A

T

F
y

F


so we can write 

0
0 0

0

(1 )( )( )A

P T
y X

P T
   



Now as from the definition of the    we have obtained that this is equal to  0Ay  , so if we

substitute here we will obtain 

0
0

0

(1 )( )( )
P T

X
P T

   

So finally this is the relation which will get with the conversion and extend of reaction with

the volumetric flow rate.
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Now our target is to express the concentration in terms of the function of X. So we got the

relations between the volumetric flow rate and the conversion now our target is to express the

concentration in terms of the conversion. So concentration of any species j for a flow system

in terms of the conversion we can write 

0

0
0

0

( )( )
( )

j j
j

T

T

F F TP
C

F P T
F

 
  0 0

0 0

( )( )( )jT

T

FF TP

F P T


Since 

0
0

0

T
T

F
C




so we can substitute over here Cj would be 

0
0

0

( )( )( )j
j T

T

F TP
C C

F P T


So here this expression of concentration is for any component j. 

Now if we write for component A, this relation would be 

0
0

0

( )( )( )A A
A T

T

TF F P
C C

F P T
 



So this is equations of AC . Similarly, we can write for component B we can write BC  would

be 

0
0

0

( )( )( )B
B T

T

TF P
C C

F P T


So we have relation of CB as well.
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Now, 

0
0

0

(1 )( )( )
P T

X
P T

   

This we have, we have derived this relation. Now for any component j we have this relation 

j
j

F
C




If we substitute this relation of v in this expression of in place of   we would get 

0
0

0

(1 )( )( )

jF

P T
X

P T
 

Now to simplify it would be 

jC  0

0 0

( )( )
(1 )

jF TP

X P T 

So this is the relation of jC . 

Now, we can write for component A which would be 

0 0

0 0

(1 )
( )( )

(1 )
AA

A

F X TF P
C

X P T  


 





and if we simplify 

AC  0
0

0

(1 )
( )( )

(1 )A

TX P
C

X P T





So now similarly for component B we can write BC  would be 

0

0

( ( ) )AB
B B

FF b
C X

a 
   

And we have defined the   earlier, so 

BC  0
0

0

( ( ) )
( )( )

(1 )

B

A

b
X TPaC

X P T

 



So this is the relations where we can relate concentration with the conversion.

Now from this we can develop the stoichiometric table for the flow system which can be

written as follows flow and particularly gas flow system the stoichiometric table for the first

4 column that species, their no change of concentration, and then remaining those columns

remains same in the case of the constant volume flow system. And it will be similar to the

variable volume flow system. But the conversion term between the concentration and the

flow rate would be little different so which will summarize in this stoichiometric table. 
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So we can write AC  



0 0 0 0
0

0 0 0

(1 ) (1 ) (1 )
( )( ) ( )( )

(1 ) (1 )
A AA

A A

F X F X T TF P X P
C C

X T P X T P    

  
   

 

For BC  be can write 

0 0
0 0

0
0 0 0

( ( ) ) ( ( ) ) ( ( ) )
( )( ) ( )( )

(1 ) (1 )

A B A B B
B

B A

b b b
F X F X XT TF P Pa a aC C

X T P X T P    

     
   

 

For CC  we can write 

0 0
0 0

0
0 0 0

( ( ) ) ( ( ) ) ( ( ) )
( )( ) ( )( )

(1 ) (1 )

A C A C C
C

C A

c c c
F X F X XF T TP Pa a aC C

X T P X T P    

     
   

 

Similarly for DC  

0 0
0 0

0
0 0 0

( ( ) ) ( ( ) ) ( ( ) )
( )( ) ( )( )

(1 ) (1 )

A D A D D
D

D A

d d d
F X F X XT TF P Pa a aC C

X T P X T P    

     
   

 

And for inert we can write 

0 0 0 0 0

0 0 0

( )( ) ( )( )
(1 ) (1 )

A I A I A II
I

F F T C TF P P
C

X T P X T P    

  
   

 

So this is the conversion of different concentration in terms of conversion and the extent of

reaction.
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Now, let us take an example considered the same example which we have covered in case of

the constant volume batch reactor. So consider also the variable volume batch reactor. So

consider the following elementary reactions with equilibrium constant, K = 50 liter per mole

and initial reactant concentration is 0AC = 0.5 mole per litre. So this is the reaction

2A B

which is a reversible reaction and rate of reaction is given 

2

[ ]BA A A

C
r k C

K
  

Find the equilibrium conversion efX  for a flow reactor.
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So we have to find out the conversion efX  for a flow reactor where 

2A B

Now, we can develop the stoichiometry table like symbol A for component A, the initial

concentration  is  0AF ,  the  change  is  0AF X  so  the  remaining  AF  would  be  equal  to

0 (1 )AF X .

Now for component B, initial concentration of component B is zero and its change would be

0

2
AF X

 , so 
BF  would be 0

2
AF X . 

Now 0TF  would be 0AF  initially and TF  would be 0 0A AF F X

So if we sum up this two we will get 

0 0T A AF F F X 
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Now the system is isothermal T is equal to 0T  and the isobaric system that is P is equal to 0P .

So in this case   would be equal to 

0 (1 )X   

And AC  would be 

AC  0

0

(1 )

(1 )
AF X

X 





So since this is isobaric and isothermal system the ratio between the temperature and the

pressure they are unity. They are 1 so they are cancelled out. So we will have AC  would be

0

(1 )

(1 )A A

X
C C

X






We know the initial concentration which are given   also we can calculate so we will get the

relations between concentration and conversion.

Similarly for component B we can write 

0

0

2

(1 )
A

B

F X
C

X 




So if we substitute over here we will get 



0

(1 )
2

(1 )B A

X
C C

X






So  we  obtained  the  relations  for  AC  and  BC  in  terms  of  the  conversion  from  the

stoichiometry table.
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Now, this is the rate expression and if we substitute AC  and BC  which we have developed in

the relations earlier, we can write 

0 (1 )A A A fr C C X 

Here fX  represents the conversion in flow system. In batch system we have written X, in 

flow system we change to fX , so fX  is the conversion in the flow system. So we can write 

2

0 0(1 ) 2

(1 ) (1 )
A f A f

A A
f f

C X C X
r k

X X K 

    
               

So pure component A we will have 

0 1Ay 

0 0
0

0

A
A

y P
C

RT




Since 0 1Ay  , so from here we can write 

0
0

0
A

P
C

RT


Here 0 1Ay  , so we substitute it here 1 

In case of   and   we can see 

0 (1)(2 1) 1Ay    

2 minus 1, 2 moles is fo 

So in this case if we substitute that part we would have 

2
02 4

(1 )
(1 )

A ef
ef

ef

C X
K X

X
 



efX  is the equilibrium conversion. So, if we solve it we will get now this relation, 

2 2

0(1 )(1 ) 4
ef

ef ef A

X K

X X C
 

 
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So now,   would be 

0 (1)(2 1) 1Ay    



we have calculated and this is the equation which we have derived. 

2 2

0(1 )(1 ) 4
ef

ef ef A

X K

X X C
 

 

Now, if we substitute the values here K is 50 which is given and initial concentration is 0.5

2
50*50

1250
(1 )(1 ) 4*0.5

ef

ef ef

X

X X
  

 

So if we solve it, it would be 

2

2
1250

(1 )
ef

ef

X

X




2 21250 1250ef efX X 

Now, if we rearrange we can get 

21251 1250efX 

and from here we can write efX  would be equal to 

1250
0.9996

1251efX    

So if we take the square root of this it would be 

0.9996efX  

So the equilibrium conversion in this case we can write efX = 0.9996 because the conversion

cannot be the negative so we will take the positive root so which is 0.9996.

Now, if we recall our earlier solutions for the batch reactor flow systems. In that case for the

same example we obtained the equilibrium conversion as  eX  is 0.963. So it could see the

conversion  for  this  case  is  higher  than  the  conversion  compared  to  the  batch  reactor

conversion.



(Refer Slide Time: 33:59) 

Now, let  us summarize what we have discussed so far in the stoichiometry.  So we have

considered the general relations of component A and B they reacts and they form product C

and D with a stoichiometric coefficient a for component A, stoichiometric coefficient b for

component B and producing C of C stoichiometric coefficient c and D with stoichiometric

coefficient c that means 

aA bB cC dD  
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And we have considered A is the limiting reactants so we have considered 

b c d
A B C D

a a a
  



So this is the overall general reactions we have considered. And then we have considered

liquid phase and gas phase both the reactions. Reactions occurred in the liquid phase and

reaction occurred in the gas phase. Now flow system and batch system we have considered,

for flow system we can write  B
B

F
C


  and for batch system we can write  B

B

N
C

V
 .  So

capital V is the volume of the reactor. Now in the gas phase batch reactor B
B

N
C

V
  and for

flow reactor we have also it will be similar to the liquid phase B
B

F
C


 . 

Now if there is no phase change in the system. Suppose in the liquid phase there is no phase

change so 0  . And in this case the volumetric flow rate would be 0  constant. And in this

case batch reactor they does not change much the volume does not change much, so we can

keep 0V V . The volume will remain as constant. So we can write 

BC  0 ( ( ) )A B

b
C X

a
   

In case of gas phase if the constant volume system 0V V  then we can write 

0
0

0 0

( )( )( )T

T

PN T
V V

N P T


This is for variable volume system. Similarly, for variable volume flow systems we can write 

0
0

0 0

( )( )( )T

T

PF T

F P T
 

Similarly, 

0

0 0

( )( )( )B B
B

T

TN F P
C

N V P T


that is for batch reactor.

In case of flow reactor we can write 



0 0

0 0

( )( )( )TB
B

T

F TF P
C

F P T


And so we can write, this rearrange this relations 

0
0

0

( )( )B
B T

T

TF P
C C

F P T


Similarly, in case of the flow reactor we can write 

0
0

0

( )( )B
B T

T

TN P
C C

N P T


But if it is constant volume, batch reactor 0V V  so in that case we will obtain this relation

even if in the gas phase. 

BC  0 ( ( ) )A B

b
C X

a
 
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Now, if there is no phase change or no semipermeable membrane in this case for gas phase.

Both batch and the flow reactor we can write 

0
0

0

(1 )( )( )
P T

X
P T

   

and CB we can write 

BC  0
0

0

( ( ) )
( )( )

(1 )

B

A

b
X TPaC

X P T

 



So this is how we can obtain for the gas phase system where there is no phase change.
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If it is isothermal then 0 1
T

T
  so we will get 

BC  would be like this

BC 
0

0

( ( ) )
( )

(1 )

B

A

b
X PaC

X P

 



If it is isobaric stem that is neglect pressure drop isobaric system then 
0

1
P

P
 . 

So finally we will get 

BC 
0

( ( ) )

(1 )

B

A

b
X

aC
X

 


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And   we have now   we have obtained earlier 0Ay   and   is the change in mole into

the reacting systems that is 

1
d c b

a a a
    

And 

0
0

0
T

P
C

RT


And 

0 0 0AD A A TC C y C 

So this is the overall summary of the stoichiometry chapter which we have discussed in 3

lectures. And this would be the basis for solving the other reactor design part in other sections

which we will cover in other modules. So thank you very much for attending this lecture and

we will continue our discussion on the other modules in the next lecture.


