
Chemical Reaction Engineering 1
Professor Bishnupada Mandal

Department of Chemical Engineering
Indian Institute of Technology Guwahati

Lecture 29 - RTD in Ideal Reactors

Welcome to the third lecture of non-ideal reactor and residence time distribution function. So

before going to this lecture let us have brief recap on our previous lecture.
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In our previous lecture we have mainly covered the RTD measurement by step input method

and we have seen that if we use step input method then for a tracer which are very costly it is

very difficult to use step input because there is continuous injection of the tracer into the

reactor and there are certain advantage and disadvantage we have discussed while discussing

the RTD measurements by step input method. Then we have discussed the cumulative RTD

distribution function, how to calculate the cumulative RTD distribution function and how it

look like.

Then we have seen mean residence time and the other moments of residence time distribution

particularly  variance  and  skewness.  Then  we  have  seen  there  are  certain  advantage  to

normalise  the  RTD distribution  function  that  is  Et  and we can  write  Et  as  a  normalised

function as e theta, where theta is equal to t by tau which is the dimensionless quantities.
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Now in this lecture we will consider residence time distribution in ideal reactor. The major

topic we will cover over here the RTD in batch and plug flow reactors, how the residence

time  distribution  function  look  like,  and what  is  their  mathematical  form.  Then we will

consider RTD in single mixed flow reactor or the continuous stirred tank reactor. Then if we

have combination of the mixed flow reactor and the plug flow reactor and if they connected

in  series,  how  the  residence  time  distribution  changes?  And,  finally  we  will  see  one

interesting example to see whether the only RTD can be sufficient to design the real reactor.
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So let us consider RTD in batch and plug flow reactors. RTD in ideal plug flow reactor and

the batch reactor are the simplest one to mathematically represents as all the atoms leaving

the reactor have spent equal period of time inside the reactor. So the distribution function is



such a case is a spike of infinite height and 0 width whose area is 1. So the spike occurs at t is

equal to v by volumetric flow rate(
V

t


 ), capital V is the volume of the reactor and small v

is the volumetric flow rate. So which is equal to t tau or theta is equal to 1. So mathematically

this spike is represented by a dirac delta function as given below. So where ( ) ( )E t t   ,

so this is the residence time distribution function in case of ideal PFR or batch reactors.
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Now as we have seen, this is the mathematical form of the dirac delta function, the direct

delta function has certain properties, what are they?  x would be equal to 0 when x not equal

to  0  and  it  should  be  infinity  when  x  is  equal  to  0.  So  ( ) 1x dx




   and

( ) ( ) ( )g x t dx g  




  . So we can see this direct delta function graphically, so this is the y

axis and this is x axis, and y axis if we plot  ( )E t  versus the t then if we have in at this

location which is over here the out would be at tau, so which is at   because all the materials

have spent exactly same length of time inside the reactor. So we will get a spike of infinite

height and 0 width whose area would be unity or 1.
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Now to calculate  , the residence time we set ( )g x is equal to t, if we put that then our mt  as

we know from the definition the mean residence time would be equal to 
0

( )tE t dt


 . So now if

we substitute  ( )E t  for the dirac delta function this  ( ) ( )E t t   , so if we substitute  ( )E t

over here at this location, so we will obtain 
0

( )t t dt  


  . Now to calculate the variance

that is the delta square that is 2 , we said gt is equal to t minus tau square 2( ) ( )g t t    and

the variance would be 2

0

( ) ( ) 0t t dt   


    .

So we can see that the variance for the ideal PFR or batch reactor because each molecules

spent  or  each  atom spent  exactly  same length  of  time,  so  there  is  no  variation  of  their

residence time, so we get sigma square is equal to 0 ( 2 =0), that means all materials spent

exactly the same time  , there is no variance.
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Now in an ideal mixed flow reactor the concentration of any substance in the outlet stream is

identical to the concentration throughout the reactor. So if we consider the pulse injection of

tracer at t is equal to 0 for a constant density mixed flow reactor, at the instant we inject the

tracer, it is uniformly distributed throughout the reactor. So since for ideal flow reactor it is

the content of the reactor is mixed homogenously at each point, so there is no change of

concentration inside the reactor at any location with the outlet concentration of the reactor. So

it will be distributed uniformly throughout the reactor if we inject any tracer material with the

reactants.

Therefore at t is equal to 0, the concentration of tracer everywhere in the reactor would be

MC V  where M is the amount  of tracer  injected and V is the reactor  volume. So the

concentration would be the amount of tracer divided by the reactor volume, so C would be

equal to M by V ( MC V .)

Now thereafter  the tracer obeys the mixed flow reactor transient species balance with no

reaction term in it. So we can write  0( )
dC

V Q C C
dt

   where Q is the volumetric flow rate

and 0C  is the concentration in the inlet stream which is 0 for times naught equal to 0. So for,

we have given the pulse injection of the tracer, so the 0C at t is equal to 0 for all other times



above 0t  or t <= 0 it should be, the tracer concentration would be 0. So this we can write

since for 0t  , C naught is equal to 0, 
dC C

V
dt r

 .
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Now if we separate the variable and integrating with C is equal to M by V at t is equal to 0,

so we can get  the concentration  profile  of  the  tracer,   ( ) exp
M t

C t
V 

 
  

 
,  so this  is  the

concentration profile. Now we can evaluate the residence time distribution function from the

expression  that  we  have  derived  earlier.  So  

0

( )
( )

( )

C t
E t

C t dt





that  is  the  definition  of  the

residence time distribution function. Now if we substitute ( ) exp
M t

C t
V 

 
  

 
 over here and

at the denominator it is  
0

exp
M t

dt
V 


 
 
 

 . So if we solve it, it will give  
1

( ) exp
t

E t
 

 
  

 

So this way we can evaluate the residence time distribution function from the expression

which we have derived earlier for the ideal mixed flow reactor.
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Now  this  is  the  exit  age  distribution  function  E  t  which  we  have  derived  is  equal  to

1
( ) exp

t
E t

 

 
  

 
. So this function has its largest value at t is equal to 0, so when t is equal

to 0,   ( (0) 1 )E  . So this part would be 1, so  
1

( )E t


 . It has a finite value for all finite

values of t, so it should have certain values, and if we have a finite time. In terms of the

dimensionless residence time,   = t   and then we can simply write ( ) exp( )E    . So as

we know, we have set earlier ( ) ( )E E t  , so we can simply relate ( ) exp( )E    . 
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Now look into this plot where it shows the RTD for two ideal cases, one is for mixed flow

reactor and then the plug flow reactor and then what we actually observe in case of the real

reactor or partially mixed reactor. So this is   on the x axis which is t   and this is ( )E  .

So, if we plot ( )E   versus   we would obtain for the mixed flow reactor this is the curve,

for  mixed  flow  reactor.  So  the  residence  time  distribution  function,  the  dimensionless

residence time distribution function will  be this,  that is the exponential  decay as per this

relation.

In case of ideal PFR which is shown over here and that will be  t  , so all t should be

equal to   so   would be equal to 1, so which is shown over here. At  is equal to 1, it will

give all elements of the reactants will have the same residence time and so it will give a spike

of infinite height with 0 height with 0 width.

So that  is  what  it  is  shown with a vertical  line for the  ideal  PFR. Now actually  for  the

partially  mixed reactor  or any real  reactor  where the mixing is  not the ideal  mixed flow

reactor or the ideal plug flow reactor as we say it, these two will set the two extremes of the

mixing pattern. So, in real reactor we would see this blue line which is the residence time

distribution function for the real reactor.
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Now it was already shown earlier that for constant volumetric flow rate the mean residence

time in a reactor is equal to V by volumetric flow rate or  . This relation can be shown in a

simple fashion for mixed flow reactor, applying the definition of the mean residence time for



RTD, for MFR, we obtain. 
0 0

( ) expm

t t
t tE t dt dt 

 

 
 

   
 

  . Thus the normal holding time

or space time tau would be V by volumetric flow rate is also the mean residence time that the

materials spend in the reactor. 
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Now mt , the mean residence time is the space time, equal to the space time   and clearly the

width  of  this  distribution  as  we  have  seen  for  the  different  reactors,  the  width  of  the

distribution  tells  us  something  about  the  degree  of  mixing  in  the  reactor.  The wider  the

distribution, the greater the degree of mixing within the reactors, so you can see in case of

ideal mixed flow reactor, the distribution is much wider compared to the real reactors. Real

reactors, whereas in case of PFR there is no distribution, so we can see the real reactor falls in

between. So, basically the distribution tells us about the degree of mixing inside the reactor.

Now this can be quantified by computing the variance of the RTDs, and the variance  is

defined by sigma square for ideal mixed flow reactor, we can write,  2 2

0

( ) ( )mt t E t dt


 

Now this mt  for the ideal mixed flow reactor we have calculated as  , so if we substitute t m

with   this  would be  2

0

( ) ( )mt t E t dt


 .  So,  as  we know  ( ) ( )E E t   which  is  equal  to  



( ) exp( )E    , so E(t) from here we can write,  
exp( )

( )E t





 . So if we simplify this one

this would be 2
2( 1)   whole square and in place of E( t)we can write exp( )  by  .

And 
2

2
2





 , d theta would be dt by tau( /t   ). From here we can write dt d   . So

if we substitute E t and dt so it would be exp( )  d . If we integrate it, we will get 2 , that

means   would be equal to  .
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Now from the above equations which we have derived it is clear that the variance is the

average value of the square of the difference between the dimensionless residence time. So

square  of  the  difference  of  the  dimensionless  residence  time  theta  and  the  average

dimensionless residence time which is 1. For the PFR, this is zero since all of the fluid has the

mean residence time which we have already discussed earlier. In case of ideal PFR sigma

square is equal to 0, we have derived.

So from here also we can see for PFR, the sigma would be 0 since there is no difference in

their mean residence time. So for a mixed flow reactor, it gives sigma star square which we

can define sigma square by tau square which is equal to 1, so from here we can write sigma

star square would be 
2

2
1




 . So for a series of n equally sized mixed flow reactor connected

in series with the dimensionless residence time defined based on the total residence time for

all the n reactors, it can be shown that 
2

2
2

1

n





  .

So if we connect n number of CSTR in series we can calculate 2
  would be equal to 1 by n

where n is the number of reactors connected in series. So we could see that this goes from,

this value  2
  goes from 1 to 0 as the number of reactor in series increased. So when n is

equal to infinity so it will be, sigma star square would be equal to 0. When n is equal to 1,

then 2
  is equal to 1.
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Now let us consider RTD in PFR and mixed flow reactor connected in series. So we will first,

case we will consider mixed flow reactor followed by PFR and how the RTD is look like.

Basically if we have a real reactor, so there is mixing inside and there should be, there is also

some dead zone and there is also some short circuiting. So this real reactor we can assume as

it is a combination of CSTR and the plug flow reactor connected in series.

If it so happen, the first case we consider mixed flow reactor followed by the Plug Flow

Reactor. So the residence time in mixed flow reactor is denoted by the m , so over here. And

the residence time for PFR is p . If a pulse tracer is injected into the entrance of the MFR,

the output concentration of MFR as a function of time would be as follows:  0
mtC C e  . So

this  output  will  be  delayed  by  time  p  at  the  outlet  of  the  PFR  because  this  is  the

concentration which is at the exit of the CSTR that is C and this concentration would be

delayed by time  p

So the RTD of the reactor system would be represented  ( )

0

( ) p m

p

t

p
m

t

E t e
t

 






 




 




.

So under these two conditions we can see the RTD distribution function. Now if we represent

graphically for this, this is ( )E t  and this is p  and this is the locations where tau CSTR or tau

mixed flow reactor m  at this locations. After that the profile would look like this. So this is



for the case where mixed flow reactor is connected before the plug flow reactor, so they are

connected in series.
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Now let  us see the other case of modelling this reactor in the second case where PFR is

connected earlier than the mixed flow reactor or the mixed flow reactor is preceded by Plug

Flow Reactor. So in this case, so we have same reactor system. And we have inlet, so we

have dead zone so this is real reactor and this we can model in the second method where we

have connected first the plug flow reactor and then CSTR and we know the residence time p

and this is for mixed flow reactor m .

Now if a pulse tracer is injected into the entrance of the PFR then the same pulse will appear

at the entrance of the mixed flow section that is  p  seconds later. That means as for ideal

plug flow reactor, the tracer which will be injected over here that has to be delayed for p

time to enter into the CSTR. So the residence time, distribution of this reactor system would

be same as  we obtain  for  the  earlier  case.  So,  this  is  exactly  the  same one when MFR

followed by PFR. This turns out that no matter where the MFR occurs within the MFR-PFR

reactor sequence, the same RTD results.

So whether the MFR is connected first than the PFR or PFR is connected first than the CSTR,

the  RTD distribution  function  or  the  residence  time distribution  function  for  these  series

reactors are the same. So this is not the entire story as we will see in the next examples.

Although their  RTDs are same,  they may not  generate  the same conversion level  as  we

desire.
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So let us take an example which is taken from the Fogler’s book and a second order reaction

is carried out in a real mixed flow rector that can be modelled out as two different systems as

we have discussed before. So in the first system, an ideal mixed flow reactor is followed by

an ideal PFR and in the second system the PFR proceeds the mixed flow reactor. Now let us

consider  m  would be equal  to  this  is  p  would be equal  to  1 minute,  the reaction rate

constant 31 ( min)k m kmol  and  the  initial  concentration  of  the  liquid  reactant  that  is  

3
0 1AC kmol m .

So we need to find out the conversion in each system as stated in a and b. So let us consider

the first system, this is t p, p . So if we do the mole balance for the CSTR, so we will get,



this is MFR, so for MFR mole balance, so we can write 0 0( )A AiC C  . So consider we have

inlet concentration over here, 0AC  and outlet over here is AiC  and this is AC . So for the MFR,

this would be equal to 2
AikC V

Now  if  we  rearrange,  we  can  write  2
0 0m Ai Ai AkC C C    .And  now  if  we  solve  for

01 4 1

2
m A

Ai
m

kC
C

k





 
 .  So  now  if  we  substitute  the  values,  it  would  be

31 1 4
0.618

2AiC kmol m
  

  . 

Now let us consider mole balance in case of the MFR, in case of the PFR. So PFR mole

balance we can write
2

0
A A A

A A
p

dF dC dC
r kC

dV dV d



     . So this will give 

1 1
p

A Ai

k
C C

 

Now if substitute AiC , which we have obtained over here, which is equal to 30.618kmol m .

Now  if  we  substitute  over  here,  we  will  obtain,  so  0AC  is  this,  AiC  is  this  and

3

1min

1 ( min)

m

k m kmol

 


. So substituting these values, this would be 

1 1
1

0.618AC
 

And from here we can get  30.382AC kmol m .So, the concentration of the reactant in the

effluent of the reactor systems which is AC , that is over here, so we have calculated which is

coming out. So, it is basically the conversion is (1 0.382) 1 0.618 61.8%AX      
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So now we will consider the second case where first PFR is connected and then CSTR. So in

this case, this is 0AC , this is AiC  and this is AC . So we can write from the mole balance of

PFR, 
0

1 1
p

Ai A

k
C C

   and 
1 1

1*1
1AiC

  . So from here we can calculate 30.5AiC kmol m

Now, this  30.5AiC kmol m which is inlet to the CSTR and we have to do the CSTR mole

balance with the inlet concentration of  30.5kmol m . So, to calculate CA. Now MFR mole



balance, so this is 0AC , AiC  and 0AC  which is 30.5kmol m . So if we do this, this would be

2 0m A A AikC C C    . And form here we can write 
3

1 1 4
0.5

2

1 1 2
0.366

2

m Ai
A

m

kC
C

k

kmol m





  
 

  
 

So then conversion over here, that is 63.4%AX  .

So, we could see that in these two configuration; in the first configuration, we obtain 61 point

for  this  case,  61.8  percent  conversion  and  in  the  second  case  we  obtain  63.4  percent

conversion.  So,  as  we can  see although there  is  a  marginal  difference  of  the conversion

between these two arrangements but there is a point that there is a difference of conversion.

So let us conclude from this example.
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So  the  conclusion  from  this  example  is  of  extreme  importance  in  the  reactor  design.

Particularly  we  can  see  that  the  RTD is  not  the  complete  description  of  structure  for  a

particular reactor or the reactor systems because as we have seen earlier, the RTD function is

the same for both the arrangements but as we could see the conversion of these two different

arrangements they are different. So the RTD is unique for a particular reactor however the

reactor or reactor system is not unique for a particular RTD.

When we are analysing the non-ideal reactors, RTD alone is not sufficient to determine the

performance and more information is needed. So, only RTD alone cannot be sufficient to



determine the performance of the reactor. So we need to have certain other information or

more information for the design of the reactor or analysing the characteristics  of the real

reactors. So it will be discussed in our next lecture that in addition to the RTD, an adequate

model of non-ideal reactor flow pattern as well as the knowledge of the mixing, quality of the

mixing or the degree of segregation inside the reactor are both required to characterise a real

reactor properly.

So, we will consider these aspects of the non-ideal reactor design based on the flow pattern

inside the reactor as well as the segregation inside the reactor in our next lecture. So thank

you very much for attending this lecture.
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