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Lecture 28 - RTD Measurement and Moments of RTD

Welcome to the second lecture of module 5. In this module, we are discussing residence time

distribution, that is non-ideal reactors and the reactor design for the non-ideal reactors.

(Refer Slide Time: 0:43)

So before going to this lecture let us have brief recap on our previous lecture.

(Refer Slide Time: 0:50)



In the last lecture, we have covered introduction to non-ideal reactors and we have seen for

the non-ideal reactors how the residence time distribution varies from one reactor to the other

reactor due to non-ideality in the system. We have looked into the measurements of RTD,

how we can measure the experimentally the residence time distribution function. And then

one of the experiments we have considered is the pulse input experiments.

So in these cases, we have seen there are certain disadvantages of pulse input measurements

for to determine the residence time distribution. And there we can see the injection must be

done at a very short time which is difficult in case of the pulse injection. So that may lead to

some error in the measurements. So it can be inaccurate when the c-curve has a long tail. So

we have seen when there is a the tracer if it stays for a longer time in the reactor, so the

distribution of the concentration versus time curve, we could see there is long tail and then

we have to truncate the long tail to complete the calculations.

So it can lead to inaccurate results. Then the amount of tracer used must be known. So the

amount of tracer we inject and that should come out, so that has to be balanced.

(Refer Slide Time: 2:51)

So in this  lecture,  we will  consider RTD measurements,  different moments of RTD. The

lecture outline would be we will see how we can measure the residence time distribution by

step input. Earlier we have done pulse input, we will see in the step input method. Then we

will see the cumulative distribution function and we will calculate the first moments of RTD

that  is  the  mean residence  time and then  other  moments  of  RTD. Then we will  see  the



normalized RTD function, and is its important to calculate normalized RTD function for the

comparison of different RTDs of the reactor.

(Refer Slide Time: 3:47)

So let us start with measurement of RTD by step input. So in this case, we consider tracer

concentration to be given as a step input in a system with a constant volumetric flow rate. So

the volumetric flow rate of the reactants should be constant and we give a step input of the

tracer. The constant rate of tracer addition to a feed initiated at t=0. So before this time no

tracer was added to the feed. So the tracer is added at t=0 and before that there was no tracer

addition into the feed.
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Now this is we have got from the tracer input experiments. And the concentration of the

tracer is kept constant until outlet concentration is equal to the inlet concentration. So outlet

tracer concentration should be equal to the inlet tracer concentration. So if that is happened,

the typical curve we could see for the tracer input. This is a tracer inlet concentration with

respect to time and this is the step injection, so step input at t and then we will get 0C  which

is injected over here.

And then output we can see C out curve. So this is the response curve or when you detect it.

So this is the step output and the concentration would be C naught. So inlet concentration is

0C  and outlet concentration is 
0C . So the concentration of the tracer we should keep constant

until we get the outlet concentration 0C . So this is the C curve.
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Now since the concentration is constant with time that  is  0C ,  we can take it  outside the

integral sign
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So this  F t  is the cumulative distribution function. So  
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.  So  this  is  the  cumulative  distribution  function
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.  So

differentiating this relation we can obtain E t. And again integrating the  E t  curve we can

get the  F t
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So the advantages  and disadvantages  of the step input.  So advantages  are in case of the

positive step when we give is usually easy to carry out experimentally than the pulse test. So

here we need not to maintain the time which is very short. So it is injected over a period of

time. An additional advantage is that the total amount of tracer in the feed over the period of

the test does not have to be known. So as it is we have seen in case of the pulse test, we need

to  know how much  tracer  is  injected  and  whether  that  is  coming  out  with  the  effluent

schemes.

So that mass balance has to be confirmed in case of the pulse tracer injection test. But in case

of a step input that total amount of the tracer we need not to be known for the calculation.

The disadvantage for this case, there are some problems related to this step input that is it is

difficult  to  maintain  a  constant  tracer  concentration  in  the  feed.  So  throughout  the  step

injection it  is  very very difficult  to maintain the concentration  0C .  So that  is  one of the

difficult drawback in this case of the step input.

The  second  problem  which  we  face  is  obtaining  the  RTD  from the  step  test  involved,

differentiation of the data and this presents more serious drawback to the technique, since

differentiation of the data sometimes can lead to large error if the data obtained are not so

accurate. So that we have seen when we analyze the kinetic data, in case of the batch reactor

kinetic data we have seen there are two methods of analyses. One is integral method another

is a differential method.



In case of the differential method we have seen if the accuracy of the data is not there or the

data are scattered differential method may not give accurate results. It gives a large error in

sometimes. So that is the second problem similar to that in case of the step input.

Now the third problem in this case is that the large amount of tracer is required for this test

because we have to continuously add the tracer for a period of time to the feed. So the period

of time is such that when the outlet concentration matches with the inlet tracer concentration

if that is matches, so we have to give large quantity of the tracer along with the feed. So if the

tracer is very expensive then this method is difficult to use. Then in that case, pulse test is the

better method to be adopted.

(Refer Slide Time: 12:16)

So  RTD  distribution  function  we  have  seen  that  the  cumulative  distribution  function

   
0

t

F t E t dt  . So that is a cumulative the total amount of effluent that has been inside the

reactor   
0

t

E t dt . So that is why this part is called the cumulative distribution function. So

therefore  F t   
0

t

E t dt . And we can see that   0       0F t t  .

So which can be seen  F t  versus t curve, this is cumulative distribution function curve and

when F t would be greater than equal to 0 when t is equal to greater than equal to 0, so you



could see the distribution curve  F t  distribution curve with respect to time. And   1F  

which is over here, so at t= . So at  t   and    1F   So the fractions which is resided

between the time t to infinity, the fraction of the effluent that has been resided in the reactor

longer than t that is t to infinity would be always  1 F t . So that is equal to  1 F t .

So therefore    1
t

F t E t dt


   .So that is the fraction of the effluent which has been resided

from t to along a time that is t to infinity. So this is you can see from here, the 80 percent if

you see at time 10 minute or 10 second whatever, so if we say it is minute, so then 80 percent

of the materials  you could see spent 10 minutes or less in the reactor.  So the cumulative

distribution function you will get  F t  would be equal to 0.8.
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Now mean residence  time,  so  mean  residence  time  mt ,  we define  with  mt .  For  an  ideal

reactor, the space-time or the average residence time 
0

V



 . So V is the reactor volume and

small v is the volumetric flow rate. So for ideal reactor the space-time or average residence

time 
0

V



 . The mean residence time t m is equal to tau in either ideal or non ideal reactors.



So the mean residence time would be equal to tau. The mean value of the variable is equal to

the  first  moment  of  the  RTD  function   E t .  So  this  can  be  calculated
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tE t dt
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
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0
m

V
t


  . So if we can calculate 

m , the reactor volume can be determined from the tracer

experiment.
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Now we need to prove that t m and tau for constant volumetric flow rate mt  . Now let us

consider  the  following  situation,  the  reactor  initially  completely  filled  with,  so  reactor

completely filled with maize molecules. Now at time t=0, we start injecting other kind of

molecules into the reactor say blue molecule injected to replace the maize molecules.

So initially the reactor volume is V which is filled with occupied with the maize molecules

and now at time dt, say at time dt the volume of the molecules that will leave the reactor

would be equal to dt . So the fraction of the molecules that have been in the reactor greater



than this time t. so fraction of the material or fraction of these molecules that have been in the

reactor for a time t or greater, this would be  1 F t .

So because only maize molecules have been in the reactor for a time t or greater, the volume

of the maize molecules that is  1dV dt F t    . Now if we sum up all the volume which

is replaced, so between the time t greater than zero and less than infinity, so we can write

integrate this relation would-be  
0

1V F t dt


    .
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Now since this volumetric flow rate is constant, so we can write   
0

1V F t dt


    .Now

 
0

1V F t dt


    . So if we use the integration by parts, so if we use integration by parts

that  is  xdy xy ydx   .  So  then  we  can  write  from here  the   
1

0
0

1
V

t F t tdF



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So we have this relation by integration of the parts by dividing the volume, volumetric flow

rate so we had   
1

0
0

1
V

t F t tdF



      . Now at  0, ( ) 0t F t   and at  t   ,  1 ( ) 0F t  .

Then the first term on the right-hand side would be zero, so this term would be zero. So we

can write 
1

0

V
tdF


   .

So however we know that ( )dF E t dt . So if we substitute over here, we can get from here

1

0

( )tE t dt  
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So we have 
0

( )tE t dt


   and from the definition of 

0

( )
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m

tE t dt

t

E t dt






1

0

0

( )tE t dt












. So we can write mt  .

So this result is true only for a closed system and no dispersion across the boundary. Then the



exact volume reactor volume can be calculated from mV t As m

V
t


  , so from here we

can write mV t  
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So we will consider the other moments of the RTDs, the one of the other moments is the

variance that is the Sigma Square. So it is very common compare RTDs by their moment

instead of comparing their entire distribution.  So three moments are normally used for to

compare the RTDs. One of them is the first moment which we have done defined earlier that

is the mean residence time mt . The second moment is the variance or the square of standard

deviation taken about the mean.

It is defined this variance 2 2

0

( ) ( )mt t E t dt


  . So each terms have their usual meaning and

significance. The magnitude of these moments indicates the spread of this distribution. So

magnitude of this Sigma Square will indicate the spread, how the spread of the distribution is.

Greater the value of this moment, the greater is the distribution. So as large the value we can

obtain for Sigma Square the distribution would be that large.
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Now the third moment  which is  known as the skewness and defined with  3s .  The third

moment and it is taken about the mean. The third moment, the skewness is taken about the

mean.  So  it  is  defined  with  
3 3

3
2 0

1
( ) ( )ms t t E t dt





  .  The  magnitude  of  this  moment

measures the extent of distribution is skewed in one direction or in the other direction with

respect to the mean. So for complete description of the distribution all these moments must be

determined.

So  if  we  wanted  to  know  the  complete  description  of  the  distribution  of  the  RTDs  or

residence  time  distribution  of  the  non-ideal  reactors,  then  all  these  moments  have  to  be

calculated  or  have  to  be  determined.  That  means  mean,  a  variance  and  skewness.  And

practically  these three moments are usually sufficient  for a reasonable characterization of

RTDs.
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So let us take an example from H. Scott Fogler, it is given as an example over there. A pulse

of tracer as we have considered in the first lecture was injected into a reactor and the effluent

concentration was measured as a function of time. The resulting data are given in the below

table that is the concentration, time versus concentration of the tracer experiments. And we

need to calculate the mean residence time and variance.

So we generated the table for calculating the exit age distribution or the RTD distribution

function ( )E t  curve. So that data we will use over here and then we will follow to calculate

the other  parameters  to  calculate  the mean residence time and the variance  for  the same

example.
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So the solution for this problem is that we know the the mean residence time equation which

is t m. So 
0

( )mt tE t dt


  .So if we plot a curve t,  mt  versus or ( )tE t , so this will give ( )tE t

versus t, so if we plot that curve so area under the curve would give mt . So once this mean is

calculated we can calculate 
2 2

0

( ) ( )mt t E t dt


  . Now for the problem which is given over

here, the mt  can be calculated as 
0

( )tE t dt


 . We can see to separate into two part, one is up to

the 10 minutes, 0 to 10, 
10 14

0 10

( ) ( )tE t dt tE t dt  .
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So if we do these calculations from the graph, we can obtain this table. So time is given over

here which is written over here and then we have   C t , we calculated   E t  earlier in the

problem lecture 1. So E t we had different time we can calculate. Then once we know  E t

we can calculate t  E t . Now we have to calculate mt , so that we can calculate t-t m and then

the next column. And this 2 ( )t E t  can be calculated from here, so first column and the third

column, using that last column can be calculated.
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So now let us calculate  mt , so  mt  if you see the Fogler’s appendix at the end of the book,

method of calculating the integral under the curve or the area under the curve can be obtained

using different methods which are given, Simpson’s one-third and other method which we

already discussed in our last lecture. So it can be similar method can be followed over here.

So  1 2
1 2 3 4 1 1 2 3

0

( ) ( 4 2 4 ....... 4 ) ( 4 )
3 3

h

m n n n n n

h h
t f x dx f f f f f f f f f              .  So  if

we  use,  we  can  calculate

1 2
1 2 3 4 1 1 2 3

0

( ) ( 4 2 4 ....... 4 ) ( 4 )
3 3

h

m n n n n n

h h
t f x dx f f f f f f f f f             
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So once we calculate  the area  under  the curve  mt ,  so  this  we can calculate  that  is  5.15

minutes. So then we can calculate  ( )mt t  would-be minus 5.15 and so on putting the t m

values we can calculate this column. And then once we know this we can squared it and

multiplied with E t so that we can get this data.

(Refer Slide Time: 38:31)

So now the  mt  curve is basically if you plot that  ( )tE t  versus t it would look like this. So

basically the curve would be, so the we need to calculate the area under this curve. So which

is calculated that is area is equal to mt =5.15 minute.
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Now we can also plot the values for ( )E t  and mt t , square versus time. So it is from 0 to 1

and time is say 0 to say here 15 minute. If we look into the distribution, so it would be like

this say up to 14 minute and this is 5 minute and say this is 10, 0. So if we plot this versus

time, typical curve we will obtain from the data is like this. So we need to calculate the area

under this curve to calculate the Sigma Square.

So another curve we need that is 2 ( )t E t  versus t and it would be from 0 to say 15 minute and

this is say about 5 and the plot would look like this. So the area under this curve would be

need to be calculated so that we can calculate the integral 0 to infinity 
0

( )tE t dt


  and the area

under this two curve is basically 2 .
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So Sigma Square  we can  write  from the  definition  of  
2 2

0

( ) ( )mt t E t dt


  .  Now if  we

expand this, so this is a minus b, the whole square, so a square minus 2 a b plus b square. So

we can write this would be  2

0 0

( ) 2 ( )mt E t dt t tE t dt
 

 
2

0

( )
mt

mt E t dt


 
1

. So we can write this

would be equal to integral 0 to infinity t square E t dt minus twice t m because this is equal to

1 plus this is equal to 1. So this would be t m square. So basically Sigma square would be

equal to integral 0 to infinity t square E t dt minus so this is t m square, so this is t into E t dt.

So  this  would  be  is  equal  to  t  m,  so  this  would  be  t  m  square.  So  therefore

2 2 2

0

( ) 2 m mt E t dt t t


   .  So  this  2 2 2

0

( ) mt E t dt t


  .  So  this  can  be  calculated  as  we  have

explained before and then we can calculate the Sigma Square.



(Refer Slide Time: 45:47)

So now if we consider to calculate the term 
10 14

2 2 2 2

0 0 10

( ) ( ) ( ) 32.71mint E t dt t E t dt t E t dt


    

So the 2 2 2 2 2 2

0

( ) 32.71min (5.15min) 6.14minmt E t dt t


     . So we can calculate, this is

the standard deviation, square of standard deviation. So Sigma we can calculate 2.49min 

. So this way we can calculate the mean residence time and the variance.
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Now one more thing is the use of normalized RTD function. In many cases, we have seen the

normalized RTD function is used, what is normalized RTD function? This is the dimension-

less time. That means we define parameter 
t




 . So then we can this is the dimensionless

parameter, so the dimensionless RTD function ( )E  , we can define as ( ) ( )E E t  . So the

quantity   it represents the number of reactor volume of fluid based on entrance condition,

that have flowed through the reactor in time t.

So this is the dimensionless parameter. It represents the number of reactor volume of fluid

based on entrance condition that have flowed through the reactor in time t. So and based on

that we can define the dimensionless RTD function ( ) ( )E E t 
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So why this dimensionless function  ( )E t  we use? So the purpose of using the normalized

RTD function is the flow performance inside the reactor of different sizes can be compared

directly.  So we can directly  compare among the different size of the reactors,  their  RTD

distribution.  For example,  if we take normalized  ( )E   is used we could see all  mixed at

CSTR that mixed flow reactor have numerically the same RTD. But if we used ( )E t  instead

of ( )E   numerical values of ( )E t  can vary substantially for different CSTR. We can later we

could able to see that for all perfectly mixed flow reactor 
1

( )
t

E t e 





 . And from here we can

write ( ) ( )E E t e    

So from these two relations we can see for a particular time t or the identical time t, the ( )E t

this ( )E t  could be quite different for different reactors having different volumetric flow rates.

Whereas the ( )E   would be same for say volume 1  and 2 . Later we could also prove that

integral 0 to infinity E theta d theta could be also 1. So in this case of normalized RTD, the

four fractions from 
0

( ) 1E d 


 .This is because eventually all the materials have to come

out, so overall function have to be 1. 



So thank you very much for attending this lecture and we will continue our discussion of non-

ideal reactors and then the residence time distribution of a reactor design, we will continue in

our next lecture.
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