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Material and Energy Balances in Plug Flow and Mixed Flow Reactors

Welcome to the 15th lecture of Module 4. In this module we are discussing reactor design.

Before going to this lecture let us briefly discuss what we have covered in the last lecture. 
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In the last lecture we have covered optimum temperature progression in a batch reactor. So

we have seen for 3 different cases how to obtain the optimum temperature. We have seen for

a case of irreversible single reaction the maximum allowable temperature is the optimum

temperature. Even in the case of the reversible endothermic reaction the maximum allowable

temperature is also the optimum temperature.

The only case which you have considered where we can find the optimum temperature if you

wanted to run at a single temperature, that is for single exothermic reversible reaction, where

the change in temperature changes the equilibrium conversion and we have seen how to go

about  to  design  the  reactor  following  a,  temperature  trajectories  instead  of  a  single

temperature. So we have considered exothermic reversible first order reaction and we have

considered the cases.  
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Now in this module, we will consider mass and energy balance in plug flow as well as mixed

flow reactors. The lecture outline are as follows. So we will consider total mass balance in

plug flow reactor then we will consider material balance in plug flow reactor and particularly

energy balance is our interest, when we look for temperature and pressure effects, so energy

balance  in  PFR,  then  optimum  temperature  progression  in  PFR.  Then  we  will  consider

similar mass and energy balance in mixed flow reactor or CSTR.
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So let us start with the species mole balance for constant density plug flow reactor. In this

case we assume that the velocity in the axial direction only through the tube. So we consider

the plug flow reactor is as a tube and the velocity is only in the axial direction. We also

assume that the velocity and all other quantities are constant across the tube diameter and

diffusion and conduction in the axial direction are negligible. 

So there is negligible diffusion in the axial direction and the conduction in the axial direction.

So if we consider that with this assumption we can write the species mole balance as

 
1

M

x k ik i
i

d
v C r

dx






Now if the velocity is independent with the axial direction that is for constant density then, so

xv  is  independent  in  the  axial  direction.  So  we  can  take  out  
xv  from  the  differential

equations, from the derivative so we can write 

1

M
k

x ik i
i

dC
v r
dx






Now if we define the residence time that is, so defining residence time 

x

x

v
 

x is the length of the tube divided by xv  is the residence time tau. So then we can differentiate



x

dx
d

v
 

Now we if we substitute we have these equations of species mole balance,

1

M
k

x ik i
i

dC
v r
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




 Now if we substitute this things 
x

dx

v
 over here this would be

1

M
k

ik i
i

dC
r

d


 



 So this is the species mole balance equation for constant density plug flow reactor and this is

identical with the constant volume batch reactor.  Only the reaction time in case of batch

reactor t is replaced with the residence time tau.
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Now if the density in the reactor cannot be assumed to be constant because of the changes in

number of moles or in the changes in the temperature of the gas then the plug flow reactor

balance are not identical with that of the batch reactor. So for variable density system the

species mole balance equations between the plug flow reactor and the batch reactor they are

not identical. 

But in this case still we can define the residence time in a similar way. Like we can write 



0

x

x

v

v
 

So 0xv  here is the axial velocity at the inlet then these equations that is

 
1

M

x k ik i
i

d
v C r

dx






This can be written as, with substitution of this   would be

10

M
x

k ik i
ix

d v
C r

dx v




 
 

 


So this is for variable density system in a plug flow reactor. This is the species mole balance

equation.



(Refer Slide Time: 11:04)

Now the total mass balance can be written as the velocity at a given point in the reactor can

be related to the density at that point using the total mass balance. So for steady state plug

flow reactor, the mass balance reduces to 

( ) 0x

d
v

dx
 

That means if we integrate with the initial conditions at 0 00, ,x xt v v    

So if we integrate this we will get

0 0x xv v 



So this is the total mass balance equation. 

Now for the plug flow reactor, now the local velocity, so we have

0 0x xv v 

 Now the local velocity can be computed using the ideal gas law using local composition and

temperature. So if we use the local composition and temperature we can calculate the local

velocity. So like for ideal mixture, the velocity we can write 

0
0

0 0
x x

n T P
v v

n T P


T is the temperature,  
0

n

n
 is the ratio of the number of moles at a particular position to the

number of moles in the feed, and P is the pressure. Now the most direct measure for the

reactor capability to carry out the reaction can be obtained using the local residence time

based in the inlet conditions or the inlet flow rate and the reactor volume. So we can write 

0 0x

L V

v Q
  

So 0Q  is the volumetric flow rate of the reactant to the reactor, V is the volume of the reactor

and L is the length of the reactor.
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Now we can write the corresponding energy balance equation for the ideal PFR as

  0 0
1

2
( )

M

P x i i c
i t

dT u
C v H r T T

dx R




   

So here  tR  is the tube radius, U is the overall heat transfer coefficient to the, for the heat

transfer  through  the  tube  wall.  So  this  heat  transfer  is  through  the  tube  wall  to  a  heat

exchange fluid maintained at temperature Tc. 

So this heat flux could take many other form depending on the heat transfer area and the tube

diameter and all. So the other terms are the typical density heat capacity and velocity we have

defined earlier. If we introduce here the residence time then we can write this relation as, so

introducing residence time and dividing through, by the density and specific heat so we can

obtain

 
 

1 0 0

2M
i i

c
i P t P

dT H r u
T T

d C R C  

 
    

 


So this is the basic energy balance equation. This is basic energy balance equation for the

plug flow reactor. So this is almost identical with the energy balance equation of the batch

reactor, the only difference is the form of the heat transfer through the wall. And this is valid

for non-constant density and constant density as well.
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But if we consider adiabatic plug flow reactor, for an adiabatic plug flow reactor with a single

overall  reaction  there  is  a  simple  relationship  between  the  reactor  temperature  and  the

reactant  concentration.  Just  we  have  done  for  the  batch  reactor.  Equations  for  a  single

reaction in a adiabatic constant density PFR in terms of the concentration and production rate

of the reactant A we can write 

A
A

dC
r

d
 

And energy balance equation should be reduced to 

 
P P

A
i i

C dT C dT
r

H d H d

 

 


 

So from these two relation we can equate the rate of chemical reactions and we can write


P A

i

C dT dC

H d d



 
 



And  if  we  integrate  we  can  obtain  a  simple  relationship  between  temperature  and

concentration. So 


 0 0
i

A A

P

H
T T C C

C


  

So this is the relation as we have obtained for the batch reactor, same relations we can obtain

here between the temperature  and the concentration  for  a  single reaction.  Thus adiabatic

reaction temperature that we defined in the batch reactor has the same definition and value in

case of the plug flow reactor. So we are not introducing that part over here on the adiabatic

reaction temperature. 
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Now the optimum temperature progression, in case of batch reactor we have discussed how

the temperature, optimum temperature progression would change. It is similar to the batch

reactor temperature progression phenomena. So obtaining the optimum single temperature or

temperature profile in a PFR is also very similar what we have found for the batch reactor. If

we plan to operate the reactor isothermally at a single temperature, then there may be an

optimum temperature to select.  For a single irreversible reaction,  in this case the optimal

temperature is simply the highest possible temperature since that will provide the highest

possible rate.

This temperature how we can determine, it will be determined by the boiling of the reactants

or the operational limits of the reactor. That will tell what is the maximum permissible limit

for the reaction to maintain. Now for a single reversible endothermic reaction the optimum

temperature  is  also  simply  the  highest  possible  temperature  since  that  will  produce  the

highest possible rate and that will be determined again under the same conditions of boiling

of the reactants or operational limits of the reactor. The only case where there may be an

optimum temperature for a single reaction is when we have an exothermic reversible reaction.

So  for  an  exothermic  reversible  reaction  we  can  have  optimum  single  temperature  or  a

temperature progression. For such a reaction, the rate will increase with temperature but the

equilibrium conversion will decrease with increase in temperature. As in batch reactor the

optimal temperature profile for a single reaction is the one that optimizes the reaction rate at



every point in the reactor. The discussion of batch reactor has been slightly modified and

discussed over here. 
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So let us consider single first order reversible reaction.

A B  

 So we can write

1

1
A Br k C C
K

 
  

 

So A to B reversible reaction. So we can use the Arrhenius reactions of the rate constant and

the equilibrium constant at 

 

0

exp exp aa
A B

E HE A
A C C

RT k RT

   
    

   



Now if we take the partial derivative with respect to temperature at a fixed concentration then

we  can  write,  so  taking  partial  derivative  of  this  with  respect  to  temperature  at  fixed

concentration; so we can write

2
expa a

A

r E E
A C

T RT RT

  
  

  

So we can write

   
2

0

expa a
B

E H E Hr A
C

T k RT RT

    
   

  

So this is the partial derivative and now if we set this 

0
r

T






multiplying both sides by 
2RT
A   we can obtain 

   

0

exp expa aa
a A B

opt opt

E H E HE
E C C

RT k RT

      
       

   

Now if we rearrange this we can write

   

0

expa B

a A opt

E H HC

k E C RT

   
   

 

This also we can write as

 

0

ln
opt

a B

a A

H
T

E H C
R

k E C




  
 
 

So this is the expression for optimum temperature in a plug flow reactor. So the equation is

 

0

ln
opt

a B

a A

H
T

E H C
R

k E C




  
 
 



 So this is the expression. So this expression gives the optimum temperature trajectories in

terms of the concentration or the extent of reaction or whatever reaction progression variable

we choose. So this will give the optimum temperature how it will progress in a plug flow

reactor. Initially if we look into, for the exothermic reaction as we discussed for the batch

reactor as well,  this  will  give an optimum temperature which is negative because  H  is

negative for exothermic reaction. So that is not physically meaningful results.

The optimum temperature becomes infinite when the quantity inside the algorithm, inside the

logarithm in the denominator is equal to 1. That means when this term becomes 1 then the

optimum temperature becomes infinite. So that means the term

0B a

A a

C k E

C E H


 

So when this equal to this then these terms become unity inside the logarithm. So 

0B a

A a

C k E

C E H


 

For conversion smaller than this critical value the optimum temperature is as high as possible.

So if the conversion is smaller or compared to this critical value where it will become, the

term inside the logarithm become 1, till that point the optimum temperature we should keep

as high as possible.

As the reaction proceeds past this point the optimum temperature decreases. So initially we

should keep as high as temperature possible, then decrease the temperature as the conversion

will  increase.  So the optimum temperature trajectories  for a PFR with a single reversible

reaction to run the reactor at highest temperature possible until the conversion reaches a point

where the optimal temperature obtained from the above equation is Tmax. After that point the

optimal temperature decreases along the length of the reactor with optimum value obtained

from the T optimum equation.

So we have derived the equations for, to obtain the optimum temperature which gives the

optimum temperature progression. So initially we need to keep the temperature at the inlet of

the reactor is as high as possible because at that point the conversion is low and so we need to

have as fast as the reaction is possible. So the reactions complete with a smaller time and then

we decrease the temperature, as we the reactant goes through the reactor length as it passes



through the length of the reactor. So then optimum temperature from time to time we can

obtain from the optimum temperature profile equation. 
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So now let us consider ideal mixed flow reactor, overall mass balance. As we have discussed

earlier that for the mixed flow reactor because of the homogenous mixing of the content of

the reactor, the concentration is uniform everywhere inside the reactor. So there is no special

distribution of the concentration inside the reactor. So the steady state mass balance equation

for CSTR is a, is an algebraic equation. So if we consider CSTR, the mass flow rate into the

reactor is  0 0Q ,  mass flow rate out is  Q and rate of production or mass within reactor is

equal to 0. So the rate of accumulation would be equal to  
( )d v

dt


 and all these terms are

having the usual meaning and significance. So the overall mass balance equation should be 

0 0

( )d v
Q Q

dt


  

Now if the reactor volume is constant, for constant volume we can take out v outside. So we

can write 

0 0v
d

Q Q
dt


    for [v = constant]

That is for v is equal to constant. Now if assume the density 0  that is the density of the fluid

is same as the density inside the reactor at any time then we can simply write 0Q Q , so this

is the overall mass balance relation.
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Now if you consider mole balance, this is mole balance we can, for a particular species k  we

can write the species mole balance as flow rate of species k  into the reactor is equal to 0 0kQ C

Flow rate of species  k out of the reactor is equal to  kQC . Now the production within the

reactor, that is due to the chemical reaction, it would be  equal to v and if multiple reaction is

happening it would be 
1

M

ik i
i

v r



and the rate of accumulation within the reactor, that would be



( )k kd vC dC
v

dt dt
  for v = constant

So now if we write the overall balance equation we can write 

0 0
1

M
k

k k ik i
i

dC
v Q C QC v r
dt




    

If the density inside the reactor is same as that of the (outside), that of the feed then we can

define the residence time 

0

v v

Q Q
  

So then this equation we can write as 

0

1

M
k k k

ik i
i

dC C C
r

dt


 


 

So this is the species mole balance equation under the conditions of the constant density.
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Now we can write the energy balance equation for flow rate of enthalpy into the liquid, into

the  reactor,  so  flow rate  of  enthalpy  into  the  reactor  would  be  
0 0 0Q H  .  Flow rate  of



enthalpy out of the reactor would be Q H , and rate of production of enthalpy within the

reactor would be 0. Rate of accumulation of enthalpy within the reactor would be equal to

V H

dt

  .  So if we write the balance equation from here, it would be 


 

0 0 0

( )d V H
Q H Q H

dt


 


   

For constant volume system this would be 


 

0 0 0

( )
V
d H

Q H Q H
dt


 


   

Now if there is no heat transfer through the wall but the reactant which is coming inside the

reactor and the enthalpy is going out with the product which is going out from the reactor.
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So we can write similarly in case of the batch reactor we have done, we can write 




1

( ) N
k

P fk
k

dCd H dT
C H

dt dt dt







 

So we can get the enthalpy temperature relationship. Now we can write, under steady state

conditions we can write this relation would be 

  
0 0 0 0 0 0 0

1

N

P ref fk k
k

Q H Q C T T H C 


 
   

 


Similarly, we can write 

  

1

N

P ref fk k
k

Q H Q C T T H C 


 
   

 

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Now if we substitute these three terms in the energy balance equation we can write V is equal

to, so So this is nothing but



1

N
k

P fk
k

dCdT
V C H

dt dt




 
 

 


 So this term can be written as this, then if we substitute the other two terms this would be

equal to 

  
0 0 0 0 0

1 1 1

( ) ( )
N N N

k
P fk P ref fk k P ref fk k

k k k

dCdT
V C H Q C T T H C Q C T T H C

dt dt
  

  

     
           

     
  

Now if we assume constant volume, constant density and constant heat capacity; so assuming

constant volume, constant density, heat capacity, etcetera. we can write 


 0

0 0 0 1

1

( )
( )

N

k k fkN
k P k

P fk
k

C C H
dC C T TdT

C H
dt dt




 







  



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Now if we substitute the derivative in this expression that is kdC

dt
 we have derived earlier, if

we substitute that, that is basically 

0

1

M
k k k

ik i
i

dC C C
r

dt


 


 

If you substitute in the earlier equations we would obtain 


 0

0 0 0 1

1 1

( )
( )

N

k k fkN M
k k P k

P fk ik i
k i

C C H
C C C T TdT

C H r
dt


 

  


 


  

    
 


 

Now from the both sides the term  0
1

( )
N

k k fk
k

C C H




  we will cancel  from both sides, and

using the definition of the heat of reaction, this relations will reduce to




 0 0

1

( ) M
P

P i i
i

C T TdT
C H r

dt




 


   

So this is the energy balance equation for the CSTR. Now if the reactor is not adiabatic there

would be heat flux through the wall.
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So if there is heat flux through the wall say  HQ  in that case this would be added into the

energy balance equation and you would obtain




 0 0

1

( ) M
P H

P i i
i

C T T QdT
C H r
dt V




 


   

So this is for non-adiabatic systems where there is a heat flux through the wall.

So thank you very much for attending this lecture and we will continue our discussion on the

reaction design and particularly the energy balance equation for the CSTR where we would

see so many interesting phenomena happens when we have a single reaction. We will discuss

those phenomena for the, basically that is called the steady state multiplicity of the CSTR or

continuous mixed flow reactor, thank you.


