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Lecture No. 14
Optimum Temperature Progression in Batch Reactor

Welcome to the 14th lecture of module 4. In this module we are discussing reactor design.

And we have started with last  couple of lectures  we have done.  We are working on the

temperature and pressure effect. So before going to this lecture let us have brief recap on our

previous lecture.

(Refer Slide Time: 1:00)

In the last lecture we have covered total Mass balance in Batch Reactor. Material Balance in

Batch Reactor and then we have done with Energy Balance in Batch Reactor. So although we

have done the batch reactor  design earlier  at  the beginning but  here we have considered

mainly for energy balance. Then we have seen the temperature and enthalpy relation, how

enthalpy and temperature  they are related.  And we have considered  Adiabatic  operations

where we have developed equation to calculate the Adiabatic reaction temperature.
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So in this lecture we will start with Optimum Temperature Progression in Batch Reactor. As

we have seen in the last lecture if we operate the reactor adiabatically for exothermic reaction

the temperature adiabatic reaction temperature will change as the reaction proceeds but if

either exothermic or endothermic the temperature of the system will change either it decrease

or it increase. So over the reactions it proceeds the temperature will change in case of the

adiabatic reaction. But if we wanted to operate the reactor at a particular temperature that

means  we  want  to  operate  the  reactor  in  isothermal  way  then  we  will  have  Optimum

Temperature Progression for that.  And we will  see for Exothermic Reversible First-Order

Reaction with an example how the optimum temperature can be determined.
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So optimum temperature progression for a single reaction. If we have single reaction and that

is irreversible reaction, the optimum temperature is simply the highest possible temperature

since  that  will  provide  the  highest  possible  rate.  So  if  we  have  a  single  reaction  either

exothermic or endothermic. In both cases as we increase the temperature the reaction rate will

increase.  And also the conversion will  increase because it  is irreversible  reaction.  So the

maximum allowable  temperature  would  be  the  optimum temperature  in  case  of  a  single

reaction irreversible reaction. But the maximum allowable temperature will be determined by

other factors like how much temperature the reactor can withstands or at that temperature

whether the product degrades.

So  we  have  to  run  below  the  temperature  product  or  reactant  that  degrades  at  that

temperature. So the maximum allowable temperature will be determined by the property of

the reactor, stability and the product or reactant stability and also economics of the system.

This temperature show will be determined by boiling of the reactants and operational limits

of the reactor. So you can see the conversion versus temperature plot which is obtained from

Levin  spill  at  different  temperature  how  the  conversion  changes  or  increases  and  the

maximum allowable temperature where you need to optimize your maximum conversion if

you want to get and if that temperature is allowed with respect to the boiling of the reactants

or the operational limits of the reactor then we can decide that optimum temperature.
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Another case for an endothermic reaction but reversible reaction.  For this  case what will

happen  because  it  is  reversible  and endothermic.  So  as  we increase  the  temperature  the

reaction rate will increase and because it  is endothermic in nature and reversible so your



equilibrium conversion will also increase. So the best operation is again the highest possible

temperature.

So in this case also similar to the single reaction irreversible reaction. We have seen that the

maximum  allowable  temperature  is  the  optimum  temperature  in  this  case  as  well  for

endothermic  reversible  reaction  the  best  temperature  is  again  the  highest  possible

temperature. Since both the equilibrium conversion and the reaction rate will increase with

temperature.

So for endothermic reversible reaction both equilibrium conversion as well as the reaction

rate with increasing temperature. So that is why the maximum allowable temperature would

be  the  optimum temperature  for  endothermic  reversible  reaction.  Again  in  this  case  the

maximum allowable temperature will be determined by the factors which we have discussed

that is the boiling of the reactants or the operational limit of the reactor.
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The only case where there may be optimum temperature for the single reaction is when we

have exothermic reversible reaction. So if we have exothermic reversible reaction in that case

we have a optimum temperature to operate. For such a reaction the rate will increase with

temperature but the equilibrium conversion will decrease with increase in temperature. So we

have to optimize the temperature in such a way that we will get maximum conversion with

minimum time.

So you can see the maximum allowable temperature over here is the T max which is shown

over here taken from Levin spill and the rate of the reaction how it is changing, this is the rate



path and maximum rate path and this line is the equilibrium path. So if we can maximize the

rate at different temperature then we can achieve the maximum conversion in minimum time.

So we will go with an example exothermic first-order reversible reaction.

(Refer Slide Time: 8:26)

So let us consider this example
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1 1A Br k C k C 
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 
  

 

 So this is the forward rate constant is 1k , the reverse rate constant is 1k  and AC BC  these are

the concentration of component A and B,  K  is the equilibrium constant, capital  K  is the

equilibrium constant.

So this is basically

1

1

k
K

k


if we start with a pure A that means concentration of A at the beginning is  0AC . So from

stoichiometry we can write 



0B A AC C C 

Now the forward rate constant and the equilibrium constant we can write in terms of the

Arrhenius relation. So the Arrhenius relation for forward reactions

1 exp aEk A
RT

 
  

 

And equilibrium constant capital 

0 exp
H

K k
RT

 
  

 

If we substitute 1k   and K  equilibrium constant this Arrhenius relation in this equation rate

equation, we would obtain.
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So we have

1

1
A Br k C C
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 
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 

 So we will substitute BC  we know

0B A AC C C 

 So if we BC  over here this would be 

 1 0

1
A A Ar k C C C
K

 
    

So if we multiply this would be 

1 0

1 1
A A Ar k C C C
K K

 
    

And if we rearrange this would be 

1
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1
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 

This is CA, so this is equal
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 Now if we write

1
1 0

1
1A

A A

dC k
r k C C

dt K K
 

     
 

So from here we can write 

1
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 

    
 

 Now we have 

1 exp aEk A
RT

 
  

 
 and 0 exp

H
K k

RT

 
  

 

So if we substitute over here this would be 

0
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1

exp 1
exp exp

a

aA
A A

E
A

EdC RT
A C C

H Hdt RT
k k

RT RT

   
                         

    

So this is the concentration versus temperature relation. So with respect to time.
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So from this relation if we wanted to find a single optimum temperature, if we want to find

the optimum single temperature at which to run the reaction then the temperature is constant

with respect to time. So the earlier equations we have seen that the change in concentration

with respect to time and it has a relation with the temperature. But if we wanted to run the

reactor at a single optimum temperature that means the temperature is constant with respect

to  time.  So  in  that  case  we  can  integrate  the  earlier  equation,  the  rate  equation  for

concentration of A to get say we have 

1
0

1 1
1 exp 1

1
A

A

C
K k t

C K K

   
          

So  we  can  rearrange  that  if  we  can  integrate  the  earlier  equation  we  would  obtain  the

concentration profile like this at a constant temperature.

So we can  now, since  the  temperature  is  constant  and we have  integrated,  we can  now

substitute K  which is a function of temperature here and we would obtain 

0
0

0 0

1 1
1 exp exp exp 1

1 exp exp

aA

A

EC H
k A t

H HC RT RT
k k

RT RT

   
                                         

So this  is  the relation  if  we substitute  K and small  1k  that  is  forwarded constant  with a

Arrhenius relation we would obtain the concentration profile like this. Or alternatively what



we can do, we can fix the time required to obtain a particular conversion. So this relation we

can just rearrange to calculate the time required for a particular conversion. So represented in

terms of the concentration. 
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So if we do that we would obtain 
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Now if we substitute K  and 1k  we would have 

0
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1 1
ln

1 1 1
exp 1 1

exp exp exp

a A

A

t

E C
A

H H HRT C
k k k

RT RT RT

 
 
 
 
 
 

    
                                               

So this we would obtain if we want to get a time required for a particular conversion.
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Now to find the optimum isothermal operation we either want to minimize  AC  for a fixed

reaction time or we want to minimize the reaction time for a fixed outlet concentration. So

either of these 2 we need to consider, so either minimize  AC  for a fixed reaction time or

minimize reaction time for a fixed outlet concentration, these 2 things we can do. So in each

case what we need to do, we take the partial derivative of the quantity we want to minimize

with respect to temperature and holding the other quantity constant.

That means if we wanted to minimize the concentration we will take partial derivative of

concentration with respect to temperature keeping the time constant or in other case we can

take partial derivative of time with respect to temperature keeping the outlet concentration

constant and then we need to set it equal to 0 and solve for the temperature. An analytical

solutions for the optimum temperature can readily be obtained but it is fairly long and messy.

So one can use the, you know software available like if we can use Mathematica, Maple or

Matlab this solution is very easy to solve and very straightforward.
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Now instead of finding a fixed optimum temperature that is at one temperature to run the

reactions  reversible  exothermic  reaction  this  that  is  sometimes  not  possible  to  obtain  the

highest conversion in minimum time. So it is better to use the arbitrary temperature control,

we  can  control  arbitrarily  the  temperature  and  we  may  select  optimum  temperature

trajectories rather than a single temperature.

Optimum temperature trajectories means you are, we are not considering a single optimum

temperature  to  run  the  reactor,  the  temperature  will  gradually  change  depending  on  our

requirement to optimize the conversion and the reaction time. So intuitively it makes sense

that for a reversible exothermic reaction what we wanted to do, initially we need to have

relatively high temperature because the conversion is low.

So we can very quickly achieve a good conversion with a minimum time. So if we have high-

temperature the reaction rate  would be faster  and it  will  give the conversion higher in a

smaller time. As the conversion increases at higher conversion we would want to decrease the

temperature to avoid the equilibrium relations. Since it is exothermic reversible reaction as

the conversion will increase it will be limited by the equilibrium relations. That we can avoid

if we decrease the temperature at higher conversion.

In that case we will optimize the temperature trajectories depending on our requirements. So

it  can be shown for a single reaction the maximum conversion in minimum time can be

achieved simply by maximizing the rate at each point of time. This seems obvious but in case

of  multiple  reactions  it  is  no  longer  necessarily  true.  So  this  will  be  done  for  a  single

reversible reaction we can maximize the rate at different point of time and we can achieve



maximum  conversion  with  minimum  time.  But  for  multiple  reactions  these  may  not  be

necessarily valid.
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Now if you consider single reversible exothermic reaction and rate we know 

1

1
A Br k C C
K

 
  

 

 Which is equal to

 

0

exp exp aa
A B

E HE A
r A C C

RT k RT

    
     

   

So if we substitute 1k  and K with the Arrhenius relation and then if we rearrange this relation

we would obtain this expression.

Now if we take partial derivative with respect to T at a fixed concentration. So taking partial

derivative with respect to temperature at fixed concentration. So you would obtain

   
2 2

0

exp expa aa a
A B

E H E HE Er A
A C C

t RT RT k RT RT

        
     

    

So this is the partial derivative of rate with respect to temperature at a fixed concentration.

(Refer Slide Time: 27:42) 



Now if we set this equal to 0, we would obtain setting 0
r

t





 and multiplying both sides by

2RT

A
. So you would obtain

 

0

exp exp aa a
a A B

opt opt

E HE E H
E C C

RT k RT

      
       
   

So here as we are optimizing the rate, so the temperature which we obtain is the optimum

temperature. So we can write optRT .

0

expa B

a A

E H C H

k E C RT

   
   

 

Or we can write 

 

0

ln
opt

a B

a A

H
T

E H C
R

k E C




  
 

 

So this temperature optT , 

 

0

ln
opt

a B

a A

H
T

E H C
R

k E C




  
 

 



So this gives the optimum temperature trajectories in terms of the concentration or the extent

of reaction when the, no reaction progress. Initially for an exothermic reaction, if we consider

exothermic reaction and then H  is negative and so this will give an optimum temperature

that  is  negative  not  a  physically  meaningful  or  significant  results  that  means  BC  at  the

beginning is 0 and so this term is negative, ln term in the denominator.

So at the beginning the upper term is positive because H is negative, so the numerator over

here at the start of the reaction this is T optimum is negative. So which is not physically

meaningful.  So  the  optimum temperature  becomes  infinite  when  the  quantity  inside  the

logarithm in the denominator is equal to 1. So as a reaction progress the conversion changes

the  term.  The  term over  here  in  the  denominator  under  ln  term this  becomes  1  then  it

indicates the optimum temperature is infinite.
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That means here 

0

( )
aB

A a

k EC

C E H


 

So  this  is  a  limit  where  the  temperature  becomes  infinite.  That  means  for  convergence

smaller than the critical values that means 

0

( )
aB

A a

k EC

C E H


 



convergence smaller than this critical value the optimal temperature is as high as possible. So

if we can initially if we would like to get a higher reaction rate up to this critical conversion

when the B

A

C

C
 would be equal to this term where the ln term would be infinite.

So then we can keep the temperature as high as possible to reach the higher conversion with a

minimum time. Then as the reaction proceeds past this point, the optimum temperature will

decrease. So we have to because it is exothermic reaction and we have to lower down the

temperature.  So  the  optimum  temperature  trajectories  for  a  batch  reactor  with  a  single

reversible reaction to run the reactor at highest possible temperature that is  maxT  until  the

conversion reaches a point where the optimum temperature obtained from the equation above

is maxT .

So here till it reaches the critical conversion values we have to keep the temperature as high

as possible and that is determined by the no reactor operational limits and the boiling of the

reactants.  Those  parameters  will  decide  at  the  beginning  what  temperature  we  should

maintain at this case till the smaller than the critical value and after that point the optimum

temperature can be obtained from the equation given above. So then we can obtain the optT

relations from there.  What is the optimum temperature we need to maintain,  that we can

obtain from the relation. Now one can predict how the temperature should vary in time by

integrating the equation of concentration with respect no, with rate evaluated at optimum

temperature. 
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That means we know 

0

0 0

exp
1

exp 1
exp exp

a

aA
A A

E
A

EdC RT
A C C

H Hdt RT
k k

RT RT

   
                       

    

If we set with 

optT T , so after critical conversion we can write AdC

dt
, 

 
0 0

0
0 0 0 0

( ) ( )
1

( )

a aE E H

H H
a A A a a A AA

A A
a A a A A a A

E H C C E C E H C CdC A
A C C

dt k E C E H C C k k E C



          
      

      

So this is the relation if we consider T is the optimum temperature and then we can substitute

T optimum over here in this relation. So dCA dt we would obtain like this. So this can be,

know integrated to give the concentration as a function of time and the equation used to

obtain the optimum temperature then gives the temperature as a function of time. So the

earlier  equations  which we obtained that  is  dCA dt  which is  a  function  of conversion or

concentration.

So this we can integrate, the earlier equations which we have developed can be integrated to

give the concentration profile that is concentration versus time and then equation used to



obtain the optimum temperature then gives the temperature as a function of time. So that

means this concentration versus time we need to incorporate into the relation that is 

 

0

ln
opt

a B

a A

H
T

E H C
R

k E C




  
 

 

So the concentration profile if we substitute over here in this optimum temperature then we

will get the temperature, optimum temperature versus the time. Now finally this temperature

and concentration can be used in the enthalpy balance equation to obtain the heat removal

rate  require  as  a  function  of  time  to  maintain  the  optimum  temperature.  So  we  have

temperature as a function of time and concentration as a function of time. So both we can use

in case of the energy balance equation which will give the heat removal rate required as a

function of time. So that we will tell about the, how to maintain the optimum temperature. So

this is how, we can do it but since the calculation is know analytical calculation is really

lengthy,  so  we  can  use  the  know  software  like  mathematical  or  maple  to  solve  these

equations.

(Refer Slide Time: 40:44)

Now let  us take an example of methanol  production from synthesis  gas, so basically  the

reaction is exothermic in nature. So, like  2 32CO H CH OH   you could see here in this

plot  the reaction rate  is  plotted versus temperature  and extent  of reactions.  So we call  it

Contour Plot. And in this case you could see that there are 2 different, 3 different lines over

here. The dark line over here, the thicker dark line at the middle this one, this is basically the



equilibrium line. So the dark line shows the equilibrium conditions where the reaction rate is

0. So at this point the reaction rate is 0. This line, the dark line which is thinner and outline

represents how the rate of reaction progress with the extent of reaction and the temperature.

The white line over here you could see, the white line this is the maximum rate trajectories.

So it  represents  maximum rate  line.  The white  line gives  the optimal  trajectory  it  is  the

temperature that gives the maximum rate for any given extent of reactions. So at a particular

extent of reactions over here this gives the maximum rate at that temperature. To get the

maximum amount of reaction in a minimum time we would follow this white curve. So if we

wanted to have maximum amount of reactions to be happen with a minimum time we need to

follow this white line. 
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So we could notice that it goes off towards very high temperature at low extent of reactions.

If we consider low extent of reactions, so very less here say close to that. The maximum rate

you could see it is going off. At low conversion the, know maximum goes off at very high

temperature. So what is our target, say initially our temperature would be fixed by some other

considerations  and that would be the maximum temperature we need to fix.  Suppose the

maximum  allowable  temperature  for  this  reaction  is  500  degree  centigrade.  So  say  500

Kelvin, so maximum allowable temperature for this reaction if we consider say 500 Kelvin.

Now at 500 Kelvin say over here, so we should, know run the reactions start with that high

temperature and reaction will proceed to this and it will reach like this. So the conversion we

would obtained here is about this. 



Now if we keep on you know doing the experiment, running the experiments further at this

temperature  the  equally  conversion  will  decrease,  the  rate  will  decrease  as  well  as  the

conversion will decrease because it will reach to the equilibrium. So then we want to keep the

reactor at 500 Kelvin up to an extent of reactions say about 0.5 or so. So this is basically, this

means that this is the temperature close to you know we cannot keep up to 500.

So we may keep the temperature up to this, so the conversion is about 0.3 and then reduce the

temperature to follow the white line. So we need to reduce the temperature say about 450 and

then we can you know run for a certain period of time to reach the conversion over here and

again we know reduce the temperature say around 400 or so it will reach this conversion. So

we have to optimize the temperature step-by-step or reduce the temperature so that we can

achieve the maximum conversion possible with a minimum time.

So this is how the batch reactor operation we can do with a minimum time and how the

temperature would progress. So thank you very much for attending this lecture and we will

continue  our  discussion on the  energy balance  and optimum temperature  progression for

other 2 idealize reactors that is plugged flow reactor and the continuous stir tank reactor in

our subsequent lectures, thank you.


