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Lecture - 15
Size Comaprison Multiple Reactors

Welcome to the fifth lecture of module 4. In this module we are discussing reactor design.
Let us have brief recap on our previous lecture before going to this lecture.

(Refer Slide Time: 00:00:51)

In the last lecture we have covered, introduction to reactor size comparison. And then we

have started with size comparison of single reactors. And then we have introduced to the size

comparison of multiple reactors. So in case of single reactors we have considered batch and

flow reactors. And we have seen that the performance equation for the batch reactor is similar

to the plug flow reactors. And then based on this consideration the size requirements for the

batch reactor is equal to the plug flow reactor for constant volume system. 

And we have continued to compare between the plug flow reactor and the other flow reactor

that  is  the  mixed  flow rector  or  continuous  stirred  tank  reactor.  Then  we  have  tried  to

compare the size of the reactor. When we have same reactor of multiple numbers that means

more than one reactor if we have how they, how the size requirements varies. In doing so we

have  considered  in  the  last  lecture  the  plug  flow  reactor.  And  we  compared  the  size

requirement for a given job. 



(Refer Slide Time: 02:38)

Now, in this lecture we will continue our discussion for multiple reactor design. And the brief

out  line  of  this  lecture  would  be  equal  size  mixed  flow reactor  in  series.  Then  we will

considered mix flow reactor of different sizes in series. And if we have different type of

reactors they are connected in series, how they influence the overall size requirement for a

particular job.

(Refer Slide Time: 03:16)

So, let us start with the equal size mix flow reactor in series. So in case of PFR we have seen

that  plug flow reactor.  The concentration  of  reactant  decreases  progressively through the

system. So that means in ideal plug flow reactor we have considered there is no back mixing.

So the concentration drop from the reactor entrance to the reactor exit would be progressive.



That  means a drop in concentration will  occur gradually,  whereas in case of mixed flow

reactor or continuous stirred tank reactor. 

The concentration drops immediately at very low level because the content of the mixture in

a CSTR is continuously stirred. Whereas,  in case of plug flow reactor we considered the

reactants which enters its progressively flows through and there is no back mixing and it

exits. So due to this fact PFR is considered to be more efficient than MFR for the reaction

whose rates increases with reactant concentrations such that nth order irreversible reactions,

where n greater than equal to zero. 

So, if the order of reaction is greater than equal to zero. And for any nth reaction and the

reaction rate increases with the reactant concentration. In that case PFR is considered to be

more efficient than the CSTR or mixed flow reactor. 

(Refer Slide Time: 05:32)

Now, if we consider N number of plug flow reactor connected in series, N number of CSTR

connected in series or MFR connected in series. So, if we connect N number of CSTR in

series  although  the  concentration  drops  in  a  particular  reactor  is  uniform at  a  particular

reactor. But, if we connect the several CSTR in series there would be a progressive change of

concentration from one reactor to the other. So, we will find a change in concentration from

one reactor to the other. The step wise drop of the concentration we can, the step wise drop in

concentration we can see from this figure.

So, as we can see when the number of reactor or if it is a CSTR. Then the concentration

change drop is this much. So for single CSTR the concentration drop is from this level to this



level, up to this when we use single CSTR. But, when we increase the number of CSTR the

change in volume you can see it is the drop in concentration is like this. So we will have if

there are 5 number of CSTR connected in series. The drop will concentration will happen in a

progressive manner or from one reactor to the other reactor. 

Now, if we increase more number of reactor connected in series. As you can see the N greater

than 30. So, in that case you can see the drop in concentration from one rector to the other

reactor  is  less.  So,  this  is  for  1,  2  and  so  on,  so  the  change  in  concentration  which  is

happening keeping the total reactor volume constant. If we increase the number of reactor the

drop in concentration will be less. And as long as the number of reactor increases to infinite it

will behave like a plug flow reactor, so if N tends to infinite then we can see it behaves like a

plug flow reactor. 

So, this suggest that larger the number of reactor in series, closer the behavior of the system

to approach plug flow reactor.  So this is very important  for the designing of mixed flow

reactor connected in series. So this is the Levenspiel plot, which is shown over here.

(Refer Slide Time: 09:41)

Now,  if  we  consider  equal  size  MFR in  series.  Say  let  N number  of  equal  size  CSTR

connected in series. And, so we assume that the density of the system that is   is equal to 0

that is constant density system or constant volume system. So in this case the t, the residence

time would be equal to   as we have discussed before. Now, if the inlet conditions is defined

as 0 0 0, ,C X v  and 0F . 0C  is the concentration of the inlet stream to the first reactor, 0X  is the

conversion of the particular species entering to the reactor 1. 



So, as it is considered to be 0 because there is now conversion, before it is going to the

reactor.  0v  is the volumetric flow rate,  0F  is the Molar flow rate. Similarly, the exit stream

from the first reactor is 1 1,C X  and exit from reactor 1 is going to the reactor 2, so inlet to the

reactor 2 would be 1 1,C X . Similarly, this will go for ith reactor. The inlet to that would be

1 1,i iC X   and exit to this would be ,i iC X . Similarly, for reactor n it should be 1 1,n nC X   and

exit to this would be ,n nC X  and v. 

So, v is the volumetric flow rate and reactor this is volume 1V  and its residence time is 1 , for

reactor 2 it is 2V  and residence time is 2 . Similarly, for ith reactor ,i iV   and for nth reactor it

is nV  and n . Now, this for constant density system we have an equal size volume later on we

will consider this 1 2 3, ,V V V  and iV  all would be same. So 

1 2 ............i nV V V V   = V

or we can write V. Similarly, 

1 2 3.......... i n        

(Refer Slide Time: 13:37)

So, now let us do the material balance for this system in reactor in series. Let us consider the

ith vessel so this one and do the material balance. So as you have done before the 

    input output disappearance due to chemical reaction accumulation  



As this is a steady straight process and continuous flow reactor this accumulation term would

be 0. So then input is 

0 1 0(1 ) (1 ) ( )i i Ai iF X F X r V    

If we simplify this, this would be 

0 1( ) ( )i i iAiF X X r V  

Now, from this we can write 

1

0

ii i

Ai

X XV

F r





Now, form the definition of   we know 

0

0

iC V

F
 

So if you substitute, 

0 1C ( )i i

Ai

X X

r





Now, since   = 0, this we can write i  in terms of concentration. So  , this is i  so, 

1
0

0 0

1 1i i

i
Ai

C C
C

C C

r



    

      
   





So, if we simplify this. This would be 

1
i

i

i i

Ar

C C
  




Now this is our i  equation. 
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Now, if write for the first order reaction, for first order reaction this would be so we have 

1i i
i

i

C C

kC
  

This is for first order reaction. So from here we can write 

1 1i
i

i

C
k

C
  

Now, let us write for reactor i or reactor 1 so if we write for reactor 1. So, it would be 

0
1

1

1
C

k
C

 

For reactor 2 it would be 

1
2

2

1
C

k
C

 

And so on for other reactors. 

So, if we multiply all this reactor equations it would be 

0 11
1 1

1 2

* *.......* (1 )*(1 )*.....(1 )n
n

n

C CC
k k k

C C C
      

As we said before all the   are same, if write 

1 2 ...........   



So in that case we can write from here, if we multiply this will cancel out and finally we will

have all this will cancel out. We will have 

0 (1 )n

n

C
k

C
 
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So we have 

0 (1 )n

n

C
k

C
 

And if we simplify this we can write 

1

01
n

n

C
k

C


 
   

 

So from here we can write 

1

0 1
n

n

C
k

C


 
  
 

So 

1

01
1

n

n

C

k C


 
        



So, we have this equations of   that is for a particular reactor. So   this is for N number of

reactors. We can write 

,n reactors n 

which is 

1

0 1
n

n

Cn

k C

 
        

Now, when N tends to infinite we can expand this in this equation that is 

1

0
n

n

C

C

 
 
 

 as infinite

series. So we can write this is 

1
22

0 0 01 1 1
1 ln l

!
n .....

2

n

n n n

C C C

C n C n C

    
       

    

So this is infinite series. Now, if we neglect the higher order term, so neglecting higher order

term we can write 

1

0 01
1 ln

n

n n

C C

C n C

 
  

 

So from here if we rearrange we can write 

1

0 01
1 ln

n

n n

C C

C n C

 
  

 

So, if we take limit n ,taking limit in N tends to infinite. We can write 

0
,

1
* lnn reactors

n

Cn
n

k n C
  

So then N will cancelled out, so we will have 

01
ln

n

C

k C




So this is essentially the equation for the plug flow reactor. So that means when we connect N

number of equal size CSTR in series it behaves when N tends to infinite it behaves like a plug

flow reactor. 

(Refer Slide Time: 26:39)

So, let us look into this by for the first order reaction, the graphical representation is given by

Levenspiel.  So, this is Levenspiel plot and this is for first order reaction. So this is for N

equal size reactor in series and for the reaction first reactions A   R irreversible reaction

and the density change is constant. So   is equal to zero and for constant or identical feed

ratio if we use the same processing rate. For same processing rate we can see this is nothing

but VnMFR/VPFR. 

So it directly gives the volume ratio the Y axis on this plot. And then on the X axis it gives

the conversion and this is a log log plot. And as you can see for first order reaction for N

equal to 1 the volume requirement for CSTR is higher compared to the plug flow reactor, as

the number of reactor increases from 1 to 2. And, then infinite the volume requirement or

there is no difference between the plug flow reactor and CSTR size requirement. If N number

of CSTR connected in series and N is very large.
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Now, let us consider second order reaction for N number of reactor connected in series and

we can consider second order bimolecular type reaction. No excess of either reactant similar

to the first order reaction. If N number of reactors are connected in series we can find 

0

1
2 2 1 2 1 2 1 4

4n i
i

C C k
k




 
        

 

And this would be with other values into N, this is for second order reaction for N number of

reactors connected in series. 

The same thing for the same volume the PFR equation is 

0
01 p

C
C k

C
 

So the comparison between the second order reactions is also shown in figure. 
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This as we can see this  is  also the similar  to the first  order reaction and this  is  also the

Levenspiel plot. And this is valid for the reaction 

2A product

A B product



 

with CA naught is  equal to CB naught that is  equimolar  of A and B. And for the same

processing rate this Y axis is give the volume ratio that is VnMFR/VPFR, so it directly gives the

comparison of their volume ratio and as we can see when the number of reactors in this case

also increases to infinite it behaves like a plug flow reactor. 
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Let us take an example to see how we can see the performance when we add you know

additional reactor in series with 1 reactor. So at present 90 present of A is converted into

product by second order reactions in a MFR. It is planned to connect a similar size MFR in

series with it. Now, the problem is for the same treatment rate, how this addition affect the

conversion of reactant? And second thing is that for the same 90 percent conversion, by how

much can the treatment rate be increased? 

(Refer Slide Time: 33:42) 

Now, let us solve it. So this is the Levenspiel plot as we have discussed before. And this is

only for the second order reaction and as per the problem it is for 90 percent conversion. So

90 percent conversion means 1 AX  if you look into over here 1 AX  ,so 

0.9

1 1 0.9 0.1
A

A

X

X



   

So, this is the point where the conversion is given. Now, from this point if we go this straight

for a single reactor first reactor we can obtain the values here which is for N = 1. We can

obtained the 0AkC   values. So 0AkC   value at this location is 90. 

Now the thing is given the same treatment  rate you are increasing the 1 more reactor so

0AkC   would be double which is similar size. So if it is double so it would be 0AkC   so we

had 90 and it is double so 0AkC   is becoming 180. Now, for 180 we have to locate the point

at 180. So this is at 180 and draw a parallel line with this  0AkC  . And which will cut the

second reactor, which is connected N is equal to 2 in this line at this location. 



Now from this if you go down or go vertically to the X axis, you will find the values 0.026.

So 1 AX  is equal to 0.026. So then we can write 

1 0.026

1 0.026 0.974
A

A

X

X

 

  

That  means the conversion is  equal  to  97.4 percent.  So in  addition  of  one more reactor

increases the conversion from 90 percent to 97.4 percent. Now the second problem which is

given for the 90 percent conversion, how much can the treatment rate be increased? 

(Refer Slide Time: 37:30)

So this is for 90 percent conversion and we have added one more reactor to it. Keeping the

same, the treatment rate has to be increased so that the conversion level remains same by

addition of the second reactor. That means when we add keep the conversion level 0AkC  S

90. So, we have to come down to reactor 2. And we have to find out the values of 0AkC   if

we increase the no treatment rate.  So, this would be equal to 27.5, so by addition of the

second reactor 0AkC   is 27.5. 

Now, for N is equal to 1 and N is equal to 2 if we write this group. This group y axis that is 

 
 

0 2 2

0 11

A n n

A nn

kC

kC

 

 
 





And then we can write this is 



2

1

( / )

( / )
n

n

V v

V v






And then this would be equal to, so for when it was single reactor that is 90 by addition of the

second reactor it becomes 27.5. 

So from this we can calculate, since 

2 12n nV V 

The ratio of the flow rate, if we write this would be 

2

1

90
*2 6.6

27.5
n

n

v

v




 

That means the treatment rate should be increased by 6.6 times, so the treatment rate. 

(Refer Slide Time: 41:03)

Now, let us considered another example. A liquid reactant stream, which is 1 mole per liter

passes through two mixed flow reactors in a series. The concentration of A in the exit of the

first reactor is 0.5 mole per liter.  Find the concentration of the exit  stream of the second

reactor. The reaction is second order with respect to A and  2

1

2
V

V
 . So, let us solve it for

second order reaction. We know 

0
2

A A

A

C C
k

C







Now, for the two reactors 2

1

2
V

V
 . 

So this is given, so then we can write 2

1

2
V

V
  2

1

k

k




 , which is 

2
0 2 2

2
0 1 1

/

/
A A A

A A A

C C C

C C C






Now, if we substitute the values this would be 

2
2 2

2

(0.5 ) /

(1 0.5) / (0.5)
A AC C




Now, so the stream which is entering is given that is 0AC  which is 1 mole per liter. And 1AC

exit is 0.5 mole per liter. 

So we have substituted over here and from this we can write 

2
2 24 0.5A AC C 

And, if we solve it this will give 2AC  would be equal to 0.25 mole per liter. So, this is the

concentration at the exit of the second reactor. 

(Refer Slide Time: 44:28)

Now, if we consider different size CSTR connected series. So, let us consider there are three

reactors which are connected in series. And their concentrations, the volume for reactor 1 is



1V  and the precedence time is 1 , for reactor 2 is 2V  and 2 , for reactor 3 is 3V  and 3 . The

concentration which is coming to reactor 1 is 0C  with volumetric flow rate v. And the Molar

flow rate is 0F  the exit to reactor 1 is 1C  which is going to reactor 2. Volumetric flow rate

remains constant and the Molar flow rate to tank 2 is 1
1

0

C
F

C
 . 

Similarly,  for  rector  2  exit  and entrance  to  the  reactor  3  is  2C  volumetric  flow rate  v,

2
2

0

C
F

C
 . And the exit for reactor 3 is 3C  volumetric flow rate V and 3

3
0

C
F

C
 . So this is for 3

MFR of different sizes connected in series. Here   is equal to 0 so constant density system.

If we write the component balance for the first reactor as we have done before that is 

0

0

0

0

,A A

A

A A
A

A

C XV

v r

C C
X

C

  





So similar way if do for reactor 1 we can write 

0 11
1

1

C CV

v r



 



For reactor 2 if we write, so form here we can write 

1

1 0 1

( )1 r

C C


 



Similarly, for any ith reactor we can write 

1

( )1 i

i i i

r

C C 


 



So with this balance equation we can write for any reactors and we can find out the values of

1

i
 .



(Refer Slide Time: 48:51)

Now, let us see the graphical procedure for finding the compositions in a CSTR. For doing so

we need to plot the concentration versus rate curve. So we have general relations 

1

( )1 i

i i i

r

C C 


 



Now,  if  we  plot  -r  versus  reactant  concentration,  so  this  is  -r  and  this  is  reactant

concentration. Now, plot any arbitrary curve say rate versus reactant concentration and we

can calculate the slope of the curve which is 
1

i
 . 

So,  if  we  calculate  slope  would  be  
1

( )i

i i

r

C C 




.  So  for  reactor  1  we  know  the  initial

concentration, so this is say initial concentration this is 0C  at point L. Now, if we know the

residence time we can calculate 

1

1 1 0

( )1 r

C C


 



So, if we calculate with a slope 
1

1


  so we can plot this line say this slope is 

1

1


  which is

equal to 1

1 0

( )r

C C




. 



So, say its meets the point M and to calculate the exit concentration of reactor 1 we can come

down vertically from this point, which will meet on the X axis at say N and the concentration

over here would be 1C . Now, if we can calculate the slope which is for the second reactor.

That would be slope would be 
2

1


 , with this slope if we plot. Say this is, slope is 

2

1


  so

that means 2  this would be, this relation would be 

2

2 2 1

( )1 r

C C


 



So, if we come down from this location say this is location P and if we come down vertically.

We will meet at X axis at so we will obtain 2C  and then if we plot with 
3

1


  say slope is

3

1


 . So then we can come down vertically and we obtain the concentration 3C . So this way

we can follow the graphical procedure to find out the exit concentration for each reactor.
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Now, we will consider determination of the best system for a given conversion. So, let us

consider two reactor connected in series and they are of different sizes. Say the first series is

connected like this, so we can calculate so this is the conversion is for the reactor 1 is 0 and

0C  is the concentration of the reactant, 0F  is the molar flow rate, this is for reactor 1. That is



volume 1V  and 1 . This is volume 2V  and residence time 2 , exit is 2X  from here and this is

1X . 

So for this, if write for the first rector if we do the balance equation. So we have considered

two reactors of unequal size connected in series. And now if we write for this 

1 1

0 1

X

C r





And for the second reactor we can write 

2 2 1

0 2

X X

C r

 




Now,  if  we take  first  the  larger  reactors  and second  the  smaller  reactors  with  the  same

nomenclature this would be 1V  and 1 . This would be 2V  and 2  and this would, X would be

0,  0C ,  0F , this is  1X  this is  2X . So, for the first and the second reactor we will have the

similar balance equation. Now, let us see graphically how to get a best system.

(Refer Slide Time: 56:45)

So, if we plot the any arbitrary kinetics so this is the nomenclature we have given X is equal

to 0, 0C , 0F , 1 , 1V , 2 , 2V  this is 1 , 1V , 2 , 2V . Here this is 1X  and this is 2X  so this is 1X ,



this is 2X  and X is equal to 0, C naught, F naught. Now, if we plot 
1

r
  versus conversion. So

if we do that for a single reactor this is the conversion if we want it to achieve 2X  up to this,

if want it to achieve the reactor volume requirement is this. So the area under the curve is

nothing but, 2

0

V

F
. 

Now, if we add smaller CSTR first, so this is the smaller CSTR volume requirement. So this

is the volume requirement for smaller CSTR. And then if we add so it will give conversion

from 0 to 1X . And this area under this curve would be 

1 1

0 0F

V

C




Now, for this reactor 2 it will give the conversion 1X  to 2X  and this is the area under this

curve is 2 2

0 0F

V

C


 . So, this is any arbitrary curve rate 

1

r
  versus conversion curve. 

Now, this is the area which is located on the shaded part is M, L, K, N. So this is the area

which is, we have to optimize this rectangles. Now, if we consider the second case, second

case  what  we have done,  we have incorporated  bigger  reactor  first  and then the  smaller

reactor  second.  So,  this  is  
1

r
 ,  this  is  X so if  the  bigger  reactor  first,  then  the  volume

requirement for the bigger reactor is this is one. So first reactor if bigger then it will take up

to 1X  and then the second reactor will convert from 1X  to 2X . 

So what we can see the total volume requirement if the reactor, if they are connected in series

of unequal size. Their arrangement which should come first? Will depend on the optimization

of the total volume required that means we have to optimize this rectangle that is M, N, K, L.

So, if this area of this rectangle is this rectangle is bigger, then the total volume requirement

by arranging that two CSTR in series would be minimum.
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Now, let us consider maximization of the rectangle a general procedure. Let us consider X, Y

axis. And we can plot any arbitrary curve so Y and X and then plot any arbitrary curve. We

can construct a rectangle on which, so then we construct rectangle which touches the point M

which is XY at this location. The area under this curve is A is equal to x, y and how we can

maximize this area? If we differentiate this would be 

dA ydx xdy 

And at maximum d A would be 0, so we can write 

dy y

dx x
 

So we plot the rectangle and see whether at different points it is touching and we plot the

tangent and see whether that is with the diagonal. So this curve is say initially we had at Y

and this is X. And then this point we have shifted to here, here and we see whether this

diagonal matches with point touches at the curve point, whether the tangent is the equal to the

diagonal of this rectangle. 

So, if we plot again and if we plot the diagonals of this rectangle and then the tangent we

could see that if both of them are parallel,  diagonal of this rectangle that is M, where the

tangent is drawn N, K, L. So the slope of this line, this is Y and this is X. So slope of this line

is the diagonal is Y/X and slope of this tangent over here at we have drawn a tangent at a

particular  point.  So that  would be slope which is  equal to  
dy y

dx x
  .  So the area of this

rectangle we can maximize when the diagonal is parallel with the tangent to the curve.
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Now the return to our problem to the optimization of the size ratio of the two reactors, if we

plot any arbitrary curve and then we plot the rectangle and then we find out the tangent to this

rate curve to diagonal. So this is basically we can plot 
1

r
  versus conversion. So for the first

reactor conversion is 0 to 1X . And for the second reactor the conversion is 1X  to 2X . 

Now to optimize this we need to find out the volume of the first reactor requires. So the

rectangle corresponding to this, this rectangle is the diagonal slope and the slope of this curve

should be same. So this way we can calculate the optimum unit required for the particular

operation. Now, the optimum size ratio of two MFR in series is found to be in general to be

dependent on the kinetics of the reaction and the conversion level desired. So basically we

have to  look into  the  rate  versus  conversion  curve  that  is  one.  And second point  is  the

conversion level desired. 

So these two factors are important to optimize the size requirement of the two MFR which is

connected in series. For special case of the first order reaction of equal size reactor are the

best show if the reaction is the first order in kind, then equal size reactors are the best one.

But for order greater than 1 the smaller reactor should come first and for n less than 1 the

larger should be at the beginning. So if reaction order is more than 1 so then smaller reactor

should be at the beginning. And then we connect the larger reactor in series. And if the order

is less than 1, then the larger reactor should be connected first and then the smaller one. But

for the order which is equal to 1 equal size reactor are the best.
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Now, if we have reactors of different size. So say, we have three reactors, one is small CSTR,

another is PFR and then bigger CSTR. So, if they connected, so inlet to this each conversion

is 0, 0F  and 0C , this is volume 1V , this is volume 2V  and this is 3V  and exit to this is 3X . So

exit to reactor 1 will go to PFR which is 1X  and exit to this will go the reactor 3. Plug flow

reactor exit would be in reactor 3, so this would be 2X  and if this is connected in series of

different sizes, how to order them, how to optimize their series? 

So, if we write the performance equation for CSTR for the first reactor we can write 

1 01

0 1

X XV

F r






2

1

2

0

X

X

V dX

F r




And

3 3 2

0 3

V X X

F r






The relationship all this three reactor are shown graphically. If we plot the arbitrary curve

which is  
1

r
  versus conversion. So then this is arbitrary curve and this is the first which

CSTR which is connected. 



And this is here the conversion is 0 and this is the conversion 1X . So, the area under this is

1

0

V

F
. Now, we connected the PFR, so the PFR volume will be this is much so area under this

curve so this the PFR volume. So this is basically 2

0

V

F
 and finally if connect the larger CSTR,

the volume requirement is under this curve. So this is 2X  and this is 3X  so this is for larger

CSTR and the volume required area under this curve is 3

0

V

F
. And this is the rate concentration

curve. 

So this way we can see the volume requirement for different conversion level required when

they are connected in series. Now, how to get the best arrangement of the three different ideal

reactors connected in series?
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So the  best  arrangement  we can  get  for  a  reaction  whose  rate  concentration  curve  rises

monotonically that is for nth order reaction. So, if we plot 
1

r
  versus conversion, and versus

concentration. So, if we plot 
1

r
  versus conversion so this is the requirement of the area this

is for PFR first one. Then we have small CSTR, then large CSTR. So for a reaction which



rate concentration curve rises monotonically that is for the reaction order greater than 0 the

reactor should be connected in series. 

They should be ordered, so as to keep the concentration of the reactant as high as possible if

the rate concentration curve is concave that is for n greater than 1. And as low as possible that

is convex for n less than 1. Now, for reactions where rate concentration curve passes through

a maximum or minimum the arrangement of the units depends on the actual shape of the

curve,  and the  conversion  level  desired.  The units  available  and no simple  rules  can  be

suggested. 

So, what we can see only when the order is positive that is N greater than 0. And the rate

concentration curves rises monotonically.  We can have two different ways to arrange the

reactor connected in series. And when the rate concentration curve is concave, that is for n

greater than 1. We have to keep the concentration as high as possible that means we have to

connect first the PFR. Then small CSTR and then larger CSTR. And this trend or ordering of

the reactor would be reverse if we have the convex curve that is for L less than 1. So, in that

case the larger CSTR should be connected first and then small CSTR and then PFR. 

But, where the rate concentration curve is such the maxima or minima simple rule can be

suggested. And we have to look into the shape of the curve and optimize the area. Whatever

may be the kinetics and the reactor system and examination of the  
1

Ar
 versus  AC , the rate

versus concentration curve is good way to find the best arrangement of the units.
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Now, let us see one example. Originally we planned to lower the activity of a gas streams

containing radioactive materials xenon 138, half line is 14 minutes by having it pass through

the two CSTR connected in series. And they are having the residence time or the space time 2

weeks in each tank. It has been suggested that we replace the two tanks with a PFR. What

should be the mean residence time or space time of PFR for the same extent of radioactive

decay? 

So, now consider two CSTR connected in series and this is a naught and this is 1a  and this is

2a . Now   is given,   is equal to 2 weeks so which is 20160 minute. So radioactive decay

of the first order reaction we can write K first order kinetics 

1/2

ln 2
k

t


So which is equal to (ln 2)/14 minute and this is about 0.0495 minute inverse. Now, if write

for the exit or for tank two we can write 

2 2 1

0 1 0

a a a

a a a
 

So then we can write for two tank connected in series this would be 2

1

(1 )k
. Now, if we

substitute the values this would be 

2

1

(1 0.0495*20160)




So this would be equal to 1.0017*10-6. 
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Now, for PFR this is a naught and outlet would be 2a  and we have calculate p . So 

62

1

1.0017*10
a

a


pke 


0.1445 pe 


So if we solve this we will get 

p  = ln 1.0017*10-6/-0.0495. 

So, which is about 279 minute or 4.65 hour.
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Now, if we take another examples, where the kinetics of non-aqueous phase decomposition

of A is investigated in two mixed flow reactors connected in series, the second reactor is

having twice the volume of the first reactor. So, the volume of the reactor is increased at

steady state with a feed concentration of 1 mole of A per liter and mean residence time is 96

second in the first reactor. The concentration in the first reactor is 0.5 mole A per liter. And in

the second reactor is 0.25 mole per liter, find the kinetic equation for the decomposition. 

So, if we take two reactor which are connected in series and there it is given that at the inlet

we have 1 mole per liter feed concentration. So, 0AC  = 1 mole per liter and 1AC  = 0.5 mole

per liter, and 2AC  = 0.25 mole per liter,    for the first reactor is given is  1  = 96 second.

Whereas, for the second reactor it should be double so 2  = 2*96 second. 

Now, for the first reactor for any nth order kinetics we can write 

0 1
1

1

A A
n
A

C C

kC



 …………………..(1)

And for the second reactor that is 

0 2
2

2

A A
n
A

C C

kC



 …………………(2)

So this is equation 2, so tau 1 and tau2. 
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Now, if we divide equation 1 by equation 2 the ratio would be, we can write. This is 

0 11 2

2 0 2 1

n

A A A

A A A

C C C

C C C





 
  

  

So taking log both sides, taking log we obtain 

0 11

2 0 2

2

1

ln ln

ln

A A

A A

A

A

C C

C C
n

C
C





   
   

   
 
 
 

And if we substitute by values then this is 1 this is 0.5 and this 0.25 mole per liter. 

Now, if you substitute the values this is  1  is 96 second and  2  is 2*96 second. So if we

substitute here this would be 

1 1
ln ln

2 2
1

ln
2

n

   
   

   
 
 
 

So this would give n = 2. So this is second order reaction. 
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So now, if we replace this order in the first reactor   equation 1 , so 

0 1
2 2

1 1

1 0.5 1

96*(0.5) 48 .
A A

A

C C lit
k

C mol s

 
  

And hence, we can calculate the rate equation is 

21

48 .A A

lit
r C

mol s
 

   
 

or 

21.25
.min A

lit
C

mol


So this  is  how we can obtain the kinetics  of the decomposition reactions  in  the aqueous

phase. So thank you very much for attending this lecture and we will continue our reactor

design in the next lecture as well.


