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Lecture - 13
Ideal Plug Flow Reactor Design

Welcome to the third lecture of module 4. In this module we are discussing reactor design for

single reaction.

(Refer Slide Time: 00:43)

Before going to this lecture let us have brief recap on our previous lecture, in the previous

lecture we have merely covered ideal CSTR design and then we have tried to see different

examples to calculate the volume or kinetics of the reactions, how to find out the kinetics

using the CSTR.
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In this lecture we will consider ideal Plug Flow Reactor design. The lecture outline would be

ideal Plug Flow Reactor design, then we will see examples how to calculate the volume of

the reactor for a particular operation and then we will compare between Batch and Plug Flow

Reactor, and then finally we will see the holding time and space time for flow reactor. 
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So ideal Plug flow Reactor design, so before going to this ideal plug flow design let us look

back the earlier two reactors which we have covered, one batch reactor, another is mixed

flow reactor. So batch reactor we have seen that it is used for small scale industries and it has

certain advantage and disadvantages, but mostly it is used for small scale production. But in



this case we have used stirring into the system although it is a close system, we use stirring

and so the content inside the reactor each homogeneous at any time.

In case of the mixed flow reactor that is the flow reactor where we have feed in and then

product out. So in this case also the content inside the reactor is continuously mixed. So the

system which is homogeneity inside the reactor, so this reactor we call back mixing reactors

so that means the concentration or the conversion at  any locations at a particular time is

constant. Whereas, in case of ideal plug flow reactor it is a tubular kind of reactor where the

flow enters in one end and it exits to the other.

And there is no back mixing that means there is no axial mixing. So all the contents are

radially mixing at any locations, but they are not back mixed. So, let us consider this is a plug

flow reactor and we have a feed in 0jF  and feed product exit at a molar flow rate of jF  that is

exit and this is in. Now, if we consider a very small elements, say this is y  and the location

over here is say y and at this location it is y y  .

So, if we take this control volume, so the inlet to this control volume say delta v is the control

volume and inlet to this is of component J is Fj(y) and exit from here is Fj( y y  ). So now

we need to divide the reactor into number of sub-volumes like this. So it can be divided into

number of sub-volumes. And within the sub-volume that is delta v which is written over here

this sub-volume the reaction rate may consider spatially uniform.

As you can see, since there is no back mixing in this reactor when the reaction will proceed

the rate will change that means the rate is not spatially constant throughout the length of the

reactor. But if we divide the reactor with a into a number of small sub-volumes and then for

each sub-volumes we assume that the reaction rate is spatially uniform.



(Refer Slide Time: 07:07)

Now, let consider 

Fj(y) = molar flow rate of species j into sub-volumes V  at y, and 

Fj( y y  ) = molar flow rate of the species j out of the sub-volume that is V  at y y  .

That we have assumed. Now in a spatially uniform sub-volume we can write 

V

j jr dV r V


 

So we can takeout from the integral because we assume for the small sub-volumes, the rate is

spatially uniform. Now, for tubular reactor if it operates at steady state for tubular reactor,

operated at steady state 

0jdN

d
 7
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So using these two equation if we apply in the general mole balance equation we can obtain

the mole balance equations we know which is 

0

V
j

j j j

dN
F F r dV

d
  

So this part, this is 0 at steady state, and this part is jr V . So we can write from here 

( ) ( ) 0j j jF y F y y r V     

Here jr  is the indirect function of y that is jr  is a function of reactant and concentration. So

then reactant concentration is a function of y down the reactors. So the reactant concentration,

which is a function of position y down the reactor.
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Now, if we take V  as we consider is the cross sectional area we can write this one would be

cross  sectional  area  into  the  reactor  length.  So  if  we take  the  control  volume  the  cross

sectional area is *A V . So we can write the earlier equation which you have derived is 

( ) ( )j j
j

F y y F y
Ar

y

   
   

 

So the term in that bracket resembles the definition of derivative, then we can write 

0

(x ) (x)
lim j j

x

f x f df

x dx 

   
 

 

So this is the definition so the term over here in the bracket is also the definition of this

derivative.
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So, we can write taking limit y  tends to 0 it would come 

j
j

df
Ar

dx
  

So this is for the reactant. For the product we can write 

j
j

dF
Ar

dx


So this is for the product. But it is generally more convenient to write this balance equation in

terms of the reactor volume instead of the reactor length y. So if we convert length to volume

we can write 

dV Ady

So, if we substitute this over here we will get 

j
j

dF
r

dV


or 

j
j

dF
r

dV
  

So these are the two forms, this is for the product and this for the reactant in terms of the

volume.
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Now, if we write this balance equation for a particular species A. So the species mole balance

for component A. The mole balance equation would be 

A
A

dF
r

dV
  

Now, we know that AF  for a single reactions 

0 0A A A AF F F X 

and AdF  if we just differentiate, 

0A A AdF F dX 

So from here we can write,

0
A

A A

dX
F r

dV
 

Now, if we apply the conditions when t = 0,  AX  = 0. So if we integrate this equations it

would give 

0 0

AX A
A

A

dX
V F

r




So this is the well-known PFR, Plug Flow Reactor design equation.
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If we consider Packed Bed Reactor. The derivation of the integral and the differential form of

the design equation for Packed Bed Reactor is similar to the Plug Flow Reactor. So in this

case we can write 

'
0

A
A A

dX
F r

dw
 

So in this case instead of the volume of the reactor we just replaced with the weight of the

catalyst, so which would be equal to '
Ar . When we have t = 0, AX  = 0. Initially then we can

integrate this. So if we integrate, we will obtain 

0 '0

AX A
A

A

dX
w F

r




here w is the weight of catalyst.
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Now, if we return back to the Plug Flow Reactor design, we can see two limiting cases, in

one case for any epsilon or any varying volume system the design equation would be 

0
0 0

AX A

A A A

dXV

F C r


 



and we can write 

0

0
0 0

AXA A

A A

VC dXV

v F r
   



So these two relations is valid for any A  and this allows the determination of the reactor size

for a given feed rate and required conversion. So if we have the feed rate given over here and

then if the conversion is mentioned so for a particular kinetics we can calculate the size of the

reactor  required.  As  we  can  see  for  Plug  Flow  Reactor  this  Ar  varies  with  position.

However, in case of CSTR or mixed flow reactor Ar  is constant with position.
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Now, if we consider the constant density system in that case, A  = 0, and we can write, we

know that 

0

1 A
A

A

C
X

C
 

and then we can write 

0

A
A

A

dC
dX

C
 

So in this case the performance equation 

00
0 0 0

1A A

A

X C
A A

C
A A A A A

dX dCV

F C r C r


   

  

So, or we can write 

0 0
0

AX A
A

A

dXV
C

v r
  



In terms of concentration we can write 

0

A

A

C
A

C
A

dC

r
 





Now, if we look into the graphical representation of  Ar  versus conversion or  
1

Ar
  versus

concentration change it would look like this. So this is  
1

Ar
  versus conversion  AX . Say it

start from 0 and say conversion is XAf .

So the rate will be, so this is the area under the curve so the conversion for 0 to AX  will take

this volume. So from this area we can calculate the area under the curve. So integral 0 to AX

A

A

dX

r
.  So  this  term  we  can  calculate  from  this.  Similarly,  if  we  plot  

1

Ar
  versus  AC

concentration.  So this  is  0  and this  at  0AC ,  so  
1

Ar
  will  be increase  because the rate  is

decreased. So this is how we can calculate this area under this curve.

(Refer Slide Time: 29:02)

Now, the performance equation can be written in the convenient form, we can write in terms

of the concentration or we can write in terms of the conversion. For system with changing

density, the more convenient form is, more convenient to use conversion but for constant

density system, no particular preference. So this are the convenient form which we can have

the changing density system.



So the more convenient form would be conversion, but for constant density system there is no

particular preference so either we can use the concentration form or performance equation in

terms of the concentration or we can use in terms of the conversion. The space time which is

required for any particular duty can be obtained the space time can be obtained either by

numerical or graphical integration. However, for certain simple kinetics analytical integration

is also possible.

(Refer Slide Time: 31:50)

Let us consider some different kind of reactions and see analytically how we can calculate the

space time for a particular duty. If we consider 0 order homogeneous reaction for any A . We

can write 

0
0

0

A
A A

A

kVC
k C X

F
  

For first order irreversible reaction, so if we consider first order irreversible reaction say 

A product

And for any A  we can write 

0

0

(1 ) ln(1 )A
A A A A

A

kVC
k X X

F
       

This we can rearrange at 



1
(1 ) ln

(1 )A A A
A

X
X

   


So this is for first order irreversible reaction and this is for 0 order homogeneous reaction.

(Refer Slide Time: 34:33)

Now, if  we consider  first  order  reversible  reaction,  so  first  order  reversible  reaction  say

consider 

A bR

0

0

0R

A

C

C


and the kinetics is 

1 2A A Rr k C k C  

and the equilibrium conversion AeX  this is the equilibrium conversion. So we can write for

any A  we can write 

 (1 ) ln(1 )Ae
A A A A

M bX
k X X

M b
  


    



So this is for first order reversible reaction. 

(Refer Slide Time: 36:35)



Similarly, we can also derive the integral form if we just integrate we will get a convenient

form of second order irreversible reaction. Say if we consider 

2

A B products

A products

 



This is for this case assume equimolar feed. Now for any A  we can write get 

2 2
0 2 (1 ) ln(1 ) ( 1)

1
A

A A A A A A A
A

X
C k X X

X
         



Now, if we write this for A  = 0 we can put over here so this term will cancel out and this

term will cancel out. So we will have 
1

A

A

X

X
. So we will get the simplified form 

0 1
A

A
A

X
C k

X
 


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Now, let us take an example to see how to calculate the volume of the reactor for a particular

operation or particular job. So at 650 degree centigrade phosphine vapour decomposes as

follows, phase forms 

3 4 24 ( ) 6PH P g H O 

with the rate of reactions 1(10 )phos phosr hr C  . Now we need to calculate what size of plug

flow reactor operating at 649 degree centigrade and 11.4 atmosphere is needed for 75 percent

conversion of 10 (molar) mole per hour of phosphine in a two third phosphine and one third

inert feed.

So the feed is, feed flow rate is 10 mole per hour of phosphine and the phosphine and inert

composition is two third and one third in the feed. Now we need to find out the size of the

plug flow reactor needed which is for the conversion of 75 percent. Now let us solve it, this is

our plug flow reactor and we have molar flow rate of the phosphine in the feed is 10 mole per

hour.  Please note that  this  10 mole per hour of the phosphine is the phosphine feed rate

phosphine in the feed.

But the total feed which also includes the inert that also has not been included in 0AF , 0AF  is

basically the amount of phosphine which is in the feed. Now, two third phosphine and one

third inert feed. The conversion is 0.75 temperature and pressure condition is given T is equal

to 649 degree centigrade and P is equal to 11.4 atmosphere these are the total pressure and

temperature conditions.



We need to, we have given the rate of the reactions which is given the rate equations and we

can see from the rate equations this is first order. So this is first order reaction because it is

the proportional the rate is proportional to the concentration of the phosphine. So we need to

find out the volume of the reactor needed.

(Refer Slide Time: 42:35)

Now this is our, so for first order reaction we know that 

0

0

1
(1 ) ln

1
A

A A A
A A

kVC
X

F X
 

 
   

 

So this is the equations so we have to find out the conversion is given we have to find out

0AC  from the conditions which are given. So if you find out 0AC  we can write 

0
0

A
A

P
C

RT


Now 0AP  would be the total pressure is 11.4 atmosphere and per cell pressure of phosphine

would be two third. So this is 

11.4*2 / 3

(0.08206)(649 273)




So if we calculate it would give 0.1 mole per litter. So now we have calculated 0AC .
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So our equation is 

0

0

1
(1 ) ln

1
A

A A A
A A

kVC
X

F X
 

 
   

 

so we have calculated 0AC  which is 0.1 mole per liter. Now k is given from this relation k is

10 hour-1, 0AF  is also given is 10 mole per hour. Now we have to calculate A . If we look into

the reaction here it is forming 4 mole of reactant forming 7 mole of product. 

So the reactant we had 10 mole per hour phosphine. So we had reactant this is 4 times 40

moles will produce 70 and inerts. So two third is equivalent to 10 mole per hour, so total is

equal to 

3
10* 15 /

2
mol hr

So our inert contain in a initially is about is 5 mole per hour. So if we take 4 times of that

volume, so 5*4 so inert is 20 so it would present it will remains same after the reaction each

over. 

So it would be 20, so if just sum them up it will be 90 and this will be 60. So now if we

calculate 

90 60

60A






So this would be 0.5. So now we have A , 0AF , 0AC , k and conversion is 0.75.
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Now, if we substitute these values in the equation so 

0

0

1
(1 ) ln

1
A

A A A
A A

kVC
X

F X
 

 
   

 

Now if we substitute the values the v would be equal to, so if we rearrange this equation 

0

0

1
(1 ) ln

1
A

A A A
A A

F
k X

VC X
 

  
    

  

Now if you substitute 

10 1
(1 0.5) ln 0.5*0.75

10*0.1 1 0.75
k

  
      

So this would give 17 liter. So the volume of the reactor needed for this particular reactions to

happen for 70 for conversion would require 17 litter.
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So now, if we look into the, if we compare between the batch reactor and plug flow reactor

we can see that for constant density system the performance equation for batch reactor and

plug flow reactor  are  identical.  So  the  performance equation  are  identical    for  PFR is

equivalent to ‘t’ for batch, ‘t’ for batch reactor. The equations can be used interchangeably.

Now, if it is variable density system in that case there is no direct relations between the batch

reactor and the plug flow reactor.

So, no direct relation between the batch and PFR equation. So the correct equation must be

used  for  each  particular  situation  and  the  performance  equation  cannot  be  used

interchangeably.  As we can see only for constant  density system there is  direct  relations

between the batch reactor  and the plug flow reactor,  but in case of the changing density

system there is no direct co-relations among them and appropriate care has to be taken while

using or solving some problem.
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Now, for desired design for the purpose how can we feel sure that we arrived at the desired

design equation? This can be, we can feel sure when we can predict  the response of the

reacting  species  to  changes  in  the  operating  conditions.  That  means  how  rates  and

equilibrium conversion changes with temperature and pressure.  So if  we can predict  how

rates and equilibrium and conversion changes with temperature and pressure, then we can

think that we have arrived to a certain design.

But also same time when we can able to compare yields for different designs like adiabatic

versus isothermal reactor. Secondly single unit versus multiple unit and third is flow versus

batch.  So if  we are able to compare the yields for different design,  if  we have adiabatic

system and isothermal reactor, how their yields changes if we can compare or if we use single

reactor what would be the yield and instead of multiple reactors or whether we can compare

the yields among the flow and batch reactor.

And finally, if we can estimate the economics of these various alternatives. So, if we can

make  sure  that  the  economics  as  per  the  requirements  of  the  yields  and  the  changing

parameters like conversion with temperature and pressure if we are feel sure then finally we

estimate the economics of the various alternatives, then only we can feel sure that we arrived

at the desired design. So for a particular design we need to care for all of these steps.
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Now two  things,  one  is  holding  time  and  the  space  time.  Space  time  we  have  already

discussed earlier which we have defined   is equal to time needed to treat on reactor volume

of feed at specified condition which is 

0

0 0

A

A

VCV

v F
  

And the unit is time, 
_

t  is the mean residence time of flowing materials in the reactor. This is

nothing but 

_

0 0 ( )(1 )
AX A

A
A A A

dX
t C

r X


 

and the unit is also time.

If it is constant density system the both space time and holding time they are same. So for

constant density system    is equal to  
_

t  which is equal to v by volumetric fluid, but for

changing density system 
_

t  is not equal to  .



(Refer Slide Time: 59:45)

Let us take a very good example given in Levienspiel and in this case it is consider a popping

up of the popcorn. So 3 cases have been considered, 3 same reactor size have been taken and

the volume is same V is equal to 1 litter and un-popped popcorn is fed at the bottom at 1 litter

per minute this is also 1 litter  per minute. This is un-popped corn and the corn are taken

inside and for the first case say X, Y, and Z the product rate is given to a 28 litter per minute.

So in the first case, the case X the popping of, so for the product rate is same for both the, all

the cases 28 litter per minute, the popping up happens at the top of the reactor, but in case of

second case the popping up occurs at the bottom of the reactors. So the residence time for the

second case and in the third case it is happened intermittently. So if we look into the different

values that is 

0

1

1 / minX Y Z

V lit

v lit
     

So the time is 1 minute, but in the first case when the popping up occurs at the top of the

tower, then 
_

Xt  would be equal to 1 litter per, 1 litter per minute which is 1 minute. But in the

second case the popping up occurs at the bottom so the popcorn production rate would be

same from the bottom to the top so it is 28 litter per minute. So 
_

Yt  would be equal to 1 litter

by 28 litter per minute. So which is equal to 2 second, about 2 second. 

So that means in the third case it will varies in between 2 second and 1 minutes. So we can

see that the residence time when the popping up occurs at the top is equal to the space time



and when the popping up occurs at the bottom of the reactor the residence time decreases

because the flow rate increases of the popcorn. So the holding time takes care what happens

inside the reactor. 
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Now over all in this 3 lectures we have consider batch, CSTR, Plug Flow and Packed Bed

Reactor and these are batch, PFR and packed bed reactor these are differential form, but in

case of the CSTR because of the back mixing, so we have only the algebraic form of the

equation and then we in case of batch PFR and PBR we can get the integral form of the

equation and the profile is look like this.

So this  is  taken from the Fogler’s lecture,  I  hope you have understood the general  mole

balance equation for the idealized reactor we have consider. In the next couple of lectures we

will consider the reactor design for single reaction, but we will compare the size among the

reactors. Thank you for attending this lecture and we will continue our discussion in our next

lecture.


