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Welcome to massive open online course on Fluid Flow Operations. In this lecture, we

will discuss about the Flow of Viscous Fluid, for the part of Boundary Layer Theory 

In the previous lecture,  we have discussed about the turbulent  flow and the velocity

distribution over the flat plate at its laminar and turbulent flow conditions. And also what

will be the drag force local drag force, even based on the based on different aspect of

velocity  components  of  a  turbulent  flow  condition  we  have  derived  the  velocity

distribution as well as the what will be the shear stress acting over on the surface of flat

plate and also what will be that in a circular tube. And also, we have given some example

how to calculate that shear stress, drag force, even you can say that local skin friction

factor all those things. 

Now, in  this  lecture  we will  discuss  about  the  boundary  layer,  what  should  be  that

characteristic feature of the boundary layer whenever fluid will be a flowing over a solid

surface?



(Refer Slide Time: 02:34)

As an example, you can say that if suppose an aeroplane is moving with the high speed

you will see whenever it will be moving surrounding the surface that is over the surface

of this aeroplane there will be a flow of air opposite to the aeroplane at the same speed of

this aeroplane.

Now, during this flow we are having some velocity over the surface of this aeroplane and

you will  see  that  velocity  will  be  changing  whenever  you are  going away from the

surface of this aeroplane. And very near to the surface you will see there will be a some

deviation of the velocity of the air due to some frictional forces acting on the surface and.

Since, there will be a viscous effect of this air at this high speed we can say that the

velocity gradient over the surface of this plane will be changing.

Now, during the velocity gradients change you will see it will be changing a based on

this height of this or length of or you can say that a normal distance from the surface of

this plane. And it will be changing in such a way that you will see the velocity of will be

reaching to  a free surface velocity  where that  means,  it  is  called  infinite  velocity  or

uniform velocity there that is denoted by U infinity here in this picture. And yellow line

are showing that there is a boundary yellow line here in this case you will see at this

points the velocity from this surface of the aeroplane will be reaching to about 99 percent

of the free stream velocity of the air there. 



So, at a certain length from the edge of this aeroplane that is from the you can say end of

this plane, at a certain length the axial direction that is in if it is horizontal then in the x

direction  you can  consider. And then at  a  certain  length  of  this  x  you will  see  this

velocity will be reaching about 99 percent of the free stream velocity. Now, this point

will be noted down here. Again, if you go certain extent of this length that is another

point if you consider here and you will see from this point on ward there will be a again

velocity change.

So, at each point you will see there will be a velocity change in such a way that the

gradient will be reaching to what is that free stream velocity gradient there. So, it will be

nullify when the free stream velocity will be that means, this velocity will be changing

up to a free stream velocity  their  velocity  gradient  will  be 0.  So, when this  velocity

gradient will be having 0, those point and the distance between those point to the free

surface of this solid surface here in this case the surface of the aeroplane, this distance

will be called as a boundary layer thickness.

Now, what is that boundary layer? That means, if you add these points when the velocity

will be reaching 99 percent of the free stream velocity and if you add those points and

you are getting this profile like this, ok. So, this is called the boundary layer. That means,

up to a certain distance from the solid surface of this object,  there will be a velocity

where  it  will  be  equal  to  99  percent  of  the  free  stream velocity.  So,  this  is  called

boundary layer. 

Now, this boundary layer of course, the thickness of this boundary layer will be changing

based on the velocity of the stream. Now, if the velocity is so high that means, if you are

considering that it is a turbulent flow. We have earlier defined the turbulent flow and

laminar flow. In the laminar flow you will get some distance of this that is boundary

layer to the solid surface. So, it is called laminar boundary layer thickness. 

Similarly, in the turbulent flow if suppose Reynolds number is greater than 4000s in the

even above that you will see there will be a. That means, the flow stream will not be

laminar  in condition that will  not give you the what is that uniform fashion of flow,

where it will be making some eddies when there will be inter mixing of the fluid. And

there in that case you will see to get the 99 percent of the free stream velocity you have

to reach beyond some distance what is actually we are obtaining in case of laminar flow.



So, in that case that laminar flow regimes that boundary layer thickness what will be

there it will be more than that laminar flow boundary layer thickness. 

Now, in this turbulent region, here see in this turbulent region you will see there will be

two sub region one is called laminar sub region another is called turbulent sub region.

Now, laminar  sub region it  is  sometimes  called  viscous sub li  region or  it  is  called

viscous sub layer, and within that layer you will see there will be a more frictional force

acting on the surface, whereas above that viscous layer relatively less friction we will

observe. And but still there will be a viscous effect and it will cross the distance of the

laminar boundary layer based on its turbulent condition.

And at  this  region there will  be a formation  of weight,  weight means here the fluid

particles as a parcel. It will move arbitrary in arbitrary direction and also you can say that

this movement will be in such a way that the fluid particles will get intermixing and they

will interact with each other and they will form some the chunk of fluid parcels and it

will  be  called  as  weight.  Now, that  weight  movement  will  be  haphazardly  and  that

means, in there will be a arbitrary direction there will there will change their direction as

since the flow velocity is higher and also there will be a in high interaction of this fluid

layer and because of which this direction of this weight will be changing. 

Now, in this case we are observing that there will be a point where this laminar boundary

layer will be changing to the turbulent boundary layer. Now, why where is that point?

That here we are observing this point will be denoted as the separation point, where this

laminar zone will be converting to the turbulent zone. Even this separation point you can

observe in case of laminar sub layer to the turbulent sub layer region. So, that point also

will be called as separation point but this will be called as stalled flow. So, in that case

you will see the boundary layer thickness will be different from the laminar boundary

layer thickness.

Now, observing this figure we are having another point important that is called stagnant

point. This stagnant, at this stagnant point that is at this face of this aeroplane this is

called stagnant point at this stagnant point the stagnation pressure will be is equal to total

pressure  where  whatever  the  pressure  will  be  exhorting  by  this  free  stream velocity

whenever it will be that is push to this neck or that is for mouth of this aeroplane. And



they are the stagnation point or stagnation pressure will be equals to here total pressure

whatever giving by this free stream. 

And you will see there will be a also a change of certain velocity gradient according to

the length of this crossing over the velocity over the length of this aeroplane or ordinarily

solid surface rather than aeroplane whatever we are observing.

So, in that case the boundary layer continuously thickens with the distance over which it

flows and this thickness will be less than a few millimeters on the frontal part of the high

speed of this aeroplane here. But it will reach as mass as 50 centimeter on the rear part of

the air cheaper aeroplane. So, this you have to remember. So, this is called boundary

layer. 

So, what we are actually getting here that whenever a fluid will be flowing over a solid

surface and adjacent to this solid surface the velocity will be having some gradient and

this gradient will be changing according to the vertical direction over the surface of the

solid surface. And it will be reaching almost equals to the free stream velocity. And up to

which this  velocity  gradient  will  be 0 that  distance will  be called as boundary layer

thickness.  This  boundary  layer  thickness  will  be  changing according  to  what  is  that

Reynolds number and also it will be changing based on the surface roughness there. So,

if there it is a very smooth there is no friction there will be one laminar, of course, there

will be a thickness will be less whereas, the roughness surface there you will get more

boundary layer thickness.

Now, we will be discussing here how to calculate all this boundary layer and also how

this velocity distribution will be there over the surface will be discussing in this lecture. 
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Now, let us first define that this boundary layer here. In this case, when a viscous fluid of

course this boundary layer concept will be only a based on the visco viscous fluid flow.

So, when this viscous fluid flow will be a flowing first a solid surface the fluid particles

on the surface will not have any velocity due to the viscosity of the fluid. 

And the fact is  generally  is known as no slip condition at  the boundary of the solid

surface  that  means,  at  the  boundary  there  will  be  no  velocity  of  the  fluid.  And the

velocity of the fluid particles of course, will have a gradient over the surface of the solid

and will be a subject of shear stress; still the same will have almost 0 gradient there. So,

it is actually given by the Prandtl, in previous lecture we have also discussed that the

boundary layer and also there will be a layer intermixing by mixing length theory there. 

And in this  figure,  you will  see there one coil  there that  over  this  surface how this

boundary layer that is velocity profile how it will be changing. And the distance it is

called  boundary  layer  thickness  it  is  denoted  by  delta.  And here  at  this  region  it  is

forming a weight and here over the flat surface here see how the laminar boundary layer

and here this is the transition where there will be a mixing of this laminar and turbulent

conditions. 

And at this case there will be a again you will get this boundary layer due to this viscous

effect  of  the  fluid.  And then  after  that  you will  see  there  will  be  a  normal  limit  of



boundary layer  here,  and then you will  see that  velocity  will  be reaching at  this  99

percent of the free stream velocity. 

So, at this point what will be the boundary layer thickness that you can obtain.
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Now, let us to other things that if the fluid layer over the solid surface to a thickness,

where the velocity of the fluid element reaches 99 percent of the velocity of the main

fluid it  will  be called as this  boundary layer  thickness.  And the velocity  of the fluid

element within the boundary layer that will increases with the distance from the body

surface that we have already discussed. And also, it  will  gradually approaches to the

velocity of the main flow or free stream it is called. The distance from the body surface

when the velocity reaches that 99 percent of the velocity of the main flow is defined as

the boundary layer thickness that is delta it is denoted by delta. 

So, here in this picture we are observing where this boundary layer thickness, here in the

top of this picture here by yellow line and at a certain distance x from this, here you can

get this boundary layer thickness over there. So, this boundary layer thickness will be

changing according to the x axis or length of the x or if it is in the y direction then it will

be in the y the function of y. 
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And now, what should be the actually Navier-Stokes equation simplified Navier-Stokes

equations for boundary layer here. Now, if we follow that Navier-Stokes equation earlier

we have derived in the earlier lectures. So, these are the equations of Navier-Stokes. 

So, in this case what are the components will be neglected that are given here this cut

mark here, this part will be neglected that is with respect to time it will not be changing

of velocity that means, steady state of operation if we consider. And there will be no

velocity component in the z direction or there will be no velocity in the z direction you

can say. So, in that case the velocity gradient in the z direction will be 0 whereas, in the u

and v direction you will observe the velocity gradient there.

So, only these two components u into dou u dou x and dou u dou y this components will

be there. And pressure of course, will be there in the x direction there will be change of

pressure, and other parts here for viscous effect of course, in the y direction there will be

a viscosity because this strange here strange will be in the y direction there the velocity

gradient in the y direction. So, there because of which you can get the viscous effect or

viscous force there. So, in that case what will be the components? Mu into dou 2 u by

dou y square. So, this component or this part will be of course, be considered. 

And other part in the x direction there is no velocity and the z directions there will be

velocity. So, the velocity gradient will be in 0 there. So, ultimately other than this one,

this one and this one, this one, also this one remaining part will be considered as this



simplified form in the x direction. If you are considering the y direction, similarly you

can observe in the z direction also you can calculate here in this way. So, these are the

simplified Navier-Stokes equation for the boundary layer. 
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Now, finally, we are getting this rho into u dou u dou x plus v dou u dou y that will be is

equal to minus dou p dou x plus mu into dou 2 U by dou y square. So, this will be your

in the x direction and this will be your y direction the simplified Navier-Stokes equation

for steady state operations. And similarly, can have the continuity equation also the z

components will be here 0. So, based on which we are getting this dou u dou x plus dou

v dou y that will be equals to 0.

So, this is that, from these equations you can derive further for velocity distribution of

the fluid over the surface of the solid surface at this boundary layer thickness.
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Now, what is that boundary layer thickness? Here, see in this picture it is shown that this

boundary layer thickness here. This is a flat plate stationary body surface we can see, and

here this one I think in this case here this figure. This is called that the how velocity that

is your boundary layer profile here, this one, and this is how this velocity changing in the

y direction at a particular x and also the velocity at any section approaches the local

velocity U that asymptotically that is U tends to infinity as a when y tends to infinity

there. 

So, in this case you will see you can say that there will be mass flow rate through the

elementary strip of dy if we consider here elementary strip, here in this case this one are

shown in blue color. So, here mass flow rate through elementary strip dy of unit width.

So, in that case it will be rho U into dy as given in equation number 4. And U infinity is

called free steam velocity and u is the velocity at any length x there and x y you can there

will be a velocity also there v. So, in that case mass flow rate plate is absent then you can

observe another that is what will be the amount of mass is flowed through this strip of

small thickness dy. So, it will be is equal to M s and p that will be equals to rho in p U

infinity dy which is shown in a equation number 5. 

So, mass flow rate through the elementary stream strip by dy of unit width we consider

unit width, here in this case this is unit width, ok. So, we can say there will be mass flow

rate through this elementary strip of this by equation 4, and also if there is no plate then



what should be the mass flow rate through this elementary strip it is given in equation

number 5. 
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And in this case what should be the reduction of this the mass flow rate through this

small strip? That means, if we consider the plate what will be the mass flow rate, if you

are not considering the plate what should be the mass flow rate. Just subtracting these we

are getting the reduction of mass flow rate when we are putting the solid surface or

stationary body surface in the flow. So, then it will be calculated as M dot R that will be

equals to rho into U infinity minus u into dy that is us equation number 6 it is shown. 

Now, total reduction how it will be there you have to integrate over this infinite length in

the y direction, then it will be 0 to infinity, then rho into U infinity minus u into dy this

one. Now, if we consider that this reduction of this mass flow rate due to this placing of

this stationary body surface in the flow for the layer thickness it is it will happen for the

layer thickness of d to the power d that is called displacement thickness at a distance of

x. 

Then we can say we can write here this rho U infinity into delta d will be equals to 0 to

infinity  into  rho  U  infinity  minus  u  into  dy  which  implies  delta  d  that  means,

displacement thickness will be is equal to 0 into infinity one minus u by U infinity into

dy. So, this is your displacement thickness. 



Now, in this case to find out this displacement thickness you have to know what should

be the local velocity to the free stream velocity of in the boundary layer region. So, that

profile will give you the displacement thickness. Now, you will get the several laminar

boundary a profile turbulent boundary layer, if you are substitute in this profile of that

boundary layer you can easily calculate the displacement thickness. 
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Like,  example  here  that  determine  the  displacement  thickness  if  the  velocity  is  99

percent of the free stream velocity that means, u by U infinity is equal to 0.99 and also if

this  velocity  distribution will  be equals to y by delta into U infinity. So,  at  this  two

conditions for should be the displacement thickness.

Now, this displacement thickness of the substitution of this value of this ratio of u by U

infinity there we are getting here this displacement thickness will be is equal to 1 percent

of  the  boundary  layer  thickness  there.  So,  this  a  displacement  thickness  will  not  be

exactly  the  boundary  layer  thickness.  This  displacement  thickness  will  be  actually

changing according to the x, but it may not be the case that that the thickness where this

velocity will be reaching almost uniform free stream velocity there.

In the other cases if u by U infinity is a function of that is y then how it will there this

displacement thickness the case two here. So, in this case if we substitute this u by U

infinity as y by delta here, so you are getting after integration this value as delta by 2. So,

very interesting that this displacement thickness will be 50 percent of the boundary layer



thickness at this condition of y by delta. At any y you can say for this delta y by delta

ratio  we can have this  50 percent  of the boundary layer  thickness as a displacement

thickness here.
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Now, what will be the momentum thickness similarly, if we observe that if I not place

this a stationary body surface there. Then, what should be the mass of flow through strip

dy of unit width? It will be rho U into dy. And then what should be the momentum rate

of this fluid inside the boundary layer? It will be rho u dy into U is equal to rho u square

dy. So, momentum rate of this fluid before entering inside the boundary layer that will be

is equal to this rho u into dy into U infinity.

Now, loss of momentum rate that will be equals to here just after subtracting this two

terms then we are getting the loss of momentum rate, then again defining this momentum

thickness as delta M which will be equivalent to that distance through which the total

loss of the momentum rate is equal to if it was passing a stationary plate. So, in that case

it will be calculated by this again integration of to the infinite distance in the y direction

after substitution of this reduction. So, which will implies that momentum thickness will

be equals to this one as given in equation number 8. So, from this also you can calculate

the momentum thickness based on the velocity profile of the boundary layer. 
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Now, energy thickness similarly to this momentum thickness we can derive also energy

thickness and based on the kinetic energy loss which is represented by this equation here.

And this after simplification integration will implies this equation number 9 and from

which also you can get this energy thickness and this is also that equivalent thickness at

which this after placing this stationary surface there what will be the change of energy

there. So, from this equation 9 we can calculate what will be the energy thickness.
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Now, let us do an example for this again with that a velocity profile of u by U infinity is

equal to y by delta what should be the momentum thickness and energy thickness there.

Now, if we substitute this velocity profile over that formula given earlier in equation

number 8 and 9, we are getting respectively these momentum thickness as delta by 6 and

energy thickness as delta by 4.
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And again what should be the Von Karman Theory of boundary layer, that is again we

can say that if we place any flat plate and then growth of the boundary layer how it will

be there we can calculate based on the Von Karman theory. And the theory is applicable

for both laminar and turbulent boundary layers here. And in this case wall shear stress

and the drag force also can be calculated. 
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So, let us see that Von Karman momentum equation for the boundary layer here. Let us

consider the A B C D as a small element of the boundary layer shown here. So, this is

your boundary layer and within this boundary layer we are considering here A B C D as a

small element of this boundary layer and here in this case we are considering unit width

of the plate perpendicular to the flow and U infinity is the free stream velocity, and at a

certain x we are considering this elementary boundary layer.

And if we consider there will be dy of thickness for this then what should be the shear

stress is acting over there? In the opposite direction of the flow the shear stress will be

acting as a here it will be denoted by this tau 0. And at the y direction we are considering

again  small  thickness  of  this  boundary  layer  as  a  dy  which  will  be  flowing  with  a

velocity  U.  And  now, based  on  this  we  can  apply  the  Von  Karman  theory  for  the

momentum equation and which can be derived based on this shear stress equation that

means,  shear  stress  will  be  actually  defined  based  on  the  what  is  that  momentum

equation.

Now, what will be that momentum? If we divide it by that kinetic energy terms there rho

U infinity square then we can getting that shear stress will be equals to rho U infinity

square that will be again it will be a d by dx into what is that u by U infinity 1 minus u by

infinity into dy. 



(Refer Slide Time: 32:11)

So,  this  from this  equation  you can  easily  calculate  what  should  be  the  momentum

equation for that. And in this case very interesting that what will be the momentum term

what we have derived here. So, this is your momentum thickness based on which we can

say that this is your profile by which you can calculate the momentum thickness, and if

you are substituting that momentum thickness here we can have these the change of

momentum thickness with respect to x. 

So, according to that Von Karman this momentum equation can be represented by this

equation number 10, where we can see what should be the shear stress over the surface

which is acting opposite to the flow of the fluid on the surface of the solid. So, in that

case you need to have the free stream velocity it depends on free stream velocity and also

a fluid properties. So, the change of momentum thickness with respect to x will give you

the shear stress over there. 

And the velocity distribution then of course, it will be following the boundary conditions

certain boundary conditions. So, at the plate surface if we consider that y is equal to 0,

then U should be 0 because there will  be no slip and then there will  be no velocity

gradient in the y direction then it will be a certain finite value. And over that surface, at

that particular y is equal to 0 you will not get any velocity gradient because here there

will be no velocity. But, very small thickness if you are considering the film thickness

like that infinite this that means, very is you can say that infinitely small thickness if you



are considering that then there will be a some value of gradient of velocity. So, that will

be considered as the finite value. 

At the other side you can say that if you are considering the outer edge of the boundary

layer in that case of course, y should be is the boundary layer thickness that is y is equal

to delta and u should be reaching to the U infinity that means, free stream velocity. And

in that case since there we no change of velocity in the y direction that is called uniform

velocity. So, in that case the du by dy that is called velocity gradient in the y direction

will not be there, so it will be 0. 

So, at this boundary, so two boundary conditions we are having at the surface where y is

equal to 0, there will be a velocity gradient finite and at the outer edge of the boundary

layer we can say there will be uniform velocity. So, there will be no gradient that will be

is equals to 0 at the boundary layer thickness.
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Now, after substitution all these things we can get this boundary conditions we can get

this  velocity  distribution  in  a  laminar  boundary  layer  as  this  and  therefore,  after

substitution of this profile we can get the momentum equation as this, here. So, this we

are  substituting  this  in  equation  number  10,  this  is  momentum  equation  and  after

substitution and integration and rearrangement  we can get this shear stress by rho U

infinity U square is equals to 0.139 to d delta by dx. 



But we have the definition of this shear stress at surface as tau 0 is equal to mu into du

by dy, where y is equal to 0. Now, after substitution of this du by dy at y is equal to 0

from this equation number 11 we can get this shear stress as 3 mu U infinity by 2 delta

after simplification, as equation number 13 here. So, we can then easily calculate what is

the shear stress, if you know the boundary layer thickness and the free stream velocity.

Of course, the properties will fluid should be known because here viscosity is the one

important terms important physical properties of the fluid by which you can calculate the

shear stress. 

So,  this  shear  stress  will  vary  with  respect  to  viscosity  as  well  as  that  free  stream

velocity. So, if you are using high viscous fluid, like if you are using oil you can get

more shear stress whereas, if you are using only simple water you can get less shear

stress there because the while will have more viscosity than water. 
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Now, I equating equation this 12 and 13, here shown then we are having this how this

boundary layer thickness will be changing according or with respect to x there. So, we

are getting delta into d delta will be equals to 10.78 into mu dx by rho U infinity as given

in equation number 14. 

Now, after integrating with the boundary conditions that we have given here at the plate

surface and at the outer range of the boundary layer, we can we can have this delta by x

will be is equal to 4.65 divided by root over rho U infinity x divided by mu. And here



this terms rho U infinity x by mu will be called as Reynolds number based on that is

horizontal distance from the starting of the boundary layer. So, in that case we are having

then delta by x will be is equal to 4.65 by root over Reynolds number. So, this delta we

are getting it is a function of x now, so delta will be equal to 4.65 x by root over Re x,

where Re x is defined as rho U infinity x by mu. 

So, very interesting that for this laminar boundary conditions if we apply then simply we

can calculate what should be the boundary layer thickness over this laminar boundary

conditions  here.  It  can be related  to  the Reynolds number that  means,  related  to  the

velocity and the physical properties and also it will vary according to the axial distance

in the x direction. Now, thickness, this thickness of this boundary layer it will increases

then  with  the  distance  x  from the  leading  is  and  the  decreases  with  increasing  free

surface velocity there. 
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Now, how to calculate the local drag coefficient based on this boundary layer theory?

Now, solving for this shear stress in terms of x we get from equation number 12 as tau 0

by rho U infinities square that will be equals to 0.139 into d delta by dx that will be is

equal to 0.322 root over mu rho U infinity cube by x. So, as shown in equation number

13. So, from this equation you can simply calculate this shear stress.



Now, if we relate this shear stress with this expression of this tau 0 as a function of

kinetic energy that it will be a function of kinetic energy like here rho U infinity square

by 2 then the proportionality constant the C f will be called as local drag coefficient here.

Now, this if you compare this equation number 18 and with this equation number 17,

then you can say what is that the local drag coefficient will be equals to that is 0.644 by

root over Reynolds number. So, this parameter C f is called the local drag coefficient

which is very important to model the flow over the flat surface at this boundary layer

condition. And based on which the even other I think the flow device will also designed

in such way that a for a range of high viscous flow to be flowed and it will be designed

in that particular physical properties condition. 

And what should be the drag coefficient that also, because this fictional drag will give

you the various laws of the flow and energy loss during the flow that. So, you have to

know this part for this local drag coefficient to calculate and also to calculate the energy

economy of the flow process there. 
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And a mean drag coefficient  also one important  aspect there whenever  there will  be

frictional force acting over the surface at this boundary layer condition, then the total

frictional drag on one side of the plate of the length if you considering a land you need to

width if we consider then it can be defined as F D is equal to tau 0 into dz dx. Again you

have to substitute  this tau 0 here and finally, after  simplification and integration and



simplification this equation 20 we can obtain. And in this case we are defining Reynolds

number based on the length of that is plate over which the fluid is flowing. 

Now, this drag force generally expressed by this equation number 21. Again, it is a, it is

related to the cross sectional area and also what is that kinetic energy of the flow. So, this

F D will be is equal to C D into rho U infinity square by 2 into A, here C D is called

again proportionality constant and this will be called as mean drag coefficient. And if we

compare this equation number 20 and 21 then we can have this mean drag coefficient as

cd is equal to 1.288 by root over Re L, Re L is the Reynolds number based on the length

of the plate. 

Now, this laminar boundary layer is a stable up to Reynolds number is equal to 3 into 10

to the power 5. You have to remember it and also the transition will occur there where

this laminar boundary layer to be converted to the turbulent boundary layer that will be

to Re x that will be to be 3 into 10 to the power 5 to 5 into 10 to the power 5. And the

critical distance it will be there where Reynolds number will be is equal to 5 into 10 to

the power 5. So, within this range of Reynolds number of 3 to 5 into 10 to the power 5

you can get this mean drag coefficient based on this laminar boundary theory.

(Refer Slide Time: 44:05)

Now, some  examples  of  this  drag  coefficient  that  is  here  by  that  is  the  local  drag

coefficient even mean drag coefficient and also the boundary layer thickness you can

have a based on the different boundary layer profile. 



Now, if you consider the Blasius profile it is called as Blasius profile u by U that will be

is equal to f dashed into y by delta and based on these we are getting delta will be equals

to 5 into x divided by root over Re x. Similarly, for C f it will be 0.664 divided by root

over Re x, and also the schedule we considered as 1.328 into 8 divided by root over Re

L.  So,  in  this  way you can get  the different  values  of  delta  C f  and C D for  linear

parabolic cubic and the sine wave profile of the boundary layer there. So, by this you can

easily calculate. So, what should be the actual boundary layer thickness, that depends on

the velocity profile over the surface. 
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And let us do an example for this. It is seen that the laminar velocity distribution over a

flat plate of unit width is as like u by U infinity is equal to 2 y by delta minus y square by

delta square. So, in this case what should be the thickness of the boundary layer and what

should be the shear stress at the trailing edge and drag force on the side of that is sub

object or here in this case plate of 1 millimeter long. And the plate is immersed in the

water where this water is water is flowing at 0.3 meter per second. 

So, in this case you have to calculate first Reynolds number for the length of one meter

and it is coming 3 into 10 to the power 5 as for this a problem. And in this case after

substitution of this  Reynolds number we are getting this delta will be equals to 0.01

meter. And shear stress again as per definition that is given in the previous slides that tau

0 will be equals to what; and then C f is the local drag coefficient then you can calculate



is this local drag coefficient after that substitution of this local drag coefficient in this

equation you can get this drag force will be is equal to 0.06 Newton per meter square.

Similarly, F D can be calculated based on this equation. The equation is shown in the

earlier  a  slide,  so  here  also  you can  have  this.  So,  based  on  this  equation  you can

calculate what will be the drag force according to this drag coefficient here. 
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Now, what should be the boundary layer thickness of laminar sub layer here? So, we

have already discussed that what should be the laminar sub layer or viscous sub layer.

Here in this picture it is shown this is the boundary layer and this region is called what is

that a laminar flow in boundary layer and this is the buffer layer where this viscous sub

layer and the turbulent sub layer we will meet there. So, this region is called the buffer

region and beyond this here it will be turbulent and before this it will be viscous sub

layer. 

Now, what will  be that viscous sub layer thickness that is separated from this buffer

layer? You can calculate based on this formula given here. In this case it depends on the

fiction  velocity  that  the  defined as  by  root  over  tau  0  by  rho  that  already  we have

discussed in the previous lecture in the turbulent flow condition what will be the friction

velocity. And also based on this friction velocity you can calculate the laminar sub layer

boundary layer thickness and also how it will be related to the x that you can calculate

from this equation. 



Now, what will the critical distance from this edge, where you can get the separation of

this  laminar  to  turbulent  boundary layer?  That  is  called  critical  distance  that  critical

distance  can  be  calculate  from  the  critical  Reynolds  number  that  critical  Reynolds

number will be is equals to 5 into 10 to the power 5. So, based on this critical Reynolds

number what will be the x critical that you can calculate, provided that you have to have

the  value  of  uniform  velocity  that  means,  free  stream  velocity  and  also  physical

properties of the system. 

And it is observed that this laminar sub layer thickness is related to the distance from its

edge that is x here, and it will be a power law that is related to the x to the power 0.1 and

also it will be related to the inversely proportional to the free stream velocity. So, which

will be represented by this delta ls will be equals to some constant of this free stream

velocity to the power minus 0.9 there. 

(Refer Slide Time: 49:48)

Now, let us do an example here again that, if you are observing that shear stress over a

flat plate of unit width and of length of 0.5 meter which having its value of 46.2 Newton

per meter square. And if you are merging this flat plate into an oil of specific gravity

0.925 and the viscosity as 0.9 stroke of velocity 5 meter per second. Then what should be

the critical distance at which you can get the laminar sub layer? And also what will be

the boundary layer thickness for this laminar sub layer at 0.2 meter distance from the

edge? 



Now, in this case we have already shown that what should be the critical a distance there.

This critical distance can be calculated from this Reynolds number. In this case then it

will be equals to 5 into 10 to the power 5 mu by rho U infinity. What should be that

value? You can calculate easily. And here v star that means, a friction velocity that will

be is equal to tau 0 to the tau 0 by rho, tau 0 is given to you rho is also is given to you

then what should be the Reynolds number you can calculate at particular edge. Once you

know this at length x Reynolds number you can easily calculate what will be the laminar

sub layer thickness from this equation. 
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Now,  let  us  consider  the  turbulent  boundary  layer  how  to  calculate  the  turbulent

boundary  layer  profile  as  well  as  what  will  be  the  boundary  layer  thickness  at  this

turbulent condition.

Now, since  we  have  observed  in  the  previous  lecture  that  that  velocity  distribution

boundary, velocity distribution in this turbulent condition will follow the one 7th power

law. So, based on that we can see that U by root over tau 0 by rho that will be is equal to

8.74 into root over tau 0 by rho y rho y mu to the power 1 by 7. Here instead of v star we

are just a substituting root over tau 0 by rho So, that is given in equation number 29 here.

So, follow this lecture twelve that is previous lecture equation number 29 as per Blasius

results, we have obtained this equation number 29. 



Now, at the edge of this boundary layer if we substitute the boundary layer condition as y

is equal to delta, and where u is equal to U infinity then we can get this value that is

given in equation number 30. So, this profile will  give you the shear stress equation

when the free stream velocity also you can calculate from this equation, once you know

the friction velocity or a shear stress there. So, dividing equation number 29 and 30 this

two equations we are getting this u by U infinity is equal to a y by delta to the power 1

by 7 here. 

So, earlier we have observed that that velocity distribution in a circular pipe that will be

is equal to what that, u by U max will be is equal to y by R to the power 1 by 7. Here in

this case based on this boundary layer we can get this over u by U infinity that will be is

equal to y by delta to the power 1 by 7. So, by equation number 31 you can get the bound

turbulent boundary layer equation provided by boundary layer thickness known to you. 
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Now, relating this equation number 30 again we are getting this tau 0 will be equals to 0

this, and after substitution of tau 0 in this and integrating with this limit of x critical to

this L because this is this limit is called that bound turbulent boundary region and from

which  you  can  calculate  the  what  will  be  the  total  drag  force  over  there.  So,  after

substitution of tau 0 from this then you can have the total drag force there.

Again, this total drag force will be equating with this definition of drag force as C D into

rho U infinity square by 2 into A and based on this a equality then we can get this what is



that cd that means, drag coefficient it is called mean drag coefficient is like this. And

also, then shear stress will be is equal to local drag coefficient will be this by defining

shear stress and equating with this tau 0, then we can get this C f could be equals to this. 

And after that if we know this Reynolds number based on this drag coefficient and also

what is that boundary layer thickness we can observe what would be the boundary layer

thickness based on this theory. And this equations or this correlations will be actually

valid to the in this range of Reynolds number here, where this is the critical Reynolds

number and this is your what is that up to this 10 to the power 7 up to this boundary

condition of turbulent flow that you can calculate this shear stress, local drag coefficient,

and average drag coefficient there. 
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And let us do an example here which seems there this smooth plate moves through air at

a relative velocity of 2 meter per second parallel to its length. Now, in this case at a

laminar condition; in this case calculate the drag force on the one side of the plate and at

turbulent conditions over the entire plate. What should be the drag force? And in this

case, density of there is required viscosity of there is required it is given here.

And I am giving this  solution hints here,  so you have to first find out the Reynolds

number. It is observed that (Refer Time: 56:22) 6.77 into 10 to the power 5, it is actually

within the range of this turbulent conditions. Now, for laminar boundary conditions what

will be that, if we substitute this Reynolds number here then we can calculate the C D



and F D also by these equations, and for turbulent boundary conditions we are getting the

C D and the F D here. So, the laminar and turbulent condition see the difference here. So,

there will be change of drag coefficient in laminar and boundary laminar and turbulent

conditions there based on this example. 
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Now, I will suggest you to go for the reading by different text books of this and even you

can follow this notes also. Just the following different fluid mechanics books here shown

in the slides, and also try to practice this examples based on the theory. 

Thank you. 


