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Module — 05
Flow of Viscous Fluid - Part 4
Lecture — 13
Boundary Layer Theory

Welcome to massive open online course on Fluid Flow Operations. In this lecture, we

will discuss about the Flow of Viscous Fluid, for the part of Boundary Layer Theory

In the previous lecture, we have discussed about the turbulent flow and the velocity
distribution over the flat plate at its laminar and turbulent flow conditions. And also what
will be the drag force local drag force, even based on the based on different aspect of
velocity components of a turbulent flow condition we have derived the velocity
distribution as well as the what will be the shear stress acting over on the surface of flat
plate and also what will be that in a circular tube. And also, we have given some example
how to calculate that shear stress, drag force, even you can say that local skin friction

factor all those things.

Now, in this lecture we will discuss about the boundary layer, what should be that
characteristic feature of the boundary layer whenever fluid will be a flowing over a solid

surface?
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As an example, you can say that if suppose an aeroplane is moving with the high speed
you will see whenever it will be moving surrounding the surface that is over the surface
of this aeroplane there will be a flow of air opposite to the aeroplane at the same speed of

this aeroplane.

Now, during this flow we are having some velocity over the surface of this aeroplane and
you will see that velocity will be changing whenever you are going away from the
surface of this aeroplane. And very near to the surface you will see there will be a some
deviation of the velocity of the air due to some frictional forces acting on the surface and.
Since, there will be a viscous effect of this air at this high speed we can say that the

velocity gradient over the surface of this plane will be changing.

Now, during the velocity gradients change you will see it will be changing a based on
this height of this or length of or you can say that a normal distance from the surface of
this plane. And it will be changing in such a way that you will see the velocity of will be
reaching to a free surface velocity where that means, it is called infinite velocity or
uniform velocity there that is denoted by U infinity here in this picture. And yellow line
are showing that there is a boundary yellow line here in this case you will see at this
points the velocity from this surface of the aeroplane will be reaching to about 99 percent

of the free stream velocity of the air there.



So, at a certain length from the edge of this aeroplane that is from the you can say end of
this plane, at a certain length the axial direction that is in if it is horizontal then in the x
direction you can consider. And then at a certain length of this x you will see this
velocity will be reaching about 99 percent of the free stream velocity. Now, this point
will be noted down here. Again, if you go certain extent of this length that is another
point if you consider here and you will see from this point on ward there will be a again

velocity change.

So, at each point you will see there will be a velocity change in such a way that the
gradient will be reaching to what is that free stream velocity gradient there. So, it will be
nullify when the free stream velocity will be that means, this velocity will be changing
up to a free stream velocity their velocity gradient will be 0. So, when this velocity
gradient will be having 0, those point and the distance between those point to the free
surface of this solid surface here in this case the surface of the aeroplane, this distance

will be called as a boundary layer thickness.

Now, what is that boundary layer? That means, if you add these points when the velocity
will be reaching 99 percent of the free stream velocity and if you add those points and
you are getting this profile like this, ok. So, this is called the boundary layer. That means,
up to a certain distance from the solid surface of this object, there will be a velocity
where it will be equal to 99 percent of the free stream velocity. So, this is called

boundary layer.

Now, this boundary layer of course, the thickness of this boundary layer will be changing
based on the velocity of the stream. Now, if the velocity is so high that means, if you are
considering that it is a turbulent flow. We have earlier defined the turbulent flow and
laminar flow. In the laminar flow you will get some distance of this that is boundary

layer to the solid surface. So, it is called laminar boundary layer thickness.

Similarly, in the turbulent flow if suppose Reynolds number is greater than 4000s in the
even above that you will see there will be a. That means, the flow stream will not be
laminar in condition that will not give you the what is that uniform fashion of flow,
where it will be making some eddies when there will be inter mixing of the fluid. And
there in that case you will see to get the 99 percent of the free stream velocity you have

to reach beyond some distance what is actually we are obtaining in case of laminar flow.



So, in that case that laminar flow regimes that boundary layer thickness what will be

there it will be more than that laminar flow boundary layer thickness.

Now, in this turbulent region, here see in this turbulent region you will see there will be
two sub region one is called laminar sub region another is called turbulent sub region.
Now, laminar sub region it is sometimes called viscous sub li region or it is called
viscous sub layer, and within that layer you will see there will be a more frictional force
acting on the surface, whereas above that viscous layer relatively less friction we will
observe. And but still there will be a viscous effect and it will cross the distance of the

laminar boundary layer based on its turbulent condition.

And at this region there will be a formation of weight, weight means here the fluid
particles as a parcel. It will move arbitrary in arbitrary direction and also you can say that
this movement will be in such a way that the fluid particles will get intermixing and they
will interact with each other and they will form some the chunk of fluid parcels and it
will be called as weight. Now, that weight movement will be haphazardly and that
means, in there will be a arbitrary direction there will there will change their direction as
since the flow velocity is higher and also there will be a in high interaction of this fluid

layer and because of which this direction of this weight will be changing.

Now, in this case we are observing that there will be a point where this laminar boundary
layer will be changing to the turbulent boundary layer. Now, why where is that point?
That here we are observing this point will be denoted as the separation point, where this
laminar zone will be converting to the turbulent zone. Even this separation point you can
observe in case of laminar sub layer to the turbulent sub layer region. So, that point also
will be called as separation point but this will be called as stalled flow. So, in that case
you will see the boundary layer thickness will be different from the laminar boundary

layer thickness.

Now, observing this figure we are having another point important that is called stagnant
point. This stagnant, at this stagnant point that is at this face of this aeroplane this is
called stagnant point at this stagnant point the stagnation pressure will be is equal to total
pressure where whatever the pressure will be exhorting by this free stream velocity

whenever it will be that is push to this neck or that is for mouth of this aeroplane. And



they are the stagnation point or stagnation pressure will be equals to here total pressure

whatever giving by this free stream.

And you will see there will be a also a change of certain velocity gradient according to
the length of this crossing over the velocity over the length of this aeroplane or ordinarily

solid surface rather than aeroplane whatever we are observing.

So, in that case the boundary layer continuously thickens with the distance over which it
flows and this thickness will be less than a few millimeters on the frontal part of the high
speed of this aeroplane here. But it will reach as mass as 50 centimeter on the rear part of
the air cheaper aeroplane. So, this you have to remember. So, this is called boundary

layer.

So, what we are actually getting here that whenever a fluid will be flowing over a solid
surface and adjacent to this solid surface the velocity will be having some gradient and
this gradient will be changing according to the vertical direction over the surface of the
solid surface. And it will be reaching almost equals to the free stream velocity. And up to
which this velocity gradient will be 0 that distance will be called as boundary layer
thickness. This boundary layer thickness will be changing according to what is that
Reynolds number and also it will be changing based on the surface roughness there. So,
if there it is a very smooth there is no friction there will be one laminar, of course, there
will be a thickness will be less whereas, the roughness surface there you will get more

boundary layer thickness.

Now, we will be discussing here how to calculate all this boundary layer and also how

this velocity distribution will be there over the surface will be discussing in this lecture.
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Now, let us first define that this boundary layer here. In this case, when a viscous fluid of

course this boundary layer concept will be only a based on the visco viscous fluid flow.
So, when this viscous fluid flow will be a flowing first a solid surface the fluid particles

on the surface will not have any velocity due to the viscosity of the fluid.

And the fact is generally is known as no slip condition at the boundary of the solid
surface that means, at the boundary there will be no velocity of the fluid. And the
velocity of the fluid particles of course, will have a gradient over the surface of the solid
and will be a subject of shear stress; still the same will have almost 0 gradient there. So,
it is actually given by the Prandtl, in previous lecture we have also discussed that the

boundary layer and also there will be a layer intermixing by mixing length theory there.

And in this figure, you will see there one coil there that over this surface how this
boundary layer that is velocity profile how it will be changing. And the distance it is
called boundary layer thickness it is denoted by delta. And here at this region it is
forming a weight and here over the flat surface here see how the laminar boundary layer
and here this is the transition where there will be a mixing of this laminar and turbulent

conditions.

And at this case there will be a again you will get this boundary layer due to this viscous

effect of the fluid. And then after that you will see there will be a normal limit of



boundary layer here, and then you will see that velocity will be reaching at this 99

percent of the free stream velocity.
So, at this point what will be the boundary layer thickness that you can obtain.
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Definition

® The fluid layer over the body surface to a thickness
where the velocity of the fluid element reaches 99%
| of the velocily of the main flow

= The velocity of the fluid element within the boundary
layer increases with the distance from the body
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® The distance from the body surface when the
velocity reaches 99% of the velocity of the main
flow is defined as the boundary layer

thickness &.

Now, let us to other things that if the fluid layer over the solid surface to a thickness,

.

I
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Boundary layer along a thin Mat plate

where the velocity of the fluid element reaches 99 percent of the velocity of the main
fluid it will be called as this boundary layer thickness. And the velocity of the fluid
element within the boundary layer that will increases with the distance from the body
surface that we have already discussed. And also, it will gradually approaches to the
velocity of the main flow or free stream it is called. The distance from the body surface
when the velocity reaches that 99 percent of the velocity of the main flow is defined as

the boundary layer thickness that is delta it is denoted by delta.

So, here in this picture we are observing where this boundary layer thickness, here in the
top of this picture here by yellow line and at a certain distance x from this, here you can
get this boundary layer thickness over there. So, this boundary layer thickness will be
changing according to the x axis or length of the x or if it is in the y direction then it will

be in the y the function of'y.
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And now, what should be the actually Navier-Stokes equation simplified Navier-Stokes
equations for boundary layer here. Now, if we follow that Navier-Stokes equation earlier

we have derived in the earlier lectures. So, these are the equations of Navier-Stokes.

So, in this case what are the components will be neglected that are given here this cut
mark here, this part will be neglected that is with respect to time it will not be changing
of velocity that means, steady state of operation if we consider. And there will be no
velocity component in the z direction or there will be no velocity in the z direction you
can say. So, in that case the velocity gradient in the z direction will be 0 whereas, in the u

and v direction you will observe the velocity gradient there.

So, only these two components u into dou u dou x and dou u dou y this components will
be there. And pressure of course, will be there in the x direction there will be change of
pressure, and other parts here for viscous effect of course, in the y direction there will be
a viscosity because this strange here strange will be in the y direction there the velocity
gradient in the y direction. So, there because of which you can get the viscous effect or
viscous force there. So, in that case what will be the components? Mu into dou 2 u by

dou y square. So, this component or this part will be of course, be considered.

And other part in the x direction there is no velocity and the z directions there will be
velocity. So, the velocity gradient will be in 0 there. So, ultimately other than this one,

this one and this one, this one, also this one remaining part will be considered as this



simplified form in the x direction. If you are considering the y direction, similarly you
can observe in the z direction also you can calculate here in this way. So, these are the

simplified Navier-Stokes equation for the boundary layer.
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Now, finally, we are getting this rho into u dou u dou x plus v dou u dou y that will be is
equal to minus dou p dou x plus mu into dou 2 U by dou y square. So, this will be your
in the x direction and this will be your y direction the simplified Navier-Stokes equation
for steady state operations. And similarly, can have the continuity equation also the z
components will be here 0. So, based on which we are getting this dou u dou x plus dou

v dou y that will be equals to 0.

So, this is that, from these equations you can derive further for velocity distribution of

the fluid over the surface of the solid surface at this boundary layer thickness.
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Boundary Layer Thickness
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Now, what is that boundary layer thickness? Here, see in this picture it is shown that this
boundary layer thickness here. This is a flat plate stationary body surface we can see, and
here this one I think in this case here this figure. This is called that the how velocity that
is your boundary layer profile here, this one, and this is how this velocity changing in the
y direction at a particular x and also the velocity at any section approaches the local
velocity U that asymptotically that is U tends to infinity as a when y tends to infinity

there.

So, in this case you will see you can say that there will be mass flow rate through the
elementary strip of dy if we consider here elementary strip, here in this case this one are
shown in blue color. So, here mass flow rate through elementary strip dy of unit width.
So, in that case it will be rho U into dy as given in equation number 4. And U infinity is
called free steam velocity and u is the velocity at any length x there and x y you can there
will be a velocity also there v. So, in that case mass flow rate plate is absent then you can
observe another that is what will be the amount of mass is flowed through this strip of
small thickness dy. So, it will be is equal to M s and p that will be equals to rho in p U

infinity dy which is shown in a equation number 5.

So, mass flow rate through the elementary stream strip by dy of unit width we consider
unit width, here in this case this is unit width, ok. So, we can say there will be mass flow

rate through this elementary strip of this by equation 4, and also if there is no plate then



what should be the mass flow rate through this elementary strip it is given in equation

number 5.
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And in this case what should be the reduction of this the mass flow rate through this
small strip? That means, if we consider the plate what will be the mass flow rate, if you
are not considering the plate what should be the mass flow rate. Just subtracting these we
are getting the reduction of mass flow rate when we are putting the solid surface or
stationary body surface in the flow. So, then it will be calculated as M dot R that will be

equals to rho into U infinity minus u into dy that is us equation number 6 it is shown.

Now, total reduction how it will be there you have to integrate over this infinite length in
the y direction, then it will be 0 to infinity, then rho into U infinity minus u into dy this
one. Now, if we consider that this reduction of this mass flow rate due to this placing of
this stationary body surface in the flow for the layer thickness it is it will happen for the
layer thickness of d to the power d that is called displacement thickness at a distance of

X.

Then we can say we can write here this rho U infinity into delta d will be equals to 0 to
infinity into rho U infinity minus u into dy which implies delta d that means,
displacement thickness will be is equal to 0 into infinity one minus u by U infinity into

dy. So, this is your displacement thickness.



Now, in this case to find out this displacement thickness you have to know what should
be the local velocity to the free stream velocity of in the boundary layer region. So, that
profile will give you the displacement thickness. Now, you will get the several laminar
boundary a profile turbulent boundary layer, if you are substitute in this profile of that

boundary layer you can easily calculate the displacement thickness.
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Like, example here that determine the displacement thickness if the velocity is 99
percent of the free stream velocity that means, u by U infinity is equal to 0.99 and also if
this velocity distribution will be equals to y by delta into U infinity. So, at this two

conditions for should be the displacement thickness.

Now, this displacement thickness of the substitution of this value of this ratio of u by U
infinity there we are getting here this displacement thickness will be is equal to 1 percent
of the boundary layer thickness there. So, this a displacement thickness will not be
exactly the boundary layer thickness. This displacement thickness will be actually
changing according to the x, but it may not be the case that that the thickness where this

velocity will be reaching almost uniform free stream velocity there.

In the other cases if u by U infinity is a function of that is y then how it will there this
displacement thickness the case two here. So, in this case if we substitute this u by U
infinity as y by delta here, so you are getting after integration this value as delta by 2. So,

very interesting that this displacement thickness will be 50 percent of the boundary layer



thickness at this condition of y by delta. At any y you can say for this delta y by delta
ratio we can have this 50 percent of the boundary layer thickness as a displacement

thickness here.
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Now, what will be the momentum thickness similarly, if we observe that if I not place
this a stationary body surface there. Then, what should be the mass of flow through strip
dy of unit width? It will be tho U into dy. And then what should be the momentum rate
of this fluid inside the boundary layer? It will be rho u dy into U is equal to rho u square
dy. So, momentum rate of this fluid before entering inside the boundary layer that will be

is equal to this rho u into dy into U infinity.

Now, loss of momentum rate that will be equals to here just after subtracting this two
terms then we are getting the loss of momentum rate, then again defining this momentum
thickness as delta M which will be equivalent to that distance through which the total
loss of the momentum rate is equal to if it was passing a stationary plate. So, in that case
it will be calculated by this again integration of to the infinite distance in the y direction
after substitution of this reduction. So, which will implies that momentum thickness will
be equals to this one as given in equation number 8. So, from this also you can calculate

the momentum thickness based on the velocity profile of the boundary layer.
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Now, energy thickness similarly to this momentum thickness we can derive also energy
thickness and based on the kinetic energy loss which is represented by this equation here.
And this after simplification integration will implies this equation number 9 and from
which also you can get this energy thickness and this is also that equivalent thickness at
which this after placing this stationary surface there what will be the change of energy

there. So, from this equation 9 we can calculate what will be the energy thickness.
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Now, let us do an example for this again with that a velocity profile of u by U infinity is
equal to y by delta what should be the momentum thickness and energy thickness there.
Now, if we substitute this velocity profile over that formula given earlier in equation
number 8 and 9, we are getting respectively these momentum thickness as delta by 6 and

energy thickness as delta by 4.
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Von Karman Theory of Boundary Layer

= The growth of boundary layer along a flat plate
can be calculated based on momentum equation

= The wall shear sfress and the dmg force can be
calculated

~

= The theory is applicable for both laminar and
turbulent boundary layers

And again what should be the Von Karman Theory of boundary layer, that is again we
can say that if we place any flat plate and then growth of the boundary layer how it will
be there we can calculate based on the Von Karman theory. And the theory is applicable
for both laminar and turbulent boundary layers here. And in this case wall shear stress

and the drag force also can be calculated.
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Von Karman momentum Equation for
Boundary Layer

ABCD is the small
element of boundary
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Unit width of plate
perpendicular fo flow

So, let us see that Von Karman momentum equation for the boundary layer here. Let us
consider the A B C D as a small element of the boundary layer shown here. So, this is
your boundary layer and within this boundary layer we are considering here ABCD as a
small element of this boundary layer and here in this case we are considering unit width
of the plate perpendicular to the flow and U infinity is the free stream velocity, and at a

certain X we are considering this elementary boundary layer.

And if we consider there will be dy of thickness for this then what should be the shear
stress 1s acting over there? In the opposite direction of the flow the shear stress will be
acting as a here it will be denoted by this tau 0. And at the y direction we are considering
again small thickness of this boundary layer as a dy which will be flowing with a
velocity U. And now, based on this we can apply the Von Karman theory for the
momentum equation and which can be derived based on this shear stress equation that
means, shear stress will be actually defined based on the what is that momentum

equation.

Now, what will be that momentum? If we divide it by that kinetic energy terms there rho
U infinity square then we can getting that shear stress will be equals to rho U infinity
square that will be again it will be a d by dx into what is that u by U infinity 1 minus u by
infinity into dy.
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According to Von Karman, the momentum equation can
be derived and represented as
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So, this from this equation you can easily calculate what should be the momentum
equation for that. And in this case very interesting that what will be the momentum term
what we have derived here. So, this is your momentum thickness based on which we can
say that this is your profile by which you can calculate the momentum thickness, and if
you are substituting that momentum thickness here we can have these the change of

momentum thickness with respect to x.

So, according to that Von Karman this momentum equation can be represented by this
equation number 10, where we can see what should be the shear stress over the surface
which is acting opposite to the flow of the fluid on the surface of the solid. So, in that
case you need to have the free stream velocity it depends on free stream velocity and also
a fluid properties. So, the change of momentum thickness with respect to x will give you

the shear stress over there.

And the velocity distribution then of course, it will be following the boundary conditions
certain boundary conditions. So, at the plate surface if we consider that y is equal to 0,
then U should be 0 because there will be no slip and then there will be no velocity
gradient in the y direction then it will be a certain finite value. And over that surface, at
that particular y is equal to 0 you will not get any velocity gradient because here there
will be no velocity. But, very small thickness if you are considering the film thickness

like that infinite this that means, very is you can say that infinitely small thickness if you



are considering that then there will be a some value of gradient of velocity. So, that will

be considered as the finite value.

At the other side you can say that if you are considering the outer edge of the boundary
layer in that case of course, y should be is the boundary layer thickness that is y is equal
to delta and u should be reaching to the U infinity that means, free stream velocity. And
in that case since there we no change of velocity in the y direction that is called uniform
velocity. So, in that case the du by dy that is called velocity gradient in the y direction

will not be there, so it will be 0.

So, at this boundary, so two boundary conditions we are having at the surface where y is
equal to 0, there will be a velocity gradient finite and at the outer edge of the boundary
layer we can say there will be uniform velocity. So, there will be no gradient that will be

is equals to 0 at the boundary layer thickness.
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Laminar boundary layer thickness
based on the Von Karman Theory
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Now, after substitution all these things we can get this boundary conditions we can get
this velocity distribution in a laminar boundary layer as this and therefore, after
substitution of this profile we can get the momentum equation as this, here. So, this we
are substituting this in equation number 10, this is momentum equation and after
substitution and integration and rearrangement we can get this shear stress by rho U

infinity U square is equals to 0.139 to d delta by dx.



But we have the definition of this shear stress at surface as tau 0 is equal to mu into du
by dy, where y is equal to 0. Now, after substitution of this du by dy at y is equal to 0
from this equation number 11 we can get this shear stress as 3 mu U infinity by 2 delta
after simplification, as equation number 13 here. So, we can then easily calculate what is
the shear stress, if you know the boundary layer thickness and the free stream velocity.
Of course, the properties will fluid should be known because here viscosity is the one
important terms important physical properties of the fluid by which you can calculate the

shear stress.

So, this shear stress will vary with respect to viscosity as well as that free stream
velocity. So, if you are using high viscous fluid, like if you are using oil you can get
more shear stress whereas, if you are using only simple water you can get less shear

stress there because the while will have more viscosity than water.
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Now, I equating equation this 12 and 13, here shown then we are having this how this
boundary layer thickness will be changing according or with respect to x there. So, we
are getting delta into d delta will be equals to 10.78 into mu dx by rho U infinity as given

in equation number 14.

Now, after integrating with the boundary conditions that we have given here at the plate
surface and at the outer range of the boundary layer, we can we can have this delta by x

will be is equal to 4.65 divided by root over rho U infinity x divided by mu. And here



this terms rho U infinity x by mu will be called as Reynolds number based on that is
horizontal distance from the starting of the boundary layer. So, in that case we are having
then delta by x will be is equal to 4.65 by root over Reynolds number. So, this delta we
are getting it is a function of x now, so delta will be equal to 4.65 x by root over Re x,

where Re x is defined as rho U infinity x by mu.

So, very interesting that for this laminar boundary conditions if we apply then simply we
can calculate what should be the boundary layer thickness over this laminar boundary
conditions here. It can be related to the Reynolds number that means, related to the
velocity and the physical properties and also it will vary according to the axial distance
in the x direction. Now, thickness, this thickness of this boundary layer it will increases
then with the distance x from the leading is and the decreases with increasing free

surface velocity there.
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Local drag coefficient

Solving for 1, in terms of x, we get from equation 12 as
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Now, how to calculate the local drag coefficient based on this boundary layer theory?
Now, solving for this shear stress in terms of x we get from equation number 12 as tau 0
by rho U infinities square that will be equals to 0.139 into d delta by dx that will be is
equal to 0.322 root over mu rho U infinity cube by x. So, as shown in equation number

13. So, from this equation you can simply calculate this shear stress.



Now, if we relate this shear stress with this expression of this tau 0 as a function of
kinetic energy that it will be a function of kinetic energy like here rho U infinity square

by 2 then the proportionality constant the C f will be called as local drag coefficient here.

Now, this if you compare this equation number 18 and with this equation number 17,
then you can say what is that the local drag coefficient will be equals to that is 0.644 by
root over Reynolds number. So, this parameter C f is called the local drag coefficient
which is very important to model the flow over the flat surface at this boundary layer
condition. And based on which the even other I think the flow device will also designed
in such way that a for a range of high viscous flow to be flowed and it will be designed

in that particular physical properties condition.

And what should be the drag coefficient that also, because this fictional drag will give
you the various laws of the flow and energy loss during the flow that. So, you have to
know this part for this local drag coefficient to calculate and also to calculate the energy

economy of the flow process there.
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Mean drag coefficient

® The fotal frictional drag on one side of the plate of
length L and unit width is then
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And a mean drag coefficient also one important aspect there whenever there will be
frictional force acting over the surface at this boundary layer condition, then the total
frictional drag on one side of the plate of the length if you considering a land you need to
width if we consider then it can be defined as F D is equal to tau 0 into dz dx. Again you

have to substitute this tau 0 here and finally, after simplification and integration and



simplification this equation 20 we can obtain. And in this case we are defining Reynolds

number based on the length of that is plate over which the fluid is flowing.

Now, this drag force generally expressed by this equation number 21. Again, it is a, it is
related to the cross sectional area and also what is that kinetic energy of the flow. So, this
F D will be is equal to C D into rho U infinity square by 2 into A, here C D is called
again proportionality constant and this will be called as mean drag coefficient. And if we
compare this equation number 20 and 21 then we can have this mean drag coefficient as
cd is equal to 1.288 by root over Re L, Re L is the Reynolds number based on the length
of the plate.

Now, this laminar boundary layer is a stable up to Reynolds number is equal to 3 into 10
to the power 5. You have to remember it and also the transition will occur there where
this laminar boundary layer to be converted to the turbulent boundary layer that will be
to Re x that will be to be 3 into 10 to the power 5 to 5 into 10 to the power 5. And the
critical distance it will be there where Reynolds number will be is equal to 5 into 10 to
the power 5. So, within this range of Reynolds number of 3 to 5 into 10 to the power 5

you can get this mean drag coefficient based on this laminar boundary theory.
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Approximate boundary layer profile

Now, some examples of this drag coefficient that is here by that is the local drag
coefficient even mean drag coefficient and also the boundary layer thickness you can

have a based on the different boundary layer profile.



Now, if you consider the Blasius profile it is called as Blasius profile u by U that will be
is equal to f dashed into y by delta and based on these we are getting delta will be equals
to 5 into x divided by root over Re x. Similarly, for C f it will be 0.664 divided by root
over Re x, and also the schedule we considered as 1.328 into 8 divided by root over Re
L. So, in this way you can get the different values of delta C f and C D for linear
parabolic cubic and the sine wave profile of the boundary layer there. So, by this you can
easily calculate. So, what should be the actual boundary layer thickness, that depends on

the velocity profile over the surface.
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Example: It was observed that laminar velocity distribution
over a flate plate of unit width is as u y

Find the thickness of the boundary layer, the shear siress at the traiing edge
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And let us do an example for this. It is seen that the laminar velocity distribution over a
flat plate of unit width is as like u by U infinity is equal to 2 y by delta minus y square by
delta square. So, in this case what should be the thickness of the boundary layer and what
should be the shear stress at the trailing edge and drag force on the side of that is sub
object or here in this case plate of 1 millimeter long. And the plate is immersed in the

water where this water is water is flowing at 0.3 meter per second.

So, in this case you have to calculate first Reynolds number for the length of one meter
and it is coming 3 into 10 to the power 5 as for this a problem. And in this case after
substitution of this Reynolds number we are getting this delta will be equals to 0.01
meter. And shear stress again as per definition that is given in the previous slides that tau

0 will be equals to what; and then C f is the local drag coefficient then you can calculate



is this local drag coefficient after that substitution of this local drag coefficient in this

equation you can get this drag force will be is equal to 0.06 Newton per meter square.

Similarly, F D can be calculated based on this equation. The equation is shown in the
earlier a slide, so here also you can have this. So, based on this equation you can

calculate what will be the drag force according to this drag coefficient here.
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Now, what should be the boundary layer thickness of laminar sub layer here? So, we
have already discussed that what should be the laminar sub layer or viscous sub layer.
Here in this picture it is shown this is the boundary layer and this region is called what is
that a laminar flow in boundary layer and this is the buffer layer where this viscous sub
layer and the turbulent sub layer we will meet there. So, this region is called the buffer
region and beyond this here it will be turbulent and before this it will be viscous sub

layer.

Now, what will be that viscous sub layer thickness that is separated from this buffer
layer? You can calculate based on this formula given here. In this case it depends on the
fiction velocity that the defined as by root over tau 0 by rho that already we have
discussed in the previous lecture in the turbulent flow condition what will be the friction
velocity. And also based on this friction velocity you can calculate the laminar sub layer
boundary layer thickness and also how it will be related to the x that you can calculate

from this equation.



Now, what will the critical distance from this edge, where you can get the separation of
this laminar to turbulent boundary layer? That is called critical distance that critical
distance can be calculate from the critical Reynolds number that critical Reynolds
number will be is equals to 5 into 10 to the power 5. So, based on this critical Reynolds
number what will be the x critical that you can calculate, provided that you have to have
the value of uniform velocity that means, free stream velocity and also physical

properties of the system.

And it is observed that this laminar sub layer thickness is related to the distance from its
edge that is x here, and it will be a power law that is related to the x to the power 0.1 and
also it will be related to the inversely proportional to the free stream velocity. So, which
will be represented by this delta Is will be equals to some constant of this free stream

velocity to the power minus 0.9 there.
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Example: Itis seen that the shear stress over a flat plate of unit widih and of
length 0.5 m having its value of 46.2 N/m?if it is immersed in flowing an oil of sp.
gravity 0.925 and of viscosity 0.9 stoke of velocity 5 m/s. What is the critical
distance at which the laminar sublayer prevails? What is the boundary layer
thickness for this laminar sublayer at 0.2 m distance from fhe edge.

Solufion Hints

Now, let us do an example here again that, if you are observing that shear stress over a
flat plate of unit width and of length of 0.5 meter which having its value of 46.2 Newton
per meter square. And if you are merging this flat plate into an oil of specific gravity
0.925 and the viscosity as 0.9 stroke of velocity 5 meter per second. Then what should be
the critical distance at which you can get the laminar sub layer? And also what will be
the boundary layer thickness for this laminar sub layer at 0.2 meter distance from the

edge?



Now, in this case we have already shown that what should be the critical a distance there.
This critical distance can be calculated from this Reynolds number. In this case then it
will be equals to 5 into 10 to the power 5 mu by rho U infinity. What should be that
value? You can calculate easily. And here v star that means, a friction velocity that will
be is equal to tau 0 to the tau 0 by rho, tau 0 is given to you rho is also is given to you
then what should be the Reynolds number you can calculate at particular edge. Once you
know this at length x Reynolds number you can easily calculate what will be the laminar

sub layer thickness from this equation.
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Turbulent Boundary Layer
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Now, let us consider the turbulent boundary layer how to calculate the turbulent
boundary layer profile as well as what will be the boundary layer thickness at this

turbulent condition.

Now, since we have observed in the previous lecture that that velocity distribution
boundary, velocity distribution in this turbulent condition will follow the one 7th power
law. So, based on that we can see that U by root over tau 0 by rho that will be is equal to
8.74 into root over tau 0 by rho y rho y mu to the power 1 by 7. Here instead of v star we
are just a substituting root over tau 0 by rho So, that is given in equation number 29 here.
So, follow this lecture twelve that is previous lecture equation number 29 as per Blasius

results, we have obtained this equation number 29.



Now, at the edge of this boundary layer if we substitute the boundary layer condition as y
is equal to delta, and where u is equal to U infinity then we can get this value that is
given in equation number 30. So, this profile will give you the shear stress equation
when the free stream velocity also you can calculate from this equation, once you know
the friction velocity or a shear stress there. So, dividing equation number 29 and 30 this
two equations we are getting this u by U infinity is equal to a y by delta to the power 1

by 7 here.

So, earlier we have observed that that velocity distribution in a circular pipe that will be
is equal to what that, u by U max will be is equal to y by R to the power 1 by 7. Here in
this case based on this boundary layer we can get this over u by U infinity that will be is
equal to y by delta to the power 1 by 7. So, by equation number 31 you can get the bound

turbulent boundary layer equation provided by boundary layer thickness known to you.
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Turbulent Boundary Layer
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Now, relating this equation number 30 again we are getting this tau 0 will be equals to 0
this, and after substitution of tau 0 in this and integrating with this limit of x critical to
this L because this is this limit is called that bound turbulent boundary region and from
which you can calculate the what will be the total drag force over there. So, after

substitution of tau 0 from this then you can have the total drag force there.

Again, this total drag force will be equating with this definition of drag force as C D into
rho U infinity square by 2 into A and based on this a equality then we can get this what is



that cd that means, drag coefficient it is called mean drag coefficient is like this. And
also, then shear stress will be is equal to local drag coefficient will be this by defining

shear stress and equating with this tau 0, then we can get this C f could be equals to this.

And after that if we know this Reynolds number based on this drag coefficient and also
what is that boundary layer thickness we can observe what would be the boundary layer
thickness based on this theory. And this equations or this correlations will be actually
valid to the in this range of Reynolds number here, where this is the critical Reynolds
number and this is your what is that up to this 10 to the power 7 up to this boundary
condition of turbulent flow that you can calculate this shear stress, local drag coefficient,

and average drag coefficient there.
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Example: A smooth plate moves through air at a relative velocity of 2 m/s
parallel to its length (i) at a laminar condition, calculate the drag force on one
side of the plate (i) at furbulent condition over the enfire plate what should be
the drag force? Take density of air as 1.2 ka/m?, Viscosity of airis 1.8 x 104
stokes
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For laminar boundary layer:
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And let us do an example here which seems there this smooth plate moves through air at
a relative velocity of 2 meter per second parallel to its length. Now, in this case at a
laminar condition; in this case calculate the drag force on the one side of the plate and at
turbulent conditions over the entire plate. What should be the drag force? And in this

case, density of there is required viscosity of there is required it is given here.

And I am giving this solution hints here, so you have to first find out the Reynolds
number. It is observed that (Refer Time: 56:22) 6.77 into 10 to the power 5, it is actually
within the range of this turbulent conditions. Now, for laminar boundary conditions what

will be that, if we substitute this Reynolds number here then we can calculate the C D



and F D also by these equations, and for turbulent boundary conditions we are getting the
C D and the F D here. So, the laminar and turbulent condition see the difference here. So,
there will be change of drag coefficient in laminar and boundary laminar and turbulent

conditions there based on this example.
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Further reading......

= R W. Fox and A. T. McDonald, Infroduction to fluid
mechanics, 5th Ed., John Wiley & Sons, 1998,

= W, . McCabe, J. Smith and P. Harriot, Unit Operations of
; Chemical Engineering, éth Ed., McGraw - Hill,
7 International Edition, 2001,

= B R, Bird, E. W. Stewart, and N. E. Lightfoot, Transport
Phenomena, John Wiley & Sons, 2nd Ed., 2003.

® Any other Fluid mechanics Book

Now, I will suggest you to go for the reading by different text books of this and even you
can follow this notes also. Just the following different fluid mechanics books here shown

in the slides, and also try to practice this examples based on the theory.

Thank you.



