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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids, the title 

of this lecture is Rotational Viscometers part II. In the previous lecture we started 

discussing about the working principles for rotational viscometers. In the rotational 

viscometers category, we started with concentric cylinder rheometers right. For that case 

we have developed equation for the shear stress calculations and then we have also 

developed equation for a shear rate calculation as well. 

 

So, we will be having a recapitulation of whatever the things that we have discussed in the 

previous lecture. 
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When you use the concentric cylinder rheometers for measuring the rheology of a fluid then 

the shear stress that you can measure by using the torque. If you know the torque then you 

can measure the shear stress easily by 
Mi

2πRi
2L

; where Mi is nothing but torque and then Ri is 

the radius of the inner cylinder. This equation you can use when you are measuring; when 

the torque is measured on inner cylinder ok. This L is nothing but the height of the cylinder 

ok. 



So, if the torque is measured on outer cylinder then shear stress you can calculate by using 

this equation 
M0

2πR0
2L

; M0 is nothing but the torque measured on the outer cylinder. And 

then R0 is nothing but the radius of the outer cylinder, L is nothing but the height of the 

cylinder, right. 

 

So, this concentric cylinder the annular space whatever is there that is very narrow. Then 

what is the shear rate expression? If that gap is very large then what is the expression for 

the shear rate those things we have seen. 

 

For very narrow gaps that is when 
𝑅𝑖

𝑅0
 is greater than 0.99. That means, almost they are 

touching to each other then what we can say? We can say that the curvature effects would 

be negligible. And then avoiding the curvature effects we got that shear rate is nothing but 

𝛺𝑖𝑅̅

𝑅0−𝑅𝑖
. 𝑅̅ is nothing but the midpoint distance between 𝑅0 and 𝑅𝑖 that is 

𝑅0+𝑅𝑖

2
. 

 

But however, it is always not possible to have such narrow gaps, but majority of the 

concentric cylinder rheometers commercially are available. They are having k value less 

than 0.99 right. So, it is not true for all the cases, but majority of them will have k less than 

0.99. So, then you cannot say that the curvature effect is negligible and then you start using 

this equation. 

 

This equation you can use only when you say the curvature effect is negligible, that you 

can see when the gap between outer cylinder and inner cylinder is very very small 

negligible gap is there right. When the gap is sufficiently large enough, then shear rate 

expression we obtain as 𝛾 ̇ (𝜏) = 2𝜏.
𝑑Ω

𝑑𝜏
. 

 

τ we already obtained either of these expressions. So, τ is known and then Ω rotational 

velocity; at what rotational velocity the cylinder is rotating that anyway we know 

experimentally. So, you know all the quantities in the right-hand side. So, then left-hand 

side shear rate you can find out right. 

 

So, it is a generalized one where the k is less than 0.99 ok. But for a very large gap case 

when k is smaller than 0.1 then we obtained this 𝛾 ̇ ( 𝑅𝑖) that that is nothing but 𝛾 ̇  at inner 

cylinder of radius Ri. So, that is 𝛾̇𝑅𝑖
≅ 2𝛺𝑖 .

𝑑ln𝛺𝑖

𝑑𝑙𝑛𝜏𝑅𝑖

. Since τ is directly proportional to torque. 



This equation can also be written as 2𝛺𝑖 .
𝑑ln𝛺𝑖

𝑑𝑙𝑛 𝑀𝑖
. This is what we can have ok. 

 

So, now shear stress equation you are having only say one equation irrespective of the gap 

ok. So, but anyway you do not go for a very large gap in general, but moderately moderate 

gaps in general we use right. However, we have developed the equation. So, shear stress 

is anyway irrespective of the gap we can use any of this equation. But when you wanted 

to calculate the corresponding shear rates then you first calculate what the value of k is and 

then accordingly you have to choose an equation. 

 

So, if gap is very narrow so, then you can use this equation for shear rate, if gap is very 

less then you can use the last equation for the shear rate; but sometimes we may have 

intermediate gap also. So, then what expression for shear rate should we use; that is what 

we are going to see now in this lecture. 

 

For fairly narrow gap that is when 0.5 less than k less than 1. So, that is k between 0.5 and 

1 then what should we do? 

 

(Refer Slide Time: 05:40) 

 

 
So, often concentric cylinder rheometers are using such fairly narrow gap; you cannot say 

very narrow, you cannot say very large, but in between these regions. So, then what we 

have to do? In order to find the shear rate in this case where the gap is fairly narrow then 

whatever the equation 18 in the previous lecture that we have derived we have to apply 



McLaurin series for that equation. What is the equation number 18? Is nothing but this 

equation that is 2𝜏𝑅𝑖
.

𝑑𝛺𝑖

𝑑𝜏𝑅𝑖

= 𝛾 ̇ (𝜏𝑅𝑖
) − 𝛾 ̇ (𝜏𝑅0

). 

 

Recapitulating again, 𝜏𝑅𝑖
 suffix 𝑅𝑖 is nothing but the shear stress measured on the inner 

cylinder surface, 𝜏𝑅0
 is nothing but shear stress measured on the surface of the outer 

cylinder ok. So, that is the difference right geometries that we have like you know this 

concentric cylindrical geometry. 

 

So, this is 𝑅𝑖 so, if you are measuring shear stress on the surface then we call it 𝜏𝑅𝑖
, if you 

are measuring shear stress on the surface here then we call it 𝜏𝑅0
 ok. Corresponding gamma 

dots are nothing but 𝛾̇𝑅𝑖
 and 𝛾̇𝑅0

 that is what we have seen these are the notations that we 

are using last class and then this class as well. 

 

So, now, this equation when you apply the McLaurin series this equation number 22 you 

get for 𝛾 ̇ (𝜏𝑅𝑖
) or 𝛾̇𝑅𝑖

=  
𝛺𝑖

−𝑙𝑛𝑘
[1 −

1

𝑛
𝑙𝑛𝑘 + (

1

𝑛
𝑙𝑛𝑘)

2
3⁄

− (
1

𝑛
𝑙𝑛𝑘)

4
45⁄

]. This is what we 

have. 

 

Now in this equation 𝛺𝑖 is known already to us right. 𝛺𝑖 is already known through the 

experimental you know experimentation at what rotational velocity are you rotating the 

inner cylinder right; k you know ratio between radius of inner cylinder and radius of outer 

cylinder that is k that also we know right. What is n? n is nothing but 
𝑑𝑙𝑛 𝑀𝑖

𝑑ln𝛺𝑖
 ok. It is nothing 

but power law index, but in terms of torque and rotational rate we can write 𝑛 =
𝑑𝑙𝑛 𝑀𝑖

𝑑ln𝛺𝑖
. 

 

Now this equation you know the series goes on. So, how many terms should we include? 

After how many terms we can truncate the series? That is another important question right. 

That depends on the value of −
1

𝑛
𝑙𝑛𝑘; how much value is it having? So, accordingly we 

have to take number of terms in the series ok. 
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If −
1

𝑛
𝑙𝑛𝑘 is less than 0.2 then first two terms give an error of less than 1 percent, so you 

can include only first two terms that is sufficient. But, −
1

𝑛
𝑙𝑛𝑘 is between 0.2 and 1 then 

third term should also be included in the series previous equation number 22. 

 
And then for k greater than 0.5 if n is constant; if n is constant over the entire region of 𝜏𝑅𝑖

 

to 𝜏𝑅0
, then we have the power law case and the equation 18 becomes as below. We are 

not going to simplify this equation, but anyway you can do it in a straightforward. 

 

So, 𝛾̇𝑅𝑖
is nothing but 𝛾 ̇ (𝜏𝑅𝑖

) 𝛾 ̇ (𝜏𝑅0
)is nothing but 𝛾 ̇ (𝜏𝑅0

) ok. That is what the notation 

that we are having ok. So, 𝛾̇𝑅𝑖
 is nothing but 

2𝛺𝑖

𝑛(1−𝑘2 𝑛⁄ )
 and then 𝛾̇0 is nothing but 

−2𝛺𝑖

𝑛(1−𝑘−2 𝑛⁄ )
. 

 

So, these are the equations for the shear rate depending on the gap which equation should 

be used that now we should be very careful. Because now anyway we have the knowledge 

whether it is narrow gap, whether it is large gap, whether it is fairly narrow gap; so, then 

we have the equations for the shear rate. Shear stress equation we have already obtained 

irrespective of the gap ok. 



So, this is what about the concentric cylinder rheometers if you are using to measure the 

shear stress and shear rate ok. Now, we will be discussing about how to measure the normal 

stress using the concentric cylinders right. 

 

However, before going into those topics what do you how to observe? It is not necessary 

that always the inner cylinder is rotating, many a time’s inner cylinder is fixed and then 

outer cylinder is rotating. Sometimes it is also possible that both inner and then outer 

cylinders are rotating at different speeds. 

 

Let us say if inner cylinder is fixed and then outer cylinder is rotating, then simply what 

you have to do? You have to you know replace 𝛺𝑖 with 𝛺0.  𝛺0 is nothing but the velocity 

at which outer cylinder is rotating ok. Then you can use these two equations for shear rate, 

right. 
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Now, we will be discussing how to measure normal stresses in Couette flow or concentric 

cylinder geometry whatever is there; concentric cylindrical geometry when the narrow gap 

is there. So, then that geometry in that geometry when there is a flow then that flow is 

often called as a Couette flow. 

 

So, normal stresses in Couette flow that is normal stresses and concentric cylinder 

geometry that we are going to discuss now. What we have seen that on rotating elastic



liquids or viscoelastic liquids they climb the rotating cylinder; that we already seen when 

we were discussing about the classification of non-Newtonian fluids. 

 

However if the fluid is Newtonian then we can see slight depression at the surface; near 

the surface that you know the liquid Newtonian fluid surface becoming slightly depressed. 

Whereas the viscoelastic surface is climbing the rod on rotation. So, that we know, but 

why this climbing of rod takes place? That also we have discussed because of the normal 

stresses. So, can we prove that mathematically now? That is what we are going to see now. 

 

Surface this, whatever the liquid surface climbing the rod that acts as a sensitive manometer 

for small negative pressure near the rod generated by the centrifugal force on rotating the 

cylinder. How this rise can occur from the normal stress terms to be understood now. 

 

So, now in the previous lecture what we have done? We have done simplification of r, 

theta and z components of equations of motion in cylindrical coordinates. And then each 

equation has given some kind of information; one was giving information about the normal 

stress or you know providing a simplified equation to get the normal stresses. One equation 

providing the simplified equation to get the information about the shear stress. Another 

equation was relating the hydrostatic pressure and then gravitational force and all those 

kind of things. 

 

So, r component of equation of motion yesterday we simplified we got a simplified 

expression which provide information about the normal stresses. So, that equation I have 

rewritten here again. In the previous lecture we have simplified r component of a 

momentum equation for the case of concentric cylinder. So, this is what we got; this 

equation we got ok. 

 

So, now this equation we make use in order to get the information about the normal 

stresses. So, here sigma is nothing but the sum of P and τ that now we substitute here. 
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In place of sigma we are substituting τ + P. So, then we have σrr is nothing but τrr + P right 

and then σθθ is nothing but τθθ + P. So, this one is there right; −
𝜕𝑃

𝜕𝑟
 is anyway is there. So, 

when you differentiate this particular term then you have τrr + r 
𝜕𝜏𝑟𝑟

𝜕𝑟
+ 𝑟

𝜕𝑃

𝜕𝑟
+ 𝑃  and this 

term as it is last term is also as it is. 

 

Further, if you bring this r inside of the parentheses then you get 
𝜏𝑟𝑟

𝑟
+

𝜕𝜏𝑟𝑟

𝜕𝑟
+

𝜕𝑃

𝜕𝑟
+

𝑃

𝑟
−

𝜏θθ

𝑟
−

𝑃

𝑟
. These two terms are coming from here. So, then what we have? This 

𝜕𝑃

𝜕𝑟
, this − 

𝜕𝑃

𝜕𝑟
, 

this +
𝑃

𝑟
, this −

𝑃

𝑟
 can be cancelled out. 

 

So, then finally, we have −
𝜌𝑣𝜃

2

𝑟
 in the left-hand side remaining as it is that should be =

𝜕𝜏𝑟𝑟

𝜕𝑟
−

𝜏θθ−𝜏𝑟𝑟

𝑟
. This is what we have. And then this information 𝜏θθ − 𝜏𝑟𝑟 is nothing but 

the first normal stress difference ok. 

 

So, further we can simplify this equation. 
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If the gap between the cylinder is small then what can we see? Whatever this 
𝜕𝜏𝑟𝑟

𝜕𝑟
 is there 

we can apply Taylor expansion and then we can write this equation as 
𝜏𝑟𝑟(𝑅𝑖)−𝜏𝑟𝑟(𝑅0)

𝑅0−𝑅𝑖
. That 

is what we can simply write right without any difficulty. 

 

So, from this equation 26 after striking off the inertial term then we can have 𝜏θθ − 𝜏𝑟𝑟 =

𝑟
𝜕𝜏𝑟𝑟

𝜕𝑟
. And then from equation 26 b we have 

𝜕𝜏𝑟𝑟

𝜕𝑟
=

𝜏𝑟𝑟(𝑅𝑖)−𝜏𝑟𝑟(𝑅0)

𝑅0−𝑅𝑖
. This is what we have. 

 

So, now in place of 
𝜕𝜏𝑟𝑟

𝜕𝑟
 we will be writing this expression and then in place of r we have to 

select the position at which we are measuring the normal stress. So, then these R usually 

we take 𝑅̅ that is midpoint between 𝑅𝑖 and then 𝑅0. So, first normal stress difference 𝜏θθ −

𝜏𝑟𝑟 you can find out from this expression easily without any difficult, ok. 
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𝜏𝑟𝑟(𝑅𝑖) − 𝜏𝑟𝑟(𝑅0) is simply the pressure difference between the inner and outer cylinders. 

And then we have already seen that first normal stress difference can be largely positive 

number when we have taken example of viscoelastic fluids. 

 

So, then due to this pressure on inner cylinder will be higher causing the fluid to rise up 

the rod. That is the region you know the rising of the viscoelastic fluid, along the rotating 

rod or rotating cylinder in this case is taking place because of this normal stress; normal 

stress differences ok. 

 

So, this is all about how to measure the normal stress; normal stress differences, shear 

stress, shear rate etcetera using the concentric cylinder rheometers. Now there are some 

issues in a with respect to the accuracy of these equations, because of the several other 

issues like you know end effects, slip effects, etcetera as we have seen in the capillary 

viscometer also. 

 

Some of them that one should be worried in the case of concentric cylinders are you know 

what is this first normal stress difference how much it is then rod climbing effect, then end 

effect, then secondary flows because of Taylor instabilities, and then shear heating in 

Couette flow etcetera these are the some issues one can think of. 

 

But however, we are not going into the details of all of these topics because we are 

concentrating we supposed to concentrate on the applied rheology. So, since we are talking 



about applied rheology some basics are required. So, then that is what we are discussing. 

We do not need to go into the details of all these things anyway. 
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So, now we take an example problem. Following steady shear data for a salad dressing has 

been obtained at 295 Kelvin using a concentric cylinder viscometer, Ri 20.04 mm, R0 73 

mm, L 60 mm; obtain the true shear stress versus shear rate data for this fluid. What is the 

data is given? Data is given this 𝛺 in radians per second is given and then torque in Newton 

meters it is given, ok. 

 

So, if omega is given torque is given so, and then you can find out the shear rate, shear 

stress respectively. So, torque you can use to get the shear stress expression, 𝛺 you can use 

to get the shear rate expression, but in order to get the shear rate expression we have to be 

specifically clear about what is the value of k, then only we have we can select the 

corresponding equation for shear rate. 
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So, what we see? 
𝑅𝑖

𝑅0
 in the case in this case point 

20.04 

73
 that is 0.275 that is very much 

smaller than 0.99. So, then we cannot say that the curvature effect is negligible, but it is 

more than the 0.1. So, then we cannot say that the gap is very large. So, then what we have 

to do? We have to take a case where fairly narrow gap equations are provided right. 

 

So, that is sample calculations shear stress 𝜏𝑅𝑖
=

𝑀

2𝜋𝑅𝑖
2𝐿

 this we know first data point M is 

given as 6.09 into 10−4 Newton meters 2𝜋𝐿 is 60 mm Ri is 20.04 mm. So, when you 

substitute these numbers and do the simplification you get 𝜏𝑅𝑖
 4.025 Pascal. 

 

So, for this k value of 0.275 appropriate equation of shear rate is 2Ω
dlnΩ

dln𝜏𝑅𝑖

. That means, 

for each Mi value what is the corresponding 𝜏𝑅𝑖
value we have to calculate as we have 

calculated for the first point; Ω corresponding to that one what is the Ω value is already 

given. 

 

So, then Ω versus 𝜏𝑅𝑖
data whatever is there that you have to plot on a log-log scale and 

then get the slope of that curve. So, that comes out to be 2.73. When you plot ln Ω versus 

ln τ you get a straight line like this and then when you get the slope of this one you will get 

it as 2.73. 



So, first point 𝛾̇𝑅𝑖
 is nothing but 2Ω

dlnΩ

dln𝜏𝑅𝑖

 is equals to 2 multiplied by Ω first data point 

omega is 0.146 and then 
dlnΩ

dln𝜏𝑅𝑖

 is nothing but 2.73. So, 𝛾̇𝑅𝑖
 0.8 second inverse for the first 

data point. Likewise we have to do for all the data points then you have τ versus 𝛾 ̇  

information. That information is provided here in the tabular format ok. 
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So, now when you plot it what you can realize that. This material is slightly viscoplastic 

because the tau naught is there, but it is very small value approximately 3 Pascal or 

something like that ok; 4 Pascal or something like that. And then this n value is coming 

out to be 0.3661. So, it is a Herschel-Bulkley fluid with mild yield stress value ok. 

 

So, now we have done example problem also how to use the equations of a concentric 

cylinder rheometer to obtain the rheological behaviour of any given fluid, if you know the 

omega versus the rotational velocity versus torque information from the experimental data 

ok. 
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Now, we take another geometry cone and plate rheometer ok. So, perhaps this is the first 

geometry used to obtain the normal stress differences for viscoelastic fluids and then that 

has been reported by Mooney and then Ewart. Mooney and Ewart in 1934, but however, 

this work extensively carried forward by Russell to measure the normal stresses. And then 

because of work by Russell the present Weissenberg Rheogoniometer, Ferranti Shirley 

instrument etcetera have been developed. That is purely because of the Russell’s work ok. 

 

So, in the current scenario cone and plate rheometer is the best option if you wanted to 

know the rheological behaviour of non-Newtonian fluids. Why? Because one reason is the 

constant shear rate and the geometry you can maintain the shear rate constant and then 

direct measurement of first normal stress differences; first normal stress difference by a 

total thrust. So, because of these two reasons so this is the best rheometer for studying the 

rheology of non-Newtonian fluids. 

 

So, now, that we are going to see how to develop the equations. So, like you know in the 

concentric cylinder case, we develop the equation for shear stress as function of torque and 

then shear rate as function of rotational velocity normal stresses as function of the pressure 

differences etcetera all those things we have seen. 

 

How we got that information? We got that information by simplifying the momentum 

equations. So, same thing we here also we are going to do. We are going to simplify the 

equations of motion and then try to get the simplified equations for a cone and plate 

geometry of a certain constraints. So, what are those constraints, what are the, how the 

geometry looks like that is what we are going to see now. 
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Since it is a cone and plate geometry. So, there is a plate and then there is a cone kind of 

arrangement is there something like that ok. So now, here the plate is having this kind this 

plate is here right the radius of this plate is R. Now a cone is placed on this geometry 

something like this ok. So, this is your cone right the cone angle is 𝛽 ok. 

 

Now, what we have to realize? So, let us say let us say this is the cone you are putting like 

this upside down like this right. So now, I am just putting up like this to have a kind of 

clarity. So now, this direction it is rotating that direction of rotation whatever is there that 

is φ direction right and then θ direction is in this direction ok. So, this position and this 

position is the radial direction ok. 

 

So, now the rotation is in the φ direction rotation rotating; it the cone is rotating in the φ 

direction at a velocity Ω right. θ is measured from the top, so we can see the arrow here. 

So, this arrow indicates that θ is measure is measured from this top like this. Cone angle is 

only 𝛽 small very small cone angle we in general use right. So, now, this direction is here 

r direction, ok. 

 

So, once it is clear. So, then whatever the fluid is there that is being confined in between 

this cone and plate right when the cone is rotating deformation in the fluid will take place 



because of the rotation of the cone ok. So now, once you once there is a deformation, so, 

the corresponding shear rate corresponding shear stress we have to measure ok. 

 

Since here the cone angle, whatever this cone angle is there that is a very very small in 

general the cone angle is taken very small. So, that you know whatever the shear rate 

etcetera is there. So, that can be maintained constant ok. 

 

So now, here the cone angle that is taken very small in general for most of the cone and 

plate geometry, because the purpose is that when the β cone angle is very small. So, for one 

thing is that you can avoid the curvature of it and another thing that you know the shear 

rate can be maintained constant ok. So, the gap is narrow, so then we can say that shear 

rate almost remains constant. So, that is the advantage. 

 

So, assumptions here flow is rotating in free direction. 
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So, the only velocity component existing in φ direction so, that is vφ is there vφ is there. 

So, this φ now function of r and θ because this fluid is whatever you say that is because of 

the rotations is moving towards the r direction as well as you know it is moving towards 

the theta direction also because of the cone shape ok. So, we cannot say that vφ is function 

of r only it is also function of θ ok. 

 

So, and then, but however, compared to vφ vr vθ 0. Then flow is steady laminar and 

isothermal, negligible body forces and then 𝛽 cone angle is very small 0.1 radiance that is 

approximately 6 degrees or less. So, such small cone angles in generally used in order to 

maintain the constant shear rate. 



 

Then spherical liquid boundary is there because the cone is can be best represented by the 

spherical coordinates. And then symmetry in φ direction, so 
𝜕

𝜕𝜑
 if anything is 0 ok. So, 

these are the constraints. 

 

So now, using these constraints we are going to simplify r, θ, φ components of equations 

of motion so that we get some simplified equation. So, that we get some simplified 

equations which we can use to get the information about shear stress, shear rate and then 

normal stress differences etcetera. 
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So, let us start with r component. So, r component of equation of motion in spherical 

coordinates this is what we are having. So now, this equation we are going to apply the 

constraints that we have a seen in the previous slide. 

 

So, it is a steady flow. So, first term is 0 vr is 0 vθ is 0 vφ is not 0, but 
𝜕

𝜕𝜑
  of anything is 0; 

because of this symmetry, vθ is 0 and it is remaining here. Pressure we do not know as of 

now; normal stress components 𝜏𝑟𝑟we are not separating we are not removing because we 

are trying to develop equations which can also be used for the viscoelastic fluids, ok. 



So, shear stress which component is existing? In this slide so, previous slide the rotation 

and ϕ direction is there. So, then only 𝜏𝜃𝜙 component of shear stress is only existing other 

component of shear stress are not existing ok. So, that is the constraint. So, then because of 

that one this is anyway 0. 

 

So, because of symmetry this term is 0 ok. So, this we cannot cancel out this we cannot 

cancel out and then we are not taking any gravity forces. So, then this equation we are 

having simplified equation ok. So, this term, this term and this term in the right-hand side 

only −𝜌
𝑣𝜙

2

𝑟
 on the left-hand side these terms are remaining. 

 

So, now in the case of inertia in such kind of cone and plate geometries usually rotational 

speed are not very high that you need to convert; that you need to worry about the inertial 

forces etcetera. But however, if there is higher speed so, then these are terms should be 

included. 

 

So, let us say if you have the case, where the inertial forces are; inertial terms and then 

pressure terms are independent of radial coordinates then we can have this final equation 

ok. So, this is the equation we can use in order to get information about the normal stress 

differences. 
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Then θ component of equation of motion is this one in spherical coordinates. So, now, we 

apply the constraints. So, first term is 0 because steady state vr is 0 vθ is 0 vθ 



is 0; vr vθ is both are 0 and this is not 0. So, this term would be there. Pressure we do not 

know anything, this shear stress term is not there. So, extra stress components we cannot 

cancel out because of symmetry this term is 0. 

 

And then these two terms are identically equal to each other as at least for a laminar flow 

conditions. So, we cannot, we can strike out that term because the difference is 0, but this 

term we cannot strike up because of this one we have to worry about extra stress 

component. And then body forces we are not taking so, this is 0. So, then what we have? 

This equation we are having a right-hand side three terms left-hand side one term it is there 

ok. 

 

And the absence of inertia in theta direction and then pressure independent of θ direction 

so, then this equation we can write like this. So, from here also we get some information 

about the normal stresses ok. That is the reason cone and plate geometry is the best option 

if you wanted to find out normal stress differences for a viscoelastic fluid; for viscoelastic 

fluid. 
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So, φ component; so, this is the equation now applying the constraints of the problem. So, 

this is steady state so 0, so vr is 0, because of symmetry this term is 0, vθ is 0, vr is 0 vθ is 

0. So, left-hand side we do not have any terms and then because of symmetry this term is 0. 



So, this component of shear stress is not existing, this component of shear stress is existing 

because of symmetry this term is 0, these two are equal to each other. So, then the 

difference is 0 and then this component of shear stress is existing. So, we cannot cancel 

out, body forces we are not taking into the account. 

 

So, then we have this equation simplified equation, further you do the differentiation and 

simplify. So, then you get this equation 
1

𝑟

𝜕𝜏𝜃𝜑

𝜕𝜃
+

3𝑐𝑜𝑡𝜃

𝑟
𝜏𝜃𝜑 = 0. So now, this equation will 

give us some information about you know shear stress ok. 
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So, now boundary conditions: At the wall is periphery of bottom plate. So, what we have? 

We have a bottom plate like this within this one we have a cone like this, arranged like this 

right something like this. So now, in this case what we have taken? We have taken the 

bottom plate whatever this is there that is stationary, right. 

 

So obviously, vφ should be 0 and then angle you know how are we measuring θ? So, this 

is the theta direction, θ we are measuring from top. So, θ is equals to 0 is this one and then 

this line is nothing but θ = 
𝜋

2
. So, at θ = 

𝜋

2
 vφ = 0 because bottom plate is stationary. 

 

But at lower edge of the cone at this cone the velocity is not 0 because the cone is rotating 

with certain velocity right. So, that is at θ = 
𝜋

2
− 𝛽 because this cone angle is 𝛽, this entire 

is 
𝜋

2
. So, 

𝜋

2
− 𝛽 is the location nothing but the lower edge of the cone. 

 

 

 



So, cone lower edge is rotating with Ω. So, at θ = 
𝜋

2
− 𝛽 we have Ω r sin(

𝜋

2
− 𝛽) as a kind 

of velocity component, because the cone angle 𝛽 is very small. So, then you can get this 

value anyway. So, vφ at θ = 
𝜋

2
− 𝛽 it is not multiplied, but it is a θ = 

𝜋

2
− 𝛽. So, that you get 

this information. 

 

We have started with like vφ is function of r and θ right. So, now, you can see r component 

is there and then this is 
𝜋

2
− 𝛽 is nothing but theta. So, it is function of both r and θ ok. So 

however, when β is very small sin(
𝜋

2
− 𝛽)you can write it as cos 𝛽, when you expand it 

you will get 1 −
𝛽2

2!
+

𝛽4

4!
+ ⋯and so on so, that you can write is approximately equals to 1 

if 𝛽 is very small. 

 

So that means, sin(
𝜋

2
− 𝛽) ≅ 1 if 𝛽 is small. So, then we can write vφ at θ = 

𝜋

2
− 𝛽 is nothing 

but Ω r. 

 

(Refer Slide Time: 37:33) 

 

 
So, the velocity boundary conditions so for the velocity we got now we see shear stress 

information how to get. So, equation number 3; this is what the equation number 3 that is 

when we simplified the phi component of equation of motion in spherical coordinates, then 



we got this equation just a couple of slides before that is equation number 3. So, now, this 

equation if you do the integration you will get 
𝐶1

𝑠𝑖𝑛2𝜃
 right. 

 

So, now this equation can be useful only when you get this C1 information that we can get 

from the experiments if you know the torque. If you know the torque, from the torque 

balance torque 𝑀 = ∫ ∫ 𝑟2𝜏𝜃𝜑|𝜋

2

𝑅

0

2𝜋

0
 that is at what location are you measuring dr dφ =

2𝜋𝑅3 now integration after you do 
2𝜋𝑅3

3
. 

 

So, 0 to R limits if you substitute you know you will be having 0 to R 
𝑅3

3
−

03

3
. So, that is 

2𝜋𝑅3

3
𝜏𝜃𝜑|𝜋

2
 this we do not know; still we do not know. But we can make use of this equation 

to get that expression. So, from equation 7 𝜏𝜃𝜑|𝜋

2
 is nothing but C1 because sin 

𝜋

2
 is nothing 

but it is 1. 

 

So, 𝑠𝑖𝑛2 𝜋

2
 would be 1. So, 𝜏𝜃𝜑|𝜃 =

𝜋

2
 is nothing but C1. So that means, 𝜏𝜃𝜑 =

𝜏𝜃𝜑|𝜋
2

𝑠𝑖𝑛2𝜃
 or 

𝜏𝜃𝜑|𝜃 =
𝜋

2
 is nothing but 𝜏𝜃𝜑 . 𝑠𝑖𝑛2𝜃. 

 

So, this you can, using this equation number 8 so that you get 𝜏𝜃𝜑(𝜃) =
3𝑀

2𝜋𝑅3𝑠𝑖𝑛2𝜃
 right. 

After substituting this one in equation number 8 we have written only 𝜏𝜃𝜑(𝜃) one side and 

rest all other terms you have taken to the other side. So, then we get 
3𝑀

2𝜋𝑅3𝑠𝑖𝑛2𝜃
. 

 

Now, again 𝛽 is very small in general very small cone angle. So, 𝑠𝑖𝑛2𝜃|𝜋

2
−𝛽; now 𝜃 is 

nothing but at what location are you measuring the shear stress? That is the reason that is 

important. So, you are measuring at this location at the lower edge of the cone at the lower 

edge of the cone, at this location you are measuring τ and 𝛾 ̇  also of course that we are 

going to do. So, this location is nothing but 𝜃 =
𝜋

2
− 𝛽. 

 

So in this equation if you substitute 𝜃 =
𝜋

2
− 𝛽. So, then whatever the equation that you will 

get that is nothing but 
3𝑀

2𝜋𝑅3
 is the expression for shear stress. So, shear stress expression 

we already got for the case of you know cone and plate geometry ok. 
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Now, we try to get expression for shear strain rate. So, 𝜏𝜃𝜑 is nearly constant for small 

cone angle that we have seen. So, then obviously, shear strain and shear rate will also be 

constant nearly, because that 𝛽 is very small less than or equals to 6 degrees in general, 

ok. And then that is how that only that much are even smaller beta angle cone and plate 

rheometers are you know manufactured in general, ok. 

 

So, what we have? Shear strain gamma that rotation in the ϕ direction and then variation is 

in the θ direction. So, then what we have; 
𝑑𝜑

𝑑𝜃
=

𝜑

𝛽
 because of very small angle and then 

small displacement as well. So, from the components of rate of deformation we know that 

𝛾 ̇  is nothing but |2𝜖𝜑𝜃|. 

 

So, this from the transport phenomenon book this quantity modulus quantity that we know 

that it is |
sin 𝜃

𝑟

𝜕

𝜕𝜃
(

𝑣𝜑

𝑠𝑖𝑛𝜃
)|. Any transport phenomenon book you can see the extra stress 

component for non-Newtonian fluid, so then you can get this component. When you 

expand this one, so then you will get this equation. 

 

So, now what you have to have in order to get the shear rate expression? You need to know 

𝑣𝜑 then only you can get it. So, that we have already seen, but once again we see. So 



now, 𝜃 =
𝜋

2
− 𝛽 only we wanted to know the rheology of the material because we wanted 

to know the shear rate and then shear stress at the lower edge of cone which is nothing but 

𝜃 =
𝜋

2
− 𝛽 location at this lower edge of the cone right. 

 

So, at 𝜃 =
𝜋

2
− 𝛽  𝑐𝑜𝑡𝜃 is nothing but tan 𝛽 and then for small 𝛽 tan 𝛽 is nothing but 𝛽 + 

𝛽3

3
 and so on so, that series goes on. So, then we need only for small 𝛽. So, then we can 

just write it as it is best approximation for velocity profile should be this one that is 𝑣𝜑 =

Ωr(
𝜋

2
−𝜃)

β
 which are same. 

 

So, then approximately it gives a linear profile with respect to r almost linear profile with 

respect to r and then θ components have been also been brought into the picture. So, now, 

this expression you write here in the in place of cot θ you write tan 𝛽 here and then in place 

of tan 𝛽 you write whatever this expression. 

 

So, let us do the simplification 𝛾 ̇  would be |
1

𝑟

𝜕

𝜕𝜃
(

Ωr(
𝜋

2
−𝜃)

β
) −

Ωr(
𝜋

2
−𝜃)

β
(𝛽 +

𝛽3

3
)|. 

 

So, this you further do the simplification and then you get this expression 
Ω

𝛽
(1 + 𝛽2 +

𝛽4

3
). 

So, which approximately you can write β by which approximately you can write it as 
Ω

𝛽
 

because β is very small so, 𝛽2, 𝛽4terms would be negligible. 

 

So, now we got shear rate expression also 𝛾 ̇ =
Ω

𝛽
 whereas, shear stress expression we got 

it as a 
3𝑀

2𝜋𝑅3
. So, shear stress and shear rate expressions we already got by using cone and 

plate rheometers. By using cone and plate geometry you know shear stress and shear rate 

expressions are these things which we can use in order to get the rheology of the material. 

So, now we discuss something about normal stresses how to measure them. 
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From equation number 1 that is r component of equation of motion after simplifying this 

is what we got this right. 
1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝜏𝑟𝑟) −

𝜏𝜃𝜃+𝜏𝜑𝜑

𝑟
= 0. So, now, when you do the 

differentiation of this term then you get (2𝑟𝜏𝑟𝑟 + 𝑟2 𝜕𝜏𝑟𝑟

𝜕𝑟
) and then this term is as it is. 

 

So, now when you bring 
1

𝑟2 within inside the parenthesis then you get 
2

𝑟
𝜏𝑟𝑟 +

𝜕𝜏𝑟𝑟

𝜕𝑟
. And 

then whatever this quantity that we are taking to the right-hand side so, then
𝜏𝜃𝜃+𝜏𝜑𝜑

𝑟
. So, 

this equation what how we write? 

 

We write only 𝑟
𝜕𝜏𝑟𝑟

𝜕𝑟
 one side by multiplying this equation both sides by r then what we 

have right-hand side? 𝜏𝜃𝜃 + 𝜏𝜑𝜑you will be having. Left-hand side you will be having 2 

𝜏𝑟𝑟 so that will bring it to the right-hand side. So, then −2𝜏𝑟𝑟. 

 

So, this expression this is nothing but 𝑁1 + 2𝑁2; where 𝑁1 = 𝜏𝜃𝜃 − 𝜏𝜑𝜑 and then 𝑁2 =

𝜏𝜃𝜃 − 𝜏𝑟𝑟 ok. Here 𝑁2 is steady shear material functions and only depends on shear rate 

and since shear rate is independent of radial position. 

 

So, this will also be independent of radial position. 𝑁2  will also be independent of radial 

position. That means, 
𝜕𝑁2

𝜕𝑟
 should be 0. So, 

𝜕𝜏𝜑𝜑

𝜕𝑟
−

𝜕𝜏𝑟𝑟

𝜕𝑟
= 0. That means, we have 

𝜕𝜏𝜑𝜑

𝜕𝑟
=

𝜕𝜏𝑟𝑟

𝜕𝑟
. 
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So, now equation 14 this is what we have ok; equation 14 is 𝑟
𝜕𝜏𝑟𝑟

𝜕𝑟
.. So, in place of 𝑟

𝜕𝜏𝑟𝑟

𝜕𝑟
 

we can write 𝑟
𝜕𝜏𝜑𝜑

𝜕𝑟
 we can write. So, when we write that one we get equation 14 like this 

right-hand side  𝑁1 + 2𝑁2 is as it is. So, that you know here now we can write here 
𝜕𝜏𝜑𝜑

𝜕𝑙𝑛𝑟
=

 𝑁1 + 2𝑁2 we can write. 

 

So, this is just a pressure measured by a transducer on the plate or on the cone surface. So, 

for fixed Ω plots of 𝜏𝜑𝜑versus ln r should be straight line. So obviously that means at rim 

of plate that is at r = R 𝜏𝜑𝜑 at r = R should have a positive pressure; small positive pressure 

should be there ok. 

 

If we assume that stress in radial direction at the rim is balanced by ambient pressure Pa 

then 𝜏𝜑𝜑(𝑅) is the second normal stress difference, and then that we can get using this 

equation. 
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You know it is simpler to measure total thrust and plate. Thus, by making a force balance 

on the plate we can have force due to the thrust Fz is equals to this one, Pa is the ambient 

pressure. So now, by integrating this equation above equation by parts and then applying 

these results whatever that we got in our previous slide. 

 

And then obviously, we know that  𝑁1 + 2𝑁2 is function of shear rate and then it is 

independent of radial position because shear rate is almost constant that is what we have 

seen. So, then this quantity  𝑁1 + 2𝑁2 should also be constant as at least irrespective of the 

radial position. So, then when you apply that one and then do the simplification this is what 

you get the expression for the thrust, ok. 

 

So, if boundary of spherical shape and if surface tension effects are negligible so, then this 

quantity must be replaced by Pa. So, then we have 𝐹𝑧 =
𝜋𝑅2𝑁1

2
. So, that directly first normal 

stress difference can be obtained by the thrust which you can measure by experimentally 

without any difficulty ok; or 𝑁1 =
2𝐹𝑧

𝜋𝑅2. 

 

So, that is about how to measure the normal stress differences, shear rate and then shear 

stress using cone and plate geometry ok. Now, we take an example problem before winding 

up this lecture. 
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So, a 25 mm radius cone plate β 1° 18’ 45” is used to obtain the following steady shear 

data for a food product at 295 Kelvin. Obtain shear stress versus shear rate data for this 

substance. And then the given information is that rotational velocity and then torque is 

given, ok. 
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So, solution cone angle is less than 6 degrees ok. So, which is approximately 0.02 radians 

whatever it is given? So, then what we can do? We can for the first data point 𝜏𝜃𝜑



is nothing but 
3𝑀

2𝜋𝑅3 M for the first data point is 1.34 into 10−4 Newton meters and then R 

is nothing but 25 mm. So, then we get 4.1 Pascals. 

 

Similarly, shear rate omega by beta because beta is very small. So, first data points Ω is 

nothing but 2 x 10−3 and then β is nothing but 0.02 radians. So, then 𝛾 ̇  you get 0.1 𝑠−1. 
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So, likewise for all the data points you obtain shear rate and then shear stress then you 

tabulate them like this here. So, then you get shear stress versus shear rate curve like this. 

Herschel-Bulkley fluid nature with a small yield stress that is what you can get. 

 

So, that is what how to get rheological behavior of  unknown fluid by using cone and plate 

geometry right. We have seen the equations for shear stress, shear rate and then normal 

stress as well. But we have done this when β cone angle is very small, then you can maintain 

the constant shear rate that is the advantage of this geometry. 

 

Another advantage of this geometry is that you know you can directly measure the first 

normal stress difference by thrust. Thrust you can directly get from the experimental 

calculation. So, then 𝑁1 =
2𝐹𝑧

𝜋𝑅3
 that you can use to get the first normal stress difference. 



So, that is the reason the cone and plate geometries are found to be very much useful to 

study the non-Newtonian behavior to study the rheological behavior of unknown fluids 

which are expected to have non-Newtonian behavior ok. 
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So, the references for this lecture are given here. The most of the slides were prepared 

from this book Rheology Principles Measurements and Application by Macosko. Some 

example problems have been taken from this reference book by Chhabra and Richardson. 

Other reference books may also provide useful insights about these topics. 

 

Thank you. 


