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Welcome to the MOOC’s course Transport Phenomena of Non-Newtonian Fluids. The 

title of this lecture is Rotational Rheometers. Before going into the details of rotational 

rheometers what we will be having now? We will be having a recapitulation of what we 

have studied in last three classes.  

In last three lectures what we have seen? When we use capillary viscometers how to obtain 

the equations for the shear stress and shear rate in terms of a measurable parameters, 

measurable quantities such as pressure drop and then volumetric flow rate and those things 

we have seen.  

And then also we have seen possible sources of errors when we apply or when we use the 

capillary viscometers in order to know the rheology of an unknown fluid. So, when you 

apply the capillary rheometer for a rheology measurement of time independent non-

Newtonian fluids then you can obtain shear stress using this equation. 
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If you know the pressure drop using this equation you can know the shear stress; if you 

know the volumetric flow rate or average velocity you can know the apparent shear rate 

8𝑉

𝐷
 and then from that true shear rate you can get it as (

3𝑛′+1

4𝑛′
) 

8𝑉

𝐷
, where n’ is nothing but 

𝑑 log 𝜏𝑤

𝑑 𝑙𝑜𝑔(
8𝑉

𝐷
)
. 

Remember, this is all for time independent non-Newtonian fluids we have done right. Then 

n number of sources of errors are possible in using the capillary viscometers for rheological 

measurements of unknown fluids.  

Some errors you know can be avoided or reduced by just doing some kind of adjustment 

in operational or design conditions; however, errors due to end effects cause increased 

pressure drop at entry; entry is nothing but the connecting point of a capillary to the barrel. 

To the barrel bottom of the barrel we are connecting the capillary of a certain diameter. 

So, then this capillary diameter is very small compared to the diameter of the barrel. So, 

because of that one sudden contraction in the cross section area is taking place because of 

that one pressure drop increases at the entry that is what known as the entry effect right.  

So, then we have seen a method to find out how much pressure drop has increased at that 

entry that we found out using certain method that we have already discussed and then that 

pressure drop we are subtracting from the measured pressure drop of −∆ p. 

Then, we are using the same relation 𝜏𝑤 =
−∆𝑝

𝐿

𝑅

2
, but only change that in place of −∆p we 

will be using [−∆𝑝]– [−∆𝑝𝑒] subtracting the increased pressure drop at the entry ok. This 

takes cares about the entry effects; end effects are found to be very negligible to worry 

about. So, that we have not discussed then error due to apparent slip at the wall leads to 

non-zero velocity at the wall.  

At the wall in general what we assume? We assume no slip velocity, but you know for the 

case of non-Newtonian multi phase suspensions emulsions etcetera; at the wall there would 

be substantial velocity, slip velocity would be there. Because of that one whatever the 

shear rate that you measure you get lesser than the expected shear rate when you assume 

no slip boundary condition that is because of the slip of the fluid at the wall, right.  



So, we have seen a method how to find out slip velocity at the wall and then that velocity 

we are subtracting from the average velocity to get the correction for wall slip effects in 

apparent shear rate. This is also apparent shear rate only ok in the apparent shear rate we 

are making this correction and then later on we can follow the same method of finding out 

that n prime and all that to get the true shear rate. So, this is what the summary of our last 

three classes.  

Why are we discussing? Because this content is also related to the topics that we are going 

to discuss in this week. In this week, we are going to discuss rotational rheometers where 

the deformation is caused by allowing the flowing to rotate; the geometry has been taken 

such a way that you know the rotation of the fluid is taking place.  

Because of that rotation deformation is taking place and then once deformation is there, 

then you can find out the shear rate and then shear stress; those things we are going to 

discuss. Because of the rotation there will be there would be torque also.  

So, if you experimentally measure the rotational velocity versus torque then that 

information you may use in order to get required D in order to get the required shear rate 

and shear stress respectively. In addition, we will also be having some discussion on how 

to measure the normal stress differences as well which we have not done in the case of 

capillary viscometers. So, one of the earliest rotational viscometer was having the 

concentric cylinder geometry. So, we start with that one Concentric Cylinder Rheometer. 
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This is one of the earliest probably the first rotational viscometer developed by the Couette 

which is based on the concentric cylinder geometry; however, the present day, majority of 

commercial rheometers are also based on the concentric cylinders geometry ok.  

So, here in this particular lecture what we will do? For this geometry, we will have an 

analysis where we can obtain the shear stress, shear rate and then normal stress differences 

using the measurable parameters such as the rotational velocity and then torque, etcetera 

those kind of thing that is what we are going to see in this lecture.  

To be specific, we will be relating shear stress to torque and then we will be relating shear 

rate to angular velocity and then normal stress coefficients to radial pressure differences. 

How? That is what we are going to see.  

Now, like in capillary viscometers, shear stress was related to the pressure drop; now here 

it is related to the torque; in the case of capillary viscometer, shear rate was related to the 

volumetric flow rate or average velocity, but now here in the concentric cylinder geometry 

or rotational geometry shear rate is related to the angular velocity whereas, the normal 

stress differences or normal stress coefficients in the case of rotational geometry are related 

to radial pressure differences.  

So, that is what we are going to see. So, now before going into derivation of that equation, 

what we will be having? We will be having a geometry and then see how these cylinders 

are placed and then what is the gap between the cylinders etcetera all those things we see 

schematically. 
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Consider flow of a fluid confined between concentric cylinders with inner cylinder rotating 

it Ω𝑖. What we have done? We have taken two cylinders right; they are arranged confined 

in such a way that there is a concentric analyse region is there within that concentric 

analyse region the flow is fluid is rotating. 

How it is rotating? Because inner cylinder is rotating at Ω𝑖 velocity whereas, the outer 

cylinder has been kept stationary like this. So, this is your inner cylinder inner box this one 

we are having two dimensional diagram here. So, this is your inner cylinder; the radius of 

inner cylinder is Ri; the radius of outer cylinder is R0 ok; the height of the cylinders is L 

right, fine. 

So, the inner cylinder is rotating it Ω𝑖. So, that arc is measured on this inner cylinder is M 

or Mi let us take ok. So, whatever the fluid is there that is confined between these two 

cylinders right.  

Now, this coordinate system are selected such a way that this is r direction and then vertical 

direction is z direction the rotation is taking place in the 𝜃 direction so that the 𝑉𝜃 

component of velocity would be there the rotation in the 𝜃 direction is taking place at 

rotational velocity Ω𝑖 ok. 

Let us say, stress at the inner cylinder is a 𝜎𝑟𝑟, the same at outer cylinder is 𝜎𝑟𝑟 at R0. So, 

now, in this lecture so many places we may be having 𝜏(𝑅𝑖), 𝜏(𝑅0) like this. So, this is not 



like you know kind of function because Ri, R0 are constant, but it indicates that they are 

measured at so and so locations at Ri and R0 locations ok. 

So, further assumptions that we have, the flow is steady laminar flow and then isothermal 

flow conditions are there; temperature variations have not been taken into the 

consideration and then what we have seen the inner cylinder is rotating in 𝜃 direction. So, 

the predominant velocity component is the 𝑉𝜃 component right.  

Out of 𝑉𝜃 vr, vz 𝑉𝜃 magnitude wise 𝑉𝜃 would be very much higher compared to vr, vz. So, 

then what we can say? In comparison with 𝑉𝜃 vr vz both of them are equals to 0. In some 

cases, if you have a kind of viscous I mean viscoelastic fluid, so then you the rising of the 

fluid in the z direction may also be taking place. So, then under such conditions vz may 

not be 0. So, those things also we are going to see anyway. 

So, only component of velocity is existing 𝑉𝜃 component which is nothing but r Ω𝑖 gravity 

and end effects etcetera we are not taking under consideration right. Further symmetry in 

theta direction; so, 
𝜕

𝜕𝜃
( ) of anything is 0, that is what we are taking.  

Symmetry in the sense symmetry in 𝜃 direction in the sense between 0 to 180° whatever 

the flow distribution or velocity distribution etcetera is there the and exactly the same 

velocity distribution would be there from theta is equals to 180 to 360° as well ok. 

So, now these conditions we apply to continuity and momentum equation in order to get a 

some simplified equations which we can use to obtain the shear stress, shear rate and the 

normal stress differences right. So, before going into these details what we have in the case 

of capillary rheometer? 

We have done a balance, proper balance for the pressure distribution like you know for the 

you know we have done a proper balance by taking a fluid element A B C D like that and 

then we applied what are the pressure forces at the entry, what are the pressure forces at 

the outlet and then the difference is balanced by the shearing forces like that we have done 

and then we obtained the required expression for the so, for the shear stress; that is what 

we have done.  

And then for the shear rate what we have done? We have found you know 𝑑𝑞 = 2𝜋𝑅𝑣𝑧𝑑𝑟 

and then we have integrated like that we got it right. So, now they say we need not to go 



such kind of analysis everywhere for every geometry because it is a PG level course what 

we will be doing? We will be using the momentum equation.  

Continuity and then momentum equation and then when we do take the heat transfer 

problem we will be using the energy equations because these continuity, momentum, 

energy equations or species concentration equations whatever we have seen in your UG 

level transport phenomena, they are generalized balance equation.  

So, they are valid for any problem, but according to problem you have to apply the 

constraints limitations of the problem and then simplify those equations to get the final 

simplified equation, usable equation right. So, that approach mostly we are going to follow 

to solve the problems in the coming weeks.  

So, but; however, we start from now onwards for this lecture itself we start a using 

momentum equation continuity equation to simplify them as per the requirement of the 

problem and then solve those equation to get the required shear stress distribution or 

whatever required information ok. So, let us start simplifying the continuity and then 

momentum equation in cylindrical coordinates. 
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When you write continuity equation in cylindrical coordinates we have 
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑣⃗𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑣⃗𝜃) +

𝜕

𝜕𝑧
(𝜌𝑣⃗𝑧) = 0. So, if your velocity profile whatever you develop by solving 



the problem that should satisfy this continuity equation then only we can say the developed 

solution is reliable otherwise not; that is one point of simplifying the continuity equation.  

Other important point of continuity equation, sometimes we may not able to get some kind 

of conditions directly from the flow geometry like whether the flow is symmetry or not 

whether the flow is fully developed or not those kind of things we may not be able to 

realize quickly from the geometric given schematic or given the problem statement. 

So, then one or other conditions you may get from by simplifying the continuity equation 

also, but; however, now in our case that is not required. So, because of the steady state 

first term is 0 compared to 𝑣⃗𝜃 𝑣⃗𝑟 and 𝑣⃗𝑧 are 0 and then because of the symmetry in theta 

direction 
𝜕

𝜕𝜃
 of anything is 0; that means, all terms are negligible. 

So, then we continue. So, then we can say that the continuity equation is satisfied; 

continuity equation is satisfied right. So, now, what we do? We simplify momentum 

equation, different components of momentum equations like r component, 𝜃 component 

and z component of momentum equation. 

So, r component of equation of motion 𝜌 (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
−

𝑣𝜃
2

𝑟
+ 𝑣𝑧

𝜕𝑣𝑟

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑟
+

(
1

𝑟

𝜕(𝑟𝜏𝑟𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝑟

𝜕𝜃
−

𝜏𝜃𝜃

𝑟
+

𝜕𝜏𝑧𝑟

𝜕𝑧
) + 𝜌𝑔𝑟 this is what we have.  

So, this continuity and then momentum equations we are going to derive them in 

subsequent week anyway, but; however, let us take them for granted because we know 

these equations already from our previous UG level TP course Transport Phenomena 

course. Now, before simplifying this equation further the geometry that whatever we have 

seen. So, 𝑣𝜃 is only existing and then it is function of r and then what we have seen?  

We have seen that only shear stress existing is 𝜏𝜃𝑟or 𝜏𝑟𝜃 this is the only shear stress is 

there and then both of them are same for the case of laminar flow anyway. So, then we do 

not need to worry whether it is 𝜏𝜃𝑟or 𝜏𝑟𝜃. So, if it is a flow is laminar and then symmetric 

then both of them are same ok. 

So, now this is the only shear stress existing that is 𝜏𝑧𝑟 and then other components of 𝜏𝜃𝑧 

etcetera these things are not existing, but normal stresses 𝜏𝑟𝑟 rather saying the normal 

stresses normal viscous stresses let us call them extra stresses extra component of shear 



stress. So, 𝜏𝑟𝑟 𝜏𝜃𝜃 𝜏𝑧𝑧we are not cancelling out because we are also doing this analysis for 

the case of viscoelastic fluids; if the fluid is having some elasticity.  

So, then these components would also be important. So, we cannot cancel out right. So, 

blindly we cannot cancel out these extra stresses and then this shear stress 𝜏𝜃𝑟 ok. So, why 

this is important now? This comes from the schematic, this comes from the problem 

statement and then schematic then you can realize it ok. So, these conditions we apply to 

the momentum equation so that to simplify them ok. So, now, first term is 0 because of 

the steady state condition vr is 0, then 𝑣𝜃 is not 0.  

But 
𝜕

𝜕𝜃
 of anything is 0 because of the symmetry conditions; 𝑣𝜃 is existing so, we cannot 

cancel it out ok, vz is 0 compared to 𝑣𝜃. So, that term is anyway 0. So, left hand side you 

are we are having only one term −𝜌
𝑣𝜃

2

𝑟
, pressure we do not know anything. 

So, let us keep it as it is then the normal stresses or the extra stresses for the case of non-

Newtonian fluids 𝜏𝑟𝑟 𝜏𝑧𝑧and then 𝜏𝜃𝜃 we cannot say whether they are negligible or not 

unless if you know the nature of the fluid. So, we cannot cancel out this term right and 

then 𝜏𝜃𝑟  is existing it is non-zero quantity, but because of the symmetry 
𝜕

𝜕𝜃
 for anything 

is 0. So, that this term is 0. 

So, 𝜏𝜃𝜃 should be there because we are also doing the simplification for the fluids which 

are having the elastic behaviour right; 𝜏𝑧𝑟 this component of shear stress is not there for 

the flow geometry that we have taken and then we mentioned at the beginning that we are 

not taking gravity and end effects into the consideration.  

So, then what we have? This equation −𝜌
𝑣𝜃

2

𝑟
= −

𝜕𝑃

𝜕𝑟
+

1

𝑟

𝜕(𝑟𝜏𝑟𝑟)

𝜕𝑟
−

𝜏𝜃𝜃

𝑟
. So, this if you 

expand you can write it as like you know 
𝜕𝜏𝑟𝑟

𝜕𝑟
−

𝜕𝑃

𝜕𝑟
− (

𝜏𝜃𝜃

𝑟
−

𝜏𝑟𝑟

𝑟
) when you differentiate 

this equation you have 
1

𝑟
[𝑟

𝜕𝜏𝑟𝑟

𝜕𝑟
+ 𝜏𝑟𝑟(1)]. 

So, then we are having 
𝜕𝜏𝑟𝑟

𝜕𝑟
+

𝜏𝑟𝑟

𝑟
. So, 

𝜕𝜏𝑟𝑟

𝜕𝑟
 is combined with −

𝜕𝑃

𝜕𝑟
 as one term and then 

whatever the 
𝜏𝑟𝑟

𝑟
 is there that is combined with 

𝜏𝜃𝜃

𝑟
 to write it as 

𝜏𝜃𝜃

𝑟
−

𝜏𝑟𝑟

𝑟
.  



Why we are writing? Because we know this whatever. So, called 𝜏 and p are there 

summation of these two we can write them as a sigma that is what we have already seen 

right; so, in the first lecture.  

So, this equation we can write it as 
−𝜌𝑣𝜃

2

𝑟
=

1

𝑟
(

𝜕

𝜕𝑟
(𝑟𝜎𝑟𝑟)) −

𝜎𝜃𝜃

𝑟
 right. So, now this equation 

we are having 𝜎𝑟𝑟and 𝜎𝜃𝜃 term. So, then this equation would provide some information 

about the normal stresses in the gap between r is equals to Ri to R0 ok.  

So, that is what we are going to see further anyway whereas, 𝜎 is nothing but sum of p and 

𝜏 here fine ok. So, let us take this let us keep this equation as of now as it is without going 

further simplification we do it later subsequently. 
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So, now, 𝜃 component of equation of motion if you write down these are available any of 

the transport phenomena books. So, now here first term is 0 because of the steady state 

condition compared to 𝑣𝜃, vr is 0, 𝑣𝜃  is not 0, by 
𝜕

𝜕𝜃
 of anything is 0 because of the 

symmetry vr is 0 and then vz is 0. So, the left hand side all the terms are negligible right.  

So, pressure we can we do not know anything, but what we can say because of the 

symmetry this is also 0 and then this 𝜏𝑟𝜃 is existing or 𝜏𝜃𝑟 is existing 𝜏𝑟𝜃that we are taking 

because 𝜃 is the direction of the flow, r is the surface normal to the 𝜃 direction. So, 𝜏𝑟𝜃 is 

existing right, but it is function of r as well. So, then we cannot cancel out this term.  



So, it will be as it is 𝜏𝜃𝜃 we cannot cancel out because of symmetry we can cancel out 
𝜕𝜏𝜃𝜃

𝜕𝜃
. 

Similarly, what we have? We do not have other component of shear stress other than tau r 

theta. So, this term is 0 and these two terms are equal to each other at least for the laminar 

symmetric laminar flow conditions ok and then there is no gravity. So, last term is also 0. 

So, what we get here? We get 
𝜕

𝜕𝑟
(𝑟2𝜏𝑟𝜃) = 0, that is what we get from this equation. And 

then this equation if you solve what you will get? You will get a relation for a 𝜏𝑟𝜃 or you 

get an equation for 𝜏𝑟𝜃 that is shear stress is required; 𝜏 𝛾̇ and then n1, n2 only we are going 

to find out. So, this equation will give you information about the shear stress. 
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Now, similarly z component of equation of motion if you take the first term is 0 because 

of steady state assumption right. So, the second term vr is 0 compared to 𝑣𝜃; 𝑣𝜃 is existing, 

vz is not existing or it is 0 compared to 𝑣𝜃 or 
𝜕

𝜕𝜃
 of anything, any velocity component is 0 

because of the symmetry and then vz is anyway 0.  

So, pressure we do not know anything about the pressure 𝜏𝑟𝑧 is not existing 
𝜕

𝜕𝜃
 of anything 

is 0 right. So, combinedly we do not want it to make a normal stress and then pressure 

combined together in the z direction, but we wanted to combine in the radial distribution 

direction that we by the equation 1. 



So, now this term is also 0 that we are not taking. So, now, we get 
𝜕𝑝

𝜕𝑧
= 𝜌𝑔𝑧; this will give 

the information about the hydrostatic pressure right. Now, by simplifying equation of 

motion, three components of equations of motion in cylindrical coordinates we got three 

equations, we use those three equations to get some more information ok in term some 

more information on shear stress, shear rate and then normal stresses. 
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So, shear stress in concentric cylinders. So, boundary condition what we have inner 

cylinder is rotating inner cylinder is rotating at Ω𝑖 angular velocity. So, then at r = Ri, 𝑣𝜃 

should be Ri Ω𝑖, but outer cylinder at r = R0, but outer cylinder is stationary. So, at r = R0 

𝑣𝜃 should be 0, but it is also possible that both the cylinders may also be rotating.  

So, let us say outer cylinder is also rotating at a different velocity than Ω𝑖, let us take outer 

cylinder if it is rotating at Ω0 then the boundary condition at r = R0 should be 𝑣𝜃 = Ω0𝑅0, 

but we are taking only this condition for this problem right. So, let us not worry about the 

both cylinders were in case. 

Now, equation 2 what we had? We had 
𝜕

𝜕𝑟
(𝑟2𝜏𝑟𝜃) = 0; if you integrate this equation 

𝑟2𝜏𝑟𝜃 = 𝐶1 that is 𝜏𝑟𝜃 =
𝐶1

𝑟2. So, now, you have an expression for 𝜏𝑟𝜃, but unfortunately 

you cannot use directly because this C1 is not known and then boundary conditions also 

we cannot say what is the shear stress at Ri what is the shear stress at R0 we cannot know 

alright. 



So, we know that some maximum shear stress or minimum shear stress like, but how much 

it is not that we could not know, but that is not an issue. So, let us not worry about that 

constant; we can find it out through experimental results. So, C1 can be found from the 

torque balance that we know from torque because torque we find it from the experimental 

results.  

All this analysis we are trying to do such a way that we relate the shear stress and shear 

rate to measurable quantities like torque and an angular velocity or rotational velocity 

those kind of thing only right. So, now what we do? We do the torque balance so that to 

find out the expression for a shear stress.  

Now, but one important thing that you can see here, this shear stress is inversely 

proportional to the square of the radial position right. So, whereas, in the capillary 

rheometers what we have found? Shear stress is directly proportional to the radial position 

ok. So, that is the region in previous week in all the lectures I was mentioning whatever 

the analysis that we are doing the shear stress, shear rate expressions are valid only for the 

capillary tubes only not for all the geometries ok. 
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So, now the torque measured on the inner cylinder is Mi then whatever the force due to the 

torque is there that should be balanced by the whatever the force because of the shearing 

action ok. Shearing force you can get by multiplying the shear stress with the surface area 



of the cylinder inner cylinder or outer cylinder where are we measuring that shear that 

shear stress. 

Let us say, if you are measuring shear stress on the inner cylinder because torque also we 

are able to measure only on the inner cylinder in this geometry because inner cylinder is 

only rotating. So, 
𝑀𝑖

𝑅𝑖
= 𝜏𝑟𝜃2𝜋𝑅𝑖𝐿, 𝜏𝑟𝜃(𝑅𝑖) indicates that 𝜏𝑟𝜃 is measured at the surface of 

inner cylinder whose radius is Ri ok it is not the multiplication ok. 

So, then from here what we get? 𝜏𝑟𝜃 =
𝑀𝑖

2𝜋𝑅𝑖
2𝐿

. So, here again we can see it is inversely 

proportional to the square of the radius of inner cylinder, because this we are measuring at 

the inner cylinder. And then Mi is also measured on the inner cylinder only ok so; that 

means, from the experiments, if you can measure the torque on in on the inner cylinder 

that torque you can use in order to get the shear stress on the inner cylinder by this equation. 

Let us say torque is measured on the outer cylinder and then that torque if it is M0 then 

𝜏𝑟𝜃(𝑅0) =
𝑀0

2𝜋𝑅0
2𝐿

 similarly exactly same as this equation ok. So, now, torque is known 

from experiments thus this equation number 8, either 8a or 8b can be used in equation 

number 7 to find out that constants C1 as function of torque that is even function can be 

found as function of torque. 

So, now what we have by the end of this slide? We have information on shear stress, 𝜏 

whether are you measuring on the inner cylinder surface or measuring on the outer cylinder 

surface we know how to measure it if you know the corresponding torque; torque on that 

cylinder right.  

So, if the torque measured on the inner cylinder then we can use 8a equation if you are 

measuring the torque on the outer cylinder then you can use equation 8b. So, now we have 

the information about the shear stress. So, next step is to get an expression to get shear rate 

that is what we are going to do now. 
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So, shear strain and shear rate in concentric cylinders. So, concentric cylinders we are 

taking the ratio between the radius of inner cylinder and then radius of outer cylinder plays 

an important role. So, if this ratio 
𝑅𝑖

𝑅0
 is very large; that means, both of them are almost 

touching to each other. So, if these two cylinders are. So, much close to each other. So, 

then what we can say the gap the gap is very very narrow very very narrow so, that 

curvature effects can be neglected right. 

So, if the curvature effect is neglected then shear strain we can find out by taking 
∆𝑥

∆𝑟
 and 

then ∆𝑥 in this case is nothing but 𝜃𝑅̅. 𝑅̅ is the position at which we are measuring this 

shear strain. So, 𝑅̅ let us take the middle point between this Ri and R0 ok. And then ∆𝑟 is 

nothing but R0 - Ri whereas, the 𝜃 is nothing but the angular displacement of cylinder. 

Remember this is valid only that gap is very very narrow so that the curvature effect can 

be neglected. Here 𝑅̅ is the midpoint between the cylinders that we are taking the average 

of R0 and Ri similarly velocity gradient should also be constant across the narrow gap, if 

you are taking the gap is very very narrow then shear rate 𝛾 ̇ can be obtained by 
∆𝑣

∆𝑟
; ∆𝑣 is 

nothing but Ω𝑖𝑅̅ ok. 

Because why Ω𝑖? Because we are taking the inner cylinder rotating case in this case the 

equations are being developed for that case. So, Ω𝑖 multiplied by some R location that R 

location we are taking midpoint we are taking midpoint between Ri and R0 ok or within 



the concentric region whatever the midpoint is there that we are taking that is nothing but 

the average of Ri and R0. ∆𝑟 is again R0 - Ri right. 

So, now we also have the relation for the shear rate. So, previous slide we got a relation 

for a shear stress that is 
𝑀𝑖

2𝜋𝑅𝑖
2𝐿

; 𝛾 ̇ is nothing but 
𝛺𝑖𝑅̅

𝑅0−𝑅𝑖
, 𝑅̅ = 

𝑅0+𝑅𝑖

2
.  

So, you can measure the rheological behaviour of that fluid right, but you can do that one 

only when this gap is narrow whatever the experiment that you are done. So, you have 

arranged the cylinder such a way that the gap is very very narrow that both the cylinders 

are almost touching to each other. 

Or 
𝑅𝑖

𝑅0
 is greater than 0.99, then only we can say the curvature effect is negligible and then 

we can have this shear rate expression otherwise we have to do adjustment or you know 

corrections to get the reliable shear rate information ok that is what we are going to do, 

because for most of the commercial rheometers or the existing rheometers having k > 0.99 

is not possible, but most of them are operated it k < 0.99. 
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For many instruments 
𝑅𝑖

𝑅0
 that is k < 0.99 in general. So, whatever this 𝛾 ̇ (𝑅𝑖) =

𝛺𝑖𝑅̅

𝑅0−𝑅𝑖
 that 

we derived in the previous slide that cannot be used and more reliable equation for shear 

rate should be obtained for large gaps, because if the gap is larger so, then you cannot 



avoid the curvature effect; when you avoid the curvature effect then only you can use this 

equation. 

So, what should we do for larger gap cases? We know the components of rate of 

deformation tensor in cylindrical coordinates. So, for that if you have transport phenomena 

books then we can get 𝛾̇𝑟𝜃 is nothing but 
𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟
. 

The same thing we can write 𝑟
𝜕

𝜕𝑟
(

𝑣𝜃

𝑟
). So, 

𝑣𝜃

𝑟
 is nothing but 𝛺 or to be specific 𝛺𝑖  in our 

case. So, this 𝛾 ̇ is nothing but 𝑟
𝜕𝛺𝑖

𝜕𝑟
. So, now, what you got? You got an expression for 𝛾 ̇  

also for the large gap cases which is good anyway. 

But the problem with this equation is that you need to know what is this 𝛺 as function of 

r, the velocity distribution, how the velocity is changing you know in the narrow gap that 

you should know then only you can use this equation.  

Such analysis such you know such information you can get by the transport phenomena 

analysis, but in real life experimental conditions when you are doing the experiments you 

cannot measure them easily right. So, then we have to further modify this equation such a 

way that we do not need to worry about this omega as function of r. So, that is what we 

are going to do now. 
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How do we do? We use equation number 7 right. So, that shear rate will we can write it as 

function of shear stress equation number 7 we know that 𝜏𝑟𝜃 =
𝐶1

𝑟2 that is what the equation 

number 7. So, from here 𝜏𝑟𝜃𝑟2 = 𝐶1 constant; now r is also changing with radial position. 

And then 𝜏𝑟𝜃 is also changing with the radial position that we know. So, then what we do? 

We do the differentiation either side then we have right hand side 0 because that is a 

constant. So, left hand side 2r𝜏𝑟𝜃dr + 𝑟2𝑑𝜏𝑟𝜃  = 0; that means, 2r𝜏𝑟𝜃dr = −𝑟2𝑑𝜏𝑟𝜃  that 

is what we can rearrange 
𝑟

𝑑𝑟
=

−2𝜏𝑟𝜃

𝑑𝜏𝑟𝜃
. 

So, now this expression we make use in the previous equation previous slide where we 

have written 𝛾̇ = 𝑟
𝜕𝛺

𝜕𝑟
 that is 𝑟

𝑑𝛺

𝑑𝑟
. So, in this equation wherever 

𝑟

𝑑𝑟
 is there we are going 

to write 
−2𝜏𝑟𝜃

𝑑𝜏𝑟𝜃
, but anyway this relation whatever we got we got for the modulus; 𝛾̇ =

|𝑟
𝜕𝛺

𝜕𝑟
|. So, in place of 

𝑟

𝑑𝑟
 I can write |

−2𝜏𝑟𝜃

𝑑𝜏𝑟𝜃
| from this equation and then 𝑑𝛺 as it is. So, 

that I can write it as after lifting the magnitude modulus then we can have 2𝜏𝑟𝜃.
𝑑𝛺

𝑑𝜏𝑟𝜃
. So, 

this is more reliable equation because the your 𝜏𝑟𝜃 you know it how do you know? You 

know by 
𝑀𝑖

2𝜋𝑅𝑖
2𝐿

. 

So, this torque you know experimentally when you do when you operate concentric 

cylinder geometry what you measure? You measure this velocity and then this torque only 

from this torque you can get 𝜏𝑟𝜃 or 𝜏𝑅𝑖
 right and then. So, that you know. So, for different 

Mi corresponding 𝜏𝑟𝜃 values we can find out so; that means, the for the given 𝛺𝑖 value 

corresponding 𝜏𝑟𝜃 value you know without knowing the velocity profile or without 

knowing the velocity distribution within the confined narrow gap.  

So, that way this equation is final, you can use it anyway. However we are going to do 

some more simplification anyway. So, now, this what we have written the shear stress this 

equation whatever we had in the previous slide the same equation for the shear rate we 

have written as function of you know velocity distribution right. 

But now the same shear rate we are writing as function of the shear stress because 

experimentally you cannot know velocity distribution you know the angular velocity you 

know the torque right you cannot know the distribution of the velocity across the r position 

by transport phenomena analysis you can get that is a different thing. 



But all these analysis we are doing. So, that to get expression for shear stress, shear rate 

and the normal stresses in terms of measurable properties right like torque angular velocity 

etcetera. So, this equation is better compared to equation number 12 because here you need 

to know only 𝛺 that is known from the experiment quantities.  

And then you need to know τ also you know because torque is known from the experiment 

quantity from the experimentation. So, then using that torque you can find out the τ. So, 

this altogether information is known. So, this is the better equation for large gap concentric 

cylinder rheometers. 

So, now this we know that only shear stress is occurring 𝜏𝑟𝜃 components. So, other 

components are not existing. So, then we can take off this subscripts r 𝜃. So, that we can 

have 𝛾̇ as function of τ =2τ. 
𝜕𝛺

𝜕𝜏
. 
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Now, we do some more simplifications. So, now, this equation if you integrate you what 

you do this equation you write such a way that d 𝛺 is one side remaining terms are other 

side; then you do the integration from 0 to 𝛺i, 0 for the outer cylinder stationary outer 

cylinder 𝛺i inner cylinder rotating at 𝛺i velocity corresponding shear stress are 𝜏𝑅0
and 𝜏𝑅𝑖

 

right. 

Then what you get? You get 𝛺i is equals to integral; this integral we are not able to solve 

because we do not know what is this 𝛾̇ (τ). So, the next step what we are doing? We are 



differentiating with respect to 𝜏𝑅𝑖
, 𝜏𝑅𝑖

 is nothing but 𝜏𝑟𝜃 at r = Ri the same thing we have 

been writing as 𝜏𝑟𝜃 (Ri) like this. So, they are same ok. So, different notations only are 

used ok. 

So, now this equation 15, if you differentiate with respect to 𝜏𝑅𝑖
, then your left hand side 

𝑑Ω𝑖

𝑑𝜏𝑅𝑖

=
1

2
[

𝛾̇(𝜏𝑅𝑖
)

𝜏𝑅𝑖

−
𝛾̇(𝜏𝑅0)

𝜏𝑅0

.
𝑑𝜏𝑅0

𝑑𝜏𝑅𝑖

].  

This is what we get simple straightforward, but now equation number 8a we got 𝜏𝑅𝑖
 is 

nothing but 
𝑀𝑖

2𝜋𝑅𝑖
2𝐿

 and then 𝜏𝑅0
 is nothing but 

𝑀0

2𝜋𝑅0
2𝐿

so; that means, 
𝑑𝜏𝑅0

𝑑𝜏𝑅𝑖

 is nothing but 

(
𝑅𝑖

𝑅0
)

2

 right. So, this we are going to substitute here, but before that we do some more 

simplifications. 
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So, when you substitute here you get in place of 
𝑑𝜏𝑅0

𝑑𝜏𝑅𝑖

 you get (
𝑅𝑖

𝑅0
)

2

. So, next step what I 

am doing? I am taking 𝜏𝑅𝑖
 common. So, that here 

1

2(𝜏𝑅𝑖
)
, I have out of the parentheses. So, 

that I can have 𝛾̇(𝜏𝑅𝑖
) − 𝛾̇(𝜏𝑅0

) (
𝜏𝑅𝑖

𝜏𝑅0

) . (
𝑅𝑖

𝑅0
)

2

. 

But again we know that 
𝜏𝑅𝑖

𝜏𝑅0

 is (
𝑅𝑖

𝑅0
)

2

. So, then the two quantities when multiplied it will 

give 1 so; that means, we have 2𝜏𝑅𝑖

𝑑Ω𝑖

𝑑𝜏𝑅𝑖

= 𝛾̇(𝜏𝑅𝑖
) − 𝛾̇(𝜏𝑅0

). 



Now, since inner cylinder is rotating. So, at that position you know the gradients would be 

very strong. So, what about the outer cylinder? How much is important is 𝛾̇(𝜏𝑅0
) compared 

to 𝛾̇(𝜏𝑅𝑖
) that is what we are going to see now. 
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So, for large gap especially k < 0.1 right. So, when tau r when k that is very small. So, then 

we already know from equation number 7 𝜏𝑟𝜃 =
𝐶1

𝑟2; that means, 𝜏𝑅0
=

𝐶1

𝑅0
2 and then 𝜏𝑅𝑖

=

𝐶1

𝑅𝑖
2 so; that means, 

𝜏𝑅0

𝜏𝑅𝑖

 if you do, you get (
𝑅𝑖

𝑅0
)

2

. 

Now, 
𝑅𝑖

𝑅0
 is 0.1 the square of this one is 0.01; that means, 𝜏𝑅0

 is very much less than the𝜏𝑅𝑖
 

because it is multiplied by the factor of 0.01. So, when it is valid, when it is valid? It is 

valid when 
𝑅𝑖

𝑅0
< 0.1 right.  

So, similarly 𝛾̇(𝜏𝑅0
) is going to be very much smaller compared to the 𝛾̇(𝜏𝑅𝑖

). How it is? 

Let us take a power law fluid. So, for which we have τ = m(𝛾̇)𝑛. So, 𝛾̇(𝜏𝑅0
) I can write 

(𝜏𝑅0
𝑚⁄ )

1

𝑛. Similarly 𝛾̇(𝜏𝑅𝑖
) I can write (𝜏𝑅𝑖

𝑚⁄ )
1

𝑛. 

So, then since the fluid is same, so, this m and n would be same. So, then you are going to 

have (
𝜏𝑅0

𝜏𝑅𝑖

)

1

𝑛
 
𝜏𝑅0

𝜏𝑅𝑖

 is nothing but (
𝑅𝑖

𝑅0
)

2

. So, which is k. So, (𝑘2)
1

𝑛. So, that is 𝑘
2

𝑛; that means, 



if you take k 0.1 are lesser one and then n 1/3. So, then this ratio is going to be order of 

10−6; that means, 𝛾̇(𝜏𝑅0
) is approximately 0 compared to the 𝛾̇(𝜏𝑅𝑖

). 
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So, this condition if you use in equation number 18 here, so then this you can strike out. 

When you strike out, so you can have 2𝜏𝑅𝑖

𝑑Ω𝑖

𝑑𝜏𝑅𝑖

= 𝛾̇(𝜏𝑅𝑖
); that means, 2𝜏𝑅𝑖

𝑑Ω𝑖

𝑑𝜏𝑅𝑖

≅ 𝛾̇(𝜏𝑅𝑖
), 

this is what we are having.  

So, this is the final equation or this equation you can also write it as 𝛾̇𝑅𝑖
≅ 2Ω𝑖

𝑑𝑙𝑛Ω𝑖

𝑑𝑙𝑛𝜏𝑅𝑖

, what 

we are doing this equation here? We are multiplying by Ω𝑖 in the left hand side and then 

dividing by Ω𝑖.  

So, d Ω𝑖 by Ω𝑖 I am writing 𝑑𝑙𝑛Ω𝑖  and then 2𝜏𝑅𝑖
 is multiplied by 2 is multiplied by Ω𝑖 2 

Ω𝑖whereas, the 
𝑑𝜏𝑅𝑖

𝜏𝑅𝑖

, I am writing as 𝑑𝑙𝑛𝜏𝑅𝑖
 so; that means, since 𝜏𝑅𝑖

=
𝑀𝑖

2𝜋𝑅𝑖
2𝐿

 so; that 

means, τ is directly proportional to 𝑀𝑖.  

So, what I can write in place of 𝑙𝑛𝜏𝑅𝑖
? I can write ln Mi. So, this is the final equation. This 

is the final equation for γi or 𝛾𝑅𝑖
= 2Ω𝑖

𝑑𝑙𝑛Ω𝑖

𝑑𝑙𝑛𝑀𝑖
, because even the previous equation whatever 

the 14th equation number 14 whatever we have got, there also we have to convert that you 

know torque information has to be converted to the shear stress and then you can get the 

shear rate. 



But now, because of this simplification shear stress directly you can get from the angular 

velocity or rotational velocity versus torque information whatever you are getting from the 

experiments directly right. So, this is. So, that is the reason this is the most reliable 

equation. 

So, in the next class what we will be doing? We will be taking fairly narrow gap cases and 

then do the analysis. In this class what we have done? We have taken the cases where the 

gap is very narrow or gap is very large that is k greater than 0.99 and k less than 0.1 cases 

we have taken and then done the analysis to get the required shear stress and shear rate 

information right. What if the gap is not very large not very narrow in between then how 

to do the analysis that we will take care in the next class. 
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The references for today’s lecture are provided here. Most of the lecture has been prepared 

from this book Macosko that is Rheology: Principles, Measurements and Applications by 

Macosko. And then some details have also been taken from this reference book Chhabra 

and Richardson; however, similar analysis you may find in other references books 

provided here. 

Thank you. 


