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Welcome to the MOOCs Course Transport Phenomena of Non-Newtonian Fluids. The 

title of today’s lecture is Thermal and Concentration Boundary Layer Thickness of Non-

Newtonian Fluids. Before going into the details of today’s lecture, what we will be doing? 

We will be having a kind of recapitulation of what we have seen in last two classes. 
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So, in last two classes we have seen basics of a momentum boundary layer and then their 

analysis. And then, for the momentum boundary layer or the flow is taking place boundary 

layer flows are taking place and then the conditions are isothermal conditions, that is only 

momentum transfer is occurring. So, for that boundary layer flows what is the integral 

momentum equation, how to derive that one those details we have seen. 

 And then finally, we got this expression integral momentum equation for boundary layer 

flows which is valid for both Newtonian and non-Newtonian fluids right, because the 

nature of the fluid rheology will come into the picture through this τ information right ok. 

Then, after having this information subsequently what we have seen? We have developed 



different expressions or we have taken different expressions for the velocity profile as 

function of y and then we try to obtain what is the momentum boundary layer thickness δ, 

that is what we have seen right. 

So, we have taken two different types of velocity profiles and then for Newtonian, power 

law fluids, and then Bingham plastic fluids we developed the momentum boundary layer 

thickness δ. Let us say, fluid is power law fluid and then 𝑣𝑥 is given by this expression 
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); 𝑣0 is free stream velocity, δ is momentum boundary layer 

thickness, y is the normal distance or distance normal to the surface right.  

From the surface how in the vertical direction y value increasing that is what it right. And, 

then we understand in all these analysis δ is function of x. So, what is the δ for this velocity 

profile? If the fluid is power law liquid is nothing but this one. This is what we got. Then 

subsequently, we also got the drag coefficient for the same case right.  

Then we have seen that this, if you change the v expression. Let us say if you take some 

other expression for v; vx then what you do? You get mostly 
δ

𝑥
 you know as you know 

proportional to the 𝑅𝑒𝑥

1

𝑛+1, if it is a power law fluid. And then only this constant and then 

functions of n, whatever are there they are only changing otherwise mostly they are 

remaining same. 

Because, we have taken other velocity profile also 
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this is what we have seen right. So now, this expression when you have used we got the 

similar expression only this constant has been changed. And then this F (n) function is that 

is changing that is a different that is what we have seen ok. 

But, 𝑅𝑒𝑥

1

𝑛+1 is remaining same and then 𝐶𝑑 also is proportional to the 𝑅𝑒𝐿

1

𝑛+1 that also 

remaining same only this constants are changing. Or, the functions of n whatever are there 

they are changing they are constant if it is a Newtonian fluid they are function of n if it is 

a power law fluid ok.  

Rex is the local Reynolds number and then ReL is the overall Reynolds number based on 

the length of the plate that we have taken. So, these analysis we have taken a flow parallel 

to flat plate, horizontal flat plate ok. 



Then we have also seen few basics of a thermal boundary layer, and then we have seen the 

analysis, and then we have seen how to develop the integral energy equation for the 

boundary layer flows if there is a heat transfer. That is if the surface of the solid plate and 

then fluid entering or the fluid which is flowing over this plate or at different temperatures 

then heat transfer it also take place between the boundary layer right. 

So, then thermal boundary layer would be developing both thermal and then momentum 

boundary layer would be developing simultaneously right. So, but we have taken the case 

where they are developing independently or developing independent of each other. 

Because we assume the physical properties are independent of a temperature gradient. 

Than under such conditions the integral energy equation for heat transfer in boundary layer 

flows we got this expression right. Here, the vx is nothing but the velocity distribution, vx 

changing in y direction, how it is changing? T is nothing but the temperature distribution 

T function of y.  

This T0 is nothing but the free stream temperature, δT is nothing but thermal boundary 

layer thickness, δ is the momentum boundary layer thickness, δT is thermal boundary layer 

thickness, this α is thermal diffusivity 
k

ρ𝑐𝑝
 right. And then this 

𝑑𝑇

𝑑𝑦
 is evaluated at the surface 

of the plate that is y = 0 location.  

So, this is what we have seen in last two classes. Now in this lecture, what we are going to 

see? We are going to use this equation integral energy equation for heat transfer in 

boundary layer flows and then try to obtain what is this δT as function of x. That we can 

do, when we know what is this vx and as function of y and then what is this T as function 

of y. This vx as function of y we have already seen in the previous lecture how to get and 

all that. 

Temperature profile also we try to obtain in a similar way by assuming a third degree 

polynomial for this temperature distribution, then find out those constants and all that we 

are going to do. Then substituting them here and then finally simplifying to get this δT as 

function of x.  

But this is going to be much more complicated than what we have done for δ that is 

momentum boundary layer thickness in the previous lecture. The derivation is very lengthy 

as well as the complicated one, so we have to be very careful. 
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So, heat transfer in laminar flow of power law liquids over an isothermal flat plate. Flat 

plate; plate is isothermal condition, but the overall system is having non isothermality, 

because the fluid temperature is T0 and then plate temperature is Ts. There is a temperature 

difference and obviously, heat transfer is there and then that heat transfer occurring in 

laminar boundary layer. 

So, then that in within that laminar boundary layer constraint if both momentum and heat 

transfer are taking place. So then how this momentum boundary layer thickness is 

changing in the flow direction that is as function of x that is what we are going to derive 

here. Consider flow of an incompressible fluid at free stream velocity V0 which is at 

temperature T0 over a plane surface maintained at higher temperature Ts right. Surface 

temperature and then free stream fluid temperature are provided. 

Now, at any given distance from the leading edge, temperature of fluid progressively 

decreases with distance y from the surface because we have taken Ts is higher than the T0, 

so right so then this is the plate, so this is at Ts at higher temperature and this is y direction. 

So, as we move away in the y direction right this T0, the fluid is at that lower temperature 

T0, so then temperature gradually decreased from Ts to T0 at infinite distance in the y 

direction ok. 

That infinite distance in reality we cannot have, so then we are taking that location δT 

which is function of x by which, when y become; when y = δT then the temperature 



becomes approximately equals to T0 ok. And, reaching T0 at extremity of thermal 

boundary layer that is at y = δT. Actually, theoretically it should occur at infinite distance, 

but that is not possible in reality.  

So, that is the reason we are having this boundary layer concept that is defining a region 

of fluid or enclosure of a fluid in which the gradients are important or beyond that one the 

gradients are negligible. So, that boundary whatever is there in which the concentration 

gradients or temperature gradients are existing, that we call as a boundary layer flow.  

And then that is also changing in the x direction function of x that is flow direction, that is 

at the leading edge boundary layer thickness is 0 and then as x increases boundary layer 

thickness increases whether it is momentum boundary layer or thermal boundary layer, 

that is what we have seen. So now what we assume? Temperature profile is having third 

degree polynomial of this form 𝑇 = 𝑎 + 𝑏𝑦 + 𝑐𝑦2 + 𝑑𝑦3.  

Now, if this a b c d you can find out then, obviously you can you know use the final 

temperature profile in this momentum in this integral energy equation here. And then get 

the 
𝑑𝑇

𝑑𝑦
 at y = 0 and then substitute here and then finally solve this equation δT has function 

of x right. So, first what we have to do? We have to find out this a, b, c, d constants. So 

obviously, we need to have boundary conditions.  
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So, boundary conditions what we are having? We are actually, if you recollect we have a 

you know solid plane like this; flat plate the fluid is coming and then approaching the plate 

and then flowing like this. So, this is vertical direction is y direction, horizontal direction 

is x direction. So, this is at y = 0 location, temperature T = Ts that is given, and there is a 

thermal boundary layer within the laminar flow region, forget about the momentum 

boundary layer as if now that is not required right.  

So, this thermal boundary layer thickness changes with x that is increases with x in the 

flow direction, because as x direction increases the fluid element experiences more 

retardation and all that.  

That we have already seen. So, at this y = δT onwards T = T0 and then 
𝑑𝑇

𝑑𝑦
= 0. Temperature 

becomes equal to the free stream temperature, free stream temperature is T0, free stream 

velocity is V0 right. And then, from this point onwards at y = δT onwards, 
𝑑𝑇

𝑑𝑦
= 0; that is 

gradient becomes 0. 

And then at the solid surface here, what we have? We have constant flux dq is constant 

this is what we know. So, 
𝑑𝑞𝑤

𝑑𝑦
 should be 0, and then 𝑞𝑤 is nothing but −𝑘

𝑑𝑇

𝑑𝑦
 so; that means, 

𝑑2𝑇

𝑑𝑦2 = 0 at y = 0. So, at y = 0 we have two boundary condition, at y = δ𝑇 we have two 

boundary conditions for the temperature. 

So, we use those four boundary conditions to get this four these four constants from this 

equation number 1. So, at y = 0, T = Ts, if you substitute, T what we have taken 𝑇 = 𝑎 +

𝑏𝑦 + 𝑐𝑦2 + 𝑑𝑦3.  which is nothing but our equation number 1. So, now here if you 

substitute y = 0, so you get right hand side only a and then left answer T = Ts then at y = 

δ𝑇, that is at the thermal boundary layer location T = T0. So, here in place of y right side 

we are substituting δ𝑇. So, then we have this equation. 

Then, at y = δ𝑇 
𝑑𝑇

𝑑𝑦
 is 0. That is the other boundary condition at y = δ𝑇. So, 

𝑑𝑇

𝑑𝑦
 is what? 

𝑑𝑇

𝑑𝑦
 is 

nothing but 𝑏 + 2𝑐𝑦 + 3𝑑𝑦2. So now, here in place of c you substitute δ𝑇 here. So then 

you get 𝑏 + 2𝑐δ𝑇 + 3𝑑δ𝑇
2 = 0, because 

𝑑𝑇

𝑑𝑦
= 0 at y = δ𝑇. And now, at y = 0 

𝑑2𝑇

𝑑𝑦2 = 0. 



We are having 
𝑑2𝑇

𝑑𝑦2 is what it is nothing, but 2𝑐 + 6𝑑𝑦. So now, here if you substitute y = 

0, so then this is gone, that is 2 c = 0. That means, c = 0 and then a = Ts and then remaining 

this equations 3 and 4 if you solve for b and d constants, b you will get 
3

2
(

𝑇0−𝑇𝑠

δ𝑇
) and d you 

get −
1

2
(

𝑇0−𝑇𝑠

δ𝑇
3 ) right. 

So, when you substitute these equations in this equation number 1, what you get? T = a is 

nothing but 𝑇𝑠 and then b is nothing but 
3

2
(

𝑇0−𝑇𝑠

δ𝑇
), c is nothing but 0. And then d is nothing 

but −
1

2
(

𝑇0−𝑇𝑠

δ𝑇
3 ). So that means, 

𝑇−𝑇𝑠

𝑇0−𝑇𝑠
 is nothing but 

3

2
. This y is already here and then 𝑦3 is 

here.  

So, 
3

2

𝑦

δ𝑇
, −

1

2
(

𝑦

δ𝑇
)

3

 you are getting. So, that is you get here this one. So, 𝑇 − 𝑇𝑠 we are 

designating by θ, 𝑇0 − 𝑇𝑠 we are designating by θ0 right. So, this is temperature profile you 

got already, now you need to get 
𝑑𝑇

𝑑𝑦
 at y = 0. 
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So, thermal boundary layer thickness of power law fluid flowing over a plain surface we 

take, here integral energy equation is this one, fine. Velocity profile already we have taken 

this one in the previous class because, we have to we cannot do the momentum boundary 

layer derivation again for a different velocity profile. Because this equation when you 



substitute 𝑇0 − 𝑇 and 
𝑑𝑇

𝑑𝑦
 and vx in this equation number 7, you also find that δ terms are 

there. 

So, that that δ derivation we should have already done. So, for this velocity profile this δ; 

that is momentum boundary layer thickness as function of x, this is already we have done 

in previous class, so that we can adopt as it is. So, temperature profile just now we have 

taken this one. So remember, whatever the derivation that we are going to do in order to 

get this δ as function of x, now that is valid for these two velocity profiles and then 

temperature profiles given by equation numbers, this equation and this equation.  

If you change any of these two equations or both the equations, the derivation is going to 

be different and then final results are going to be different. Especially those function of n 

is going to be different. May be Reynolds power one-third and Prandtl power 1 by 2 

etcetera, those terms should be there, they will be as it is, they may not be changing. 

So, so you have to be very careful you know which velocity profile you are doing because 

we are doing it for two different velocity profiles and then two different temperature 

profiles. Because in the at the end of this class we are going to take a different velocity 

profile and then see the answers; final answers of the δ𝑇 ok anyway. So now, if you take 

this velocity profile and then this temperature profile what is δ𝑇 as function of x that we 

will see first. 

So, we need to have 𝑇0 − 𝑇, so what we do? This equation both sides we multiply by minus 

1 and then add plus 1 either side, so 1 −
𝑇−𝑇𝑠

𝑇0−𝑇𝑠
= 1 − this one. So, that is when you do the 

LCM you get 𝑇0 − 𝑇𝑠 − 𝑇 + 𝑇𝑠. So that is, 𝑇0 − 𝑇 you get 
𝑇0−𝑇

𝑇0−𝑇𝑠
. 

So, that divided by 𝑇0 − 𝑇𝑠 that I have taken to the right hand side. The terms of right hand 

side are as it is right, then we also need 
𝑑𝑇

𝑑𝑦
. So, this expression, if you do the 

𝑑𝑇

𝑑𝑦
 this 

expression what you get? 
𝑑𝑇

𝑑𝑦
= (𝑇0 − 𝑇𝑠) {

3

2δ𝑇
−

3

2

𝑦2

δ𝑇
3}. This is what you get and then if 

you do δ𝑇 at y = 0 then what will happen this y terms are there, so second term is gone 

only thing that you get 
3

2

𝑇0−𝑇𝑠

δ𝑇
. 



So, 𝑇0 − 𝑇𝑠 we are writing as θ0. So now, in order to substitute or simplify this equation 

number 7, we need vx we need 𝑇0 − 𝑇 and then we need 
𝑑𝑇

𝑑𝑦
 at y = 0 all of them we got it 

now right. By equation 8, 9 and 10, this equation 8, 9, 10 we are going to substitute in 

equation number 7 now, right. 
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Equation number 7 is rewritten here. So, 
𝑑

𝑑𝑥
{∫ 𝑣𝑥(𝑇0 − 𝑇)𝑑𝑦

δ𝑇

0
} is that is θ0 multiplied by 

this one, dy = 
𝑑𝑇

𝑑𝑦
 at y = 0 is nothing but 3 (𝑇0 − 𝑇𝑠), that is 

θ0

2 δ𝑇
 and then multiplied by α. 

So, what we can do now? This θ0, this θ0 we can cancel out. This v0 is a constant free 

stream velocity constant velocity that we can take to the right hand side. So and then 

remaining terms here whatever are there; these two terms we are multiplying and then we 

are writing like you know expanding these terms like; 2
𝑦

δ
−

3

2

𝑦

δ
(2

𝑦

δ
) , so you get 3 

𝑦

δ𝑇
  

𝑦

δ
. 

So, you have to be very careful about δ𝑇 and δ right. So, both the terms are there here 

right. Next step what we do? Next step we integrate. When we integrate with respect to y, 

so in place of y here you get y square by 2, here you have y square so 
𝑦3

3
 you get here 𝑦3. 

So, 𝑦4 you get like that all the terms you get right. 
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So, that when you do 
𝑦2

2
, 

𝑦3

3
, 

𝑦5

5
, 

𝑦4

4
, 

𝑦5

5
, 

𝑦7

7
, 

𝑦5

5
, 

𝑦6

6
and then 

𝑦8

8
 are there, that is what we get 

after integration remaining terms are constant we are keeping as it is. Limits 0 to δ𝑇 and 

then right hand side term as it is, we are not doing anything right. 

Next term what we are doing? We are substituting the limits right. So, here this 2 and this 

2 is cancelled out. So, 
1

δ
𝑦2, now δ𝑇

2
 next term is this 3 this 3 cancelled out. So, 

1

δ
 as is as 

it is and then in 𝑦3 so 
δ𝑇

3

δ𝑇
2. Next term, 

1

δ

1

5
 as it is then 

δ𝑇
5

δ𝑇
3, so δ𝑇

2
 you get, so next step here 

2 1’s are 2 2’s are. 

So, 
1

δ3 
1

2
 as it is and then 𝑦4, so after substituting the limits δ𝑇

4
 then here 

1

δ3, 
3

5
 as it is. And 

this 𝑦5 is now 
δ𝑇

5

δ𝑇
, so then you get δ𝑇

4
. So, like that remaining terms also done here like 

this and then we take 
δ𝑇 

δ
= ε which is less than 1, that is for the Prandtl numbers are very 

large or the higher Reynolds number, high Prandtl number flows, where the boundary layer 

thickness are thinner.  

And then especially thermal boundary layer thickness is smaller compared to the 

momentum boundary layer thickness, that case we are taking. So, then here 
𝑑

𝑑𝑥
 and then 

from all the terms, what we are taking you know δ we are taking common. So, so this term 

and then this term are same with plus and minus sign, so then that is 0. So, remaining terms 



now here δ if you take common, you know then what we get already 
1

δ
 is there. So, 

1

δ
 

another 
1

δ
 will be there. So, 𝛿2 would be there.  

So, 
δ𝑇

2

𝛿2  I am writing 
ε2

5
. Then here this term, 

1

2

δ𝑇
4

𝛿4  that is 𝜀4 I can write. Like that remaining 

terms also I can write like this here right. Next step what I do? Since, ε is less than 1, ε4; 

ε5, ε6 and so on. So higher power terms would be negligible. Would be having small 

contribution compared to the compare to the ε or ε2 term. So, what we can do we can strike 

of these terms and then take only ε2 terms, then what we have? 
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𝑑

𝑑𝑥
(δ

ε2

5
) =

3α

2δ𝑣0𝜀
; in place of δ𝑇 I am writing δ multiplied by ε, because ε we have defined 

as 
δ𝑇

δ
. So, now this is the simplified equation. So, this equation you can simplify to get δ𝑇 

as function of x, because for the velocity profile whichever we have selected what is δ is 

also known.  

We have done derivation in previous class that we can adopt here right. So, before that 

what we do? We further simplify this equation. So, this 5 I have taken to the right hand 

side. So, then I have 
15α

2δ𝑣0𝜀
 now this δ and then ε both of them are function of x.  



So, when you differentiate this one, you get ε2 𝑑δ

𝑑𝑥
+ 2ε 

𝑑ε

𝑑𝑥
 multiplied by δ as it is equals to 

right hand side term as it is. Next what I am doing? This whatever you know δ ε in the 

right hand side is there, so that I am taking to the left hand side.  

So, that I have δ ε3 
𝑑δ

𝑑𝑥
+ 2ε2δ2 𝑑ε

𝑑𝑥
=

15α

2𝑣0
. So, right hand side now completely a constant 

ok. Now, let z = ε3 now here this is all a mathematical simplification in order to solve this 

equation. This equation we have to solve to get δ𝑇 as function of x, for a known δ as 

function of x, δ is known as of now. We have already done the derivation, so we adopt it 

as it is. 

So, if you take z = ε3, dz = 3 ε2𝑑ε, but here we need 2 ε2 𝑑ε

𝑑𝑥
, so from here dz = 3 ε2 dε if I 

do divided by dx, I get 
𝑑z

𝑑𝑥
 in the left hand side, right hand side 

𝑑ε

𝑑𝑥
 I will be having and then 

3 ε2 as it is. But I need 2 ε2  
𝑑ε

𝑑𝑥
 for this term to substitute here right. 

So that, what I am doing, now both sides I am multiplying by 2/3, so that  
2

3

𝑑z

𝑑𝑥
 would be 

nothing but 2 ε2 𝑑ε

𝑑𝑥
. ε3 is nothing but z. So, those things now we substitute here. 
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Before substituting we also enlist what is δ, because we need to substitute δ. Also δ as 

function of x this we have derived in the previous lecture. So, we are taking directly, so δ 

from this one is nothing, but this is function n we are calling. So that function n multiplied 



by Rex for the power law fluid is nothing, but (
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
)

−1

𝑛+1
 and then left hand side x 

whatever is there that we have taken right hand side. 

F (n) is nothing but this one, this quantity we are calling F (n) right. So, we also need 
dδ

𝑑𝑥
 

also to substitute in the previous equation. So now, δ simply in a simple way I am writing 

A. F (n) whatever the other than x power these terms are there.  

So, other than these terms I am writing that as A. F (n), A is nothing but (
ρ𝑣0

2−𝑛

𝑚
)

−1

𝑛+1
. So, 

the remaining term 𝑥
1−𝑛

𝑛+1, that is what I am having, so that is δ = F (n) A 𝑥
1

𝑛+1. Now 
dδ

𝑑𝑥
 from 

here you get A F (n) 
1

𝑛+1
 𝑥

1

𝑛+1
−1

, that is 𝑥
−𝑛

𝑛+1.  
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So, now we have all the quantities to substitute in the equation number 11, so now, those 

equation numbers 12, 13, 14 we are going to substitute in equation number 11. This is 

equation number 11. δ is A F (n) whatever x power is there, 
1

𝑛+1
 we are writing as it is, 𝜀3 

is nothing but z, 
dδ

𝑑𝑥
 we got 

𝐴𝐹(𝑛)

𝑛+1
𝑥

−𝑛

𝑛+1 + 𝛿2 is nothing, but 𝐴𝐹(𝑛)𝑥
1

𝑛+1. So, square is there 

then remaining terms are you know 2 𝜀2 dε

𝑑𝑥
 is nothing but 

2

3

dz

𝑑𝑥
 right.  



Right hand side as it is, z is nothing but ε3 that is what we are taking. So, this equation 

what we are trying to do? We are now here the combining the x terms. So, 𝑥
1

𝑛+1 you will 

be having this A F (n) we are having 2 times. So, [𝐴 𝐹(𝑛)]2 and then 
1

𝑛+1
 z is as it is 𝑥

1−𝑛

𝑛+1 

we are having. Here, [𝐴 𝐹(𝑛)]2 we are writing and then 𝑥
2

𝑛+1 +
2

3

𝑑𝑧

𝑑𝑥
 right hand side as it 

is. 

So, next step this [𝐴 𝐹(𝑛)]2 that we have taken to the right hand side remaining terms are 

as it is. Now, I want this one this equation in the next step I want only 
𝑑𝑧

𝑑𝑥
. I do not want 

any multiplication of this thing for 
𝑑𝑧

𝑑𝑥
 term. So, for that what I am doing? I am multiplying 

this equation both sides by 
3

2
𝑥

−2

𝑛+1. This is what I am doing, so that this will become on 

multiplying this and this will become 1, I have 
𝑑𝑧

𝑑𝑥
 and then remaining terms we are writing 

like this. 
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So, 
𝑑𝑧

𝑑𝑥
+

1

𝑛+1
𝑥

1−𝑛

1+𝑛 and then z were as it is this 
3

2
𝑥

−2

𝑛+1 we are multiplying. Right hand side 

this term is as it is and then this is the new term that we are multiplying alright. So, next 

step what we do? We further simplify this equation by combining these two x terms.  



So, 𝑥
1−𝑛−2

1+𝑛  that is, what you get? −𝑛 − 1 that is you get 𝑥−1 so that is I am writing in the 

denominator as x here. Remaining all other terms are as it is. So, now, this is differential 

equation which is having a standard form 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 where P and Q are functions of x.  

So, that the solution of this equation will become y multiplied by integration factor is 

equals to integral of Q multiplied by integration factor plus integration constant. So, what 

is the integration factor? I F is nothing, but 𝑒∫ 𝑃𝑑𝑥. So now here, that we do compare, so y 

= z here x is nothing, but x and then P is nothing but whatever this function other than z 

whatever this is there. So, that is P and then right hand side term is entirely is Q.  

So, here integration factor 𝑒∫ 𝑃𝑑𝑥 P is this one. So, when you do the integration of this one 

∫ 3/2(𝑛 + 1) is as it is, integral of 
𝑑𝑥

𝑥
 is nothing but ln x right. So, that is I can write 

𝑒
3

2(𝑛+1)
𝑙𝑛𝑥

. So, e to the power of ln that will be cancel out only whatever 𝑥
3

2(𝑛+1) is there 

that would be there as integration factor. So, the solution would become here. 
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z multiplied by this I F is equals to integral of this is Q multiplied by I F + C right. So, 

now, this here these two terms we are combining x terms we are combining. So that we 

can do the integration remaining terms we are keeping as it is. So, here we get 𝑥
−1

2(𝑛+1); and 

then when you do the integration of this one 
𝑥

−1
2(𝑛+1)

−1

2(𝑛+1)

 right. 
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So, next step, what we have, this is what we have. Constant C is as it is. So, next step what 

I am doing is, whatever x power this is there that also I am taking to the right hand side. 

So, 𝑥
−3

2(𝑛+1) is there. So, that and then these term we are combining together. So, that 

𝑥
2𝑛+1−3

2(𝑛+1) , I can write and then C is being multiplied by 𝑥
−3

2(𝑛+1) right. 

So, now here this is nothing, but when you do the simplification you get 2 n − 2, that is 2 

multiplied by (𝑛 − 1) 2 2 you can cancel out so that you have this term right. Remaining 

terms are as it is. We are not doing anything with the remaining terms. Now, this z we got 

which is nothing, but 𝜀3 and then 𝜀3 is nothing but (
δ𝑇

δ
)

3

, because ε is nothing, but 
δ𝑇

δ
. 

So, still the solution is not complete we are only in the halfway because this δ3 also we 

have to take to the other side and then do the lot of simplification; though it looks like 

almost we are at the end of the derivation, but still half the way we have to go. So, in this 

equation just recapitulating this A is nothing but this one.  

So, A2 would be this one. Why? Because, we will be substituting all these things, and then 

writing terms again now in terms of Reynolds number or Prandtl numbers or both for that 

reason now we are going to substitute this A here. 
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So, this A square I have written (
ρ𝑣0

2−𝑛

𝑚
)

−2

𝑛+1
. So, power 

−2

𝑛+1
 is there, all other terms are as 

it is. Then, this term what I am doing? I am multiplying 𝑥
−2

𝑛+1 and then dividing by 𝑥
−2𝑛

𝑛+1. 

So, that in the denominator 𝑥
−2

𝑛+1, I can write and then that 𝑥𝑛if it is combined with 
ρ𝑣0

2−𝑛

𝑚
.  

So, that is 
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
 you get and then whole power 

−2𝑛

𝑛+1
 you get, and this is nothing but your 

Re x for power law liquids local Reynolds number ok. Rest all other terms are as it is. So, 

that when you write; so 𝑅𝑒𝑥

−2

𝑛+1 we are having and then whatever this 𝛿3 is there that also I 

have taken to the right hand side.  

So, δ is nothing but F (n) 𝑅𝑒𝑥

−1

𝑛+1𝑥. This is nothing but δ, so 𝛿3 is there. So, the same thing 

is coming here also to the constant. So, but this we do not need to worry because at x = 0, 

δ𝑇 = 0. So, from applying this leading edge boundary condition you get C = 0. So, all this 

term altogether the second term in the RHS would be 0. So, we can take only this term and 

then further do the simplification. 
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So, when you do that one, you have this one this term. Because here, this when you 

combining these x terms x3 and then this 𝑥
−1−𝑛

𝑛+1  and then this plus 3 when you combine it 

you get 𝑥
−1−𝑛+3𝑛+3

𝑛+1 . So, that is 𝑥2𝑛+2; that is 2 multiplied by 
𝑛+1

𝑛+1
. So, this 𝑛 + 1, 𝑛 + 1 

cancelled out, so you get 𝑥2. 

So, these two terms; when you combine this term and then this x3 term you get 𝑥2 from 

this simplification. So, rest all other terms are as it is. So, that 𝑥2 is coming here. Similarly, 

this 𝑅𝑒𝑥

−3

𝑛+1 and then multiplied by; Rex terms also if you simplify 𝑅𝑒𝑥

−3

𝑛+1 and then 
2

𝑛+1
 you 

get 𝑅𝑒𝑥

−1

𝑛+1. 

So, this constant multiplied by 𝑅𝑒𝑥

−1

𝑛+1𝑥2 you will be getting. So, that is what right. So now, 

we take cube root either side so that we can have δ. So, this all these constants whatever 

are there. So and then functions of n we are writing together and then taking cube root; 

that is power 1, 3.  

We are taking one-third. F (n) is there, whatever F (n) is nothing but this 315, F (n) is 

nothing but (
315(𝑛+1)2𝑛

37
)

1

𝑛+1
. So, cube root of this one, so this 3 is there, and then Rex also 

this 1/3 is there and then x also 1/3 is there right. 



Now, this 45 multiplied by 2 
90

4
.

(𝑛+1)

(2𝑛+1)
and then this F (n) also I am writing here again once 

again, no problem whole power 1/3. And then this (
α

𝑣0
)

1/3

 as it is. Now, I am multiplying 

by (𝑥)1/3  and then dividing by (𝑥)1/3, so that here I can have (
α

𝑥𝑣0
)

1/3

. And then whatever 

(𝑥)2/3 and then (𝑥)1/3 is there that I can write. 

(𝑥)
2

3
+

1

3 that is x. So, that this x I can take to the left hand side, so that I can write 
δ𝑇

𝑥
 is 

equals to this form right. So, this more or less you can take it as a final solution, but still 

we have to do some more simplification, because we know for a Newtonian fluid the you 

know thermal boundary layer thickness are subsequent Nusselt numbers that we you have.  

So, they are having 𝑅𝑒𝑥

−1

3  and then Prandtl number 
−1

2
 etcetera those terms are there. So, 

Rex terms are there, Prandtl number terms are not here. So, that that modification we are 

going to do now. 

(Refer Slide Time: 41:05) 

 

So, that equation previous equation what I have done? Α in place of 
α

𝑥𝑣0
 we were having, 

so in place of α I am writing 
k

ρ𝑐𝑝
 remaining all terms are as it is right. Next step what I am 

doing? I am writing 
k

𝑐𝑝𝑚
 here and then (

𝑥

𝑣0
)

𝑛−1

 and then the power 1/3 is there. So, the 



remaining what k I have taken cp I have taken from this parenthesis terms. So, the 

remaining terms are 
1

ρx𝑣0
, so (

1

ρx𝑣0
)

1/3

. 

So here, but additionally, what I am doing? I am taking (
𝑥

𝑣0
)

𝑛−1

 and then 1/m. So, the 

inverse of those terms I have to multiplied. So, (
𝑥

𝑣0
)

−
𝑛−1

3
 and then 𝑚1/3, I am multiplying 

ok. Whereas, Rex term is as it is.  

Why am I writing this one? Because, this is nothing but Prandtl number inverse for a power 

law fluid right. So, here this in place of (𝑃𝑟𝑥)−1 we can write, so that is (𝑃𝑟𝑥)−1/3. This is 

also local Prandtl number because it is defined as x right. Prandtl number for Newtonian 

fluid what you have 
𝑐𝑝𝜇

𝑘
.  

So, in place of 
𝑐𝑝 

𝑘
as it is in place of μ what you can write m then v0 by distance (𝑥)𝑛−1, 

this is you can write it as effective viscosity. This is nothing but mu effective for a power 

law fluids. So, that is whatever 
𝑐𝑝𝑚

𝑘
 and then (

𝑣0

𝑥
)

𝑛−1

is there that is nothing but Prandtl 

number.  

So, we are here we are having inverse of Prandtl number and whole power 1 by 3, so 

(𝑃𝑟𝑥)−1/3. And then remaining terms I am just expanding and then combining any similar 

terms are there. So, (
1

ρ
)

1/3

, this (
1

𝑣0
)

1/3

 here I am having and then here (
1

𝑣0
)

−1−(𝑛−1)/3

 are 

there.  

So, then power (1 − n – 1)/3 I am here writing and then here, (𝑥)−(𝑛−1)/3 is there and 

divided by (𝑥)1/3, is there, so then power 
−1

3
 I am writing here; m power as it is I am 

writing, (𝑚)1/3 as it is I am keeping why because. So, when I further do this is nothing 

but I get 2 (
1

𝑣0
)

2−𝑛/3

and then this (𝑥)−𝑛/3. And then this (𝑚)1/3.  

So, then here if 1 by 3 whole power 1 by 3 is there, so what I can do? From here I am 

having (
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
)

−1

3
 I can write, is not it right. So, when I am writing these combine these 



terms combining joining together like this; (
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
)

−1

3
. So, now, again this is nothing but 

Rex. So, 𝑅𝑒𝑥

−1

3  you are having right, so that we are substituting here. 
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So, this term I am writing 𝑅𝑒𝑥

−1

3 , and then this 𝑅𝑒𝑥

−1

3(𝑛+1)
. So, now, when you combined them 

you get 𝑅𝑒𝑥

−(𝑛+2)

3(𝑛+1)
 right. So, this is the final expression that we have right. So now, here if n 

is equals to, if n = 1 then what is this 
δ𝑇

𝑥
 is some constant Prandtl power (𝑃𝑟𝑥)−1/3; and 

then 𝑅𝑒𝑥

−1

2  you get.  

Because, whatever a Nux or a Nuavg etcetera are that your expressions that are there they 

are obtained from after using this expression in the those definition right. That is we are 

going to do anyway now. So here, as I already mentioned, 
𝑐𝑝𝑚

𝑘
(

𝑣0

𝐿
)

𝑛−1

 is nothing, but local 

Prandtl number fine. 
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So, if the velocity and temperature profile are taken as differently. So, the temperature 

profile we are keeping same as whatever we have derived today’s lecture, but the velocity 

profile we are taking this one different one. In the derivation until now whatever we have 

done the 
𝑣𝑥

𝑣0
 is a different expression. So now, I am changing only the velocity profile, but 

temperature profile I am keeping same. Then, do the same analysis 
δ

𝑥
 you get this one which 

we have already derived in yesterdays lecture at least.  

Because yesterday for this profile as well as the other profile we have developed the 

momentum boundary layer thickness, so this we know. So, 
δ𝑇

𝑥
 when you do, you get this 

expression. You can see Prandtl power and then Reynolds number powers they are not 

changing; only this constants or function of n they are only changing right. 

So, where here G (n) is this one, and then Rex is this one, Prandtl x is this one, same thing. 

So, this you take it as take home problem, because again if we do the entire thing it will 

take one class again. So, this at least similarly the way that whatever derivation that we 

have done today similarly you can do and then you get this one right. 
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So now, for this velocity profile and then temperature profile heat transfer coefficient h if 

you wanted to know. So, h ∆𝑇 = −𝑘
𝑑𝑇

𝑑𝑦
|𝑦=0 that balance if you do the heat transfer by the 

convection and then heat transfer by the conduction at the interface, then you can find out 

what is this h,
𝑑𝑇

𝑑𝑦
already you got it as 

3(𝑇0−𝑇𝑠)

2δ𝑇
 from this expression right. 

This is what you get by substituting 
𝑑𝑇

𝑑𝑦
 and then substituting y = 0 this is what you got. 

You get we already done also a few slides before. So, then h you will be getting −𝑘
3(𝑇0−𝑇𝑠)

2δ𝑇
; 

whatever the left hand side 𝑇𝑠 − 𝑇0 was there that we brought to the right hand side. So, 

this is cancel; 
3𝑘

2δ𝑇
 you are having. 

So, δ𝑇 for this combination of velocity profile and temperature profile is nothing, but this 

one. So, h you will be getting this one. After substituting δ𝑇 here then rewriting, so you 

will get this one. So now, here from this equation what you do? h, x and k of right hand 

side terms you take to the left hand side. 
ℎ𝑥

𝑘
 if you do then you get  

3

2
(𝑃𝑟𝑥)1/3𝑅𝑒

𝑛+2

3(𝑛+1) and 

then this whatever the constant as it is. So, this 
ℎ𝑥

𝑘
is nothing but Nux local Nusselt number. 
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So, that is what we have written here. So, that is the local Nusselt number is this one 
ℎ𝑥

𝑘
, 

rearranging the previous equation that is it. So, this is the local Nusselt number that is local 

Nusselt number in the sense, this is the plate we are having this is y = 0 and then y is equals 

to you know gradually increasing this is the boundary layer is having. 

So, at different x values x direction what is the Nusselt number here along the plate surface, 

that you wanted to know then you have to use this equation ok. Then, you have to use this 

equation along the plate length. As the x value increasing how the Nusselt number is 

increasing that you can get from this number.  

But, if you wanted to know the overall Nusselt number average for the over overall entire 

length of the plate then you have to do the integration of this one. And then you have to 

do the integration of this one and then divide by integration of the distance dx and then 

integration 0 to l.  

This is what we have to do, this we are doing in the next slide here anyway. So, from here 

this equation 19 what we are finding h is proportional to the 𝑥
𝑛+2

3(𝑛+1). How do you get? So, 

now, here all these terms whatever this h is equals to this expression is there. Now Prandtl 

also Prandtl number also you expand Rex also you expand, so here whatever this x powers 

are there that you get as this one. 



So, h is proportional to the 𝑥
−

𝑛+2

3(𝑛+1) that is what you and that is what you will get you can 

do the simplification. So, if you substitute n = 1, in this equation 19 you get Nusselt number 

is equals to this one. You might remember this correlation for Nusselt number for a flat 

plate that you might have by hearted or remembering in the fluid mechanics or heat transfer 

course. So, the derivation is coming like this.  

We have we have done for the power law case as a generalized 1, so that n = 1 I can 

substitute I can get the Newtonian solution as well. So, that by 1 derivation I can get the 

two solutions. So, in this equation 19 if you substitute n = 1 this is what you get. 
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So, if you wanted to know the mean heat transfer coefficient and mean Nusselt number, 

ℎ𝑚 that is mean heat transfer coefficient is 
∫ ℎ𝑑𝑥

𝐿
0

∫ 𝑑𝑥
𝐿

0

 you have to do. h already you got this 

expression right ok, except this L that is the x. So now, x terms are there only in this 𝑃𝑟𝐿
1/3 

and then 𝑅𝑒𝑥

𝑛+2

3(𝑛+1)
 and divided by x right. 

Whole divided by ∫ 𝑑𝑥
𝐿

0
 that is coming out L that we have written like this. So now here 

again, you expand this expressions for a Prandtl’s Prandtl x and then Rex and then you 

write x terms, remaining terms you keep constant and then do the integration, substitute 



the limits 0 to L. Then finally, you get this expression whatever the 
9𝑘(𝑛+1)

2𝑛+1
 and then all 

this one you get. 

So, that equation you rearrange ℎ𝑚, that k/L you take to the left hand side. So, 
ℎ𝑚𝐿

𝑘
 if you 

write you get 𝑁𝑢𝑚, so that is nothing but this one. Now here, after substituting the limits 

what you get? x place in place of x you will be getting L. So, then this Prandtl numbers 

and then Reynolds number would be based on the entire length of the plate ok. So, that is 

𝑅𝑒𝐿 =
ρ𝑣0

2−𝑛𝐿𝑛

𝑚
, not 𝑥𝑛, 𝐿𝑛 and then 𝑃𝑟𝐿 you will get 

𝑐𝑝𝑚

𝑘
(

𝑣0

𝐿
)

𝑛−1

 not 𝑥𝑛−1.  

So, they are the Reynolds number and then Prandtl number for the entire geometry, not 

the local one fine. So, that is all about the thermal boundary layer thickness and then 

corresponding heat transfer coefficients. And then Nusselt numbers both average heat 

transfer coefficient and then mean heat transfer coefficients and then average Nusselt 

numbers, local Nusselt numbers etcetera those derivations we have done.  

With that we complete the thermal boundary layer thickness of non-Newtonian fluids as 

well right. Now, what we do? We see concentration boundary layer thickness of non-

Newtonian fluids. So, but we are not going to the do the all the derivation as we have done 

for the momentum and thermal bounty layer cases. We take a thermal boundary layer case 

and then analogously we write a concentration boundary layer case right. So, mass transfer 

in laminar boundary layer flow of power law liquids. 
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Basic equation for molecular diffusion by Fick’s law is nothing, but minus DAB 
𝑑𝐶𝐴

𝑑𝑦
. I am 

writing NA some books write you know Ga and all that do not worry thats a notation. So, 

NA is mass transfer rate per unit area that is mass flux if you are writing in moles then it is 

molar flux kilo mole per meter square second. DAB is molecular diffusivity which is in 

meter square per second. 

And then, analogous this is analogous 2 Fourier’s Law of Heat conduction. So, that we 

already know that it as 𝑞 = −α
𝑑(ρ𝑐𝑝𝑇)

𝑑𝑦
 right. So now, when you compare equation number 

1 and 2, they are similar to each other they are similar to each other. So, only thing that in 

place of α you can write DAB in place of ρ cp T you can write CA ok. Then integral equation 

in a similar way we can write like this, integral species conservation equation.  

So, what we have done? In place of vx it is as it is. In place of 𝑇𝑠 − 𝑇 what we are writing? 

We are writing (𝐶𝐴𝑆 − 𝐶𝐴)𝑑𝑦 ok. And then in place of δ𝑇 we are writing δm, that is 

concentration boundary layer thickness δm. And then in right side in place of a α we are 

writing DAB in place of 
𝑑𝑇

𝑑𝑦
 we are writing 

𝑑𝐶𝐴

𝑑𝑦
. Because, here ρ cp would also be there, but 

the that ρ cp is there in the left hand side also, so that has been cancelled out that is it ok.  

So then, analogously species conservation equation integral species conservation equation 

for boundary layer flows. This is only for the boundary layer flows, we can write like this. 

So, now similarly, as we did for the thermal boundary layer case if you know vx, if you 

know CA then you can find out the concentration boundary layer thickness δm as well ok. 

So, but we are not going to do that one because the equations are similar, so their solutions 

would also be similar. 
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So, temperature difference what we had? We had taken 
𝑇−𝑇0

𝑇𝑠−𝑇0
=

3

2

𝑦

δ𝑇
−

1

2
(

𝑦

δ𝑇
)

3

, we got by 

taking 𝑇 = 𝑎 + 𝑏𝑦 + 𝑐𝑦2 + 𝑑𝑦3 expression or third degree polynomial expression for the 

temperature. Similarly, for the concentration also if you do, if you take third degree 

polynomial expression; that is 𝐶𝐴 = 𝑎 + 𝑏𝑦 + 𝑐𝑦2 + 𝑑𝑦3.  

And then apply the 4 boundary conditions to get y = 0 and to get y = δm and then simplify, 

so you get exactly the similar expression like a temperature profile, only thing that in place 

of δ𝑇 you have δm and in place of T you have c ok. So obviously, the results are going to 

be similar. So, 
δ𝑚

x
 you are going to have this expression, only thing that in place of Prandtl 

number you get now Schmidt number right. 
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So, mass transfer coefficient also hD, in a similar way if you do balance, that is mass 

transfer by convection is balanced by the mass transfer by diffusion, then you have an 

expression for hD that is given by this one and δ m just we have written equation number 

5 previous slide that you substitute here. So, you get that one. And then you do all the 

simplification rearrangement so then you get the local Sherwood number, which is similar 

to local Nusselt number in the case of thermal boundary layer flows.  

So, that is what you get here, but you have to careful that here now you get this Schmidt 

number rather than the Prandtl number, because mass transfer boundary layer that we are 

considering. So, average Sherwood number along the length of the plate along the entire 

length of the plate from x = 0 to x = l the average Sherwood number would be this one 

right. So, where here Scx is the local Schmidt number given by 
𝑚

ρ𝐷𝐴𝐵
(

𝑣0

𝑥
)

𝑛−1

, this is again 

for power law liquid ok. 

And then ScL is nothing by the overall Schmidt number for the entire geometry based on 

the length of the plate and then this is also for the power law liquids right. Remember, here 

also one more important thing that δm and δ are independent of each other. As we have 

considered in the case of δ𝑇 and δ ok, then only these results are valid. Because we are 

writing analogously for this case with the comparison with the δ𝑇 case ok. 



So, δ𝑇 case that we have derived assuming that δ that is assuming that the momentum and 

thermal boundary layers are independent of each other. Similar way, in the case of a 

concentration boundary layers as well the concentration boundary layer and then 

momentum boundary layer are developing independent of each other or they are not 

interfering each other. 

The concentration gradients are maintained such a way right. Like you know, in the case 

of thermal boundary layer case the temperature difference or temperature gradients are 

maintained such a way that they are not disturbing the or they are not changing the physical 

property significantly right. So, this is the last lecture of the course.  

(Refer Slide Time: 1:01:43) 

 

The references are provided here, for this course. But, the most of the details I got from 

these reference books, but any way derivations are not available any of the books. We have 

to do carefully right. 

Thank you so much for your kind cooperation throughout the course. 


