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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids, the title 

of today’s lecture is Momentum Boundary Layer Thickness of Non-Newtonian Fluids. 

Before going into the details of today’s lecture, what we will be doing we will be having 

a kind of recapitulation of what we have seen in the previous lecture. 

In the previous lecture we have discussed several basic aspects of a momentum boundary 

layer and then we have analyzed the momentum boundary layer how the velocity gradient 

is changing, how the velocity is changing from the solid surface to the you know far away 

distance gradually when we move in vertical direction all those things we have seen. Also 

what we have seen? We have seen how to develop the integral momentum equation for 

boundary layer flows right. 
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So, this integral momentum equation we have developed for the case of a fluid which is 

incompressible and flowing steadily. So, this equation whichever we developed that is 

integral momentum equation is valid for both Newtonian as well as non-Newtonian fluids. 



Only constraint or restriction that we had in this development of integral momentum 

equation is the flow is steady and incompressible.  

And then finally, we got this equation, here v0 is the free stream velocity, vx is the in the 

flow direction whatever the velocity component is that vx and then it is function of y, ρ is 

the density of the fluid and δ is the momentum boundary layer thickness and then τwx is 

nothing but the wall shear stress at y = 0 right. 

Then we have also seen a few basics of a thermal boundary layer and then we try to develop 

integral energy equation for heat transfer in boundary layer flows right. So, the here also 

the rheology of the of fluid is not coming into the picture and then finally integral energy 

equation that we got is this one.  

So, here δT is nothing but the thermal boundary layer thickness vx is nothing but the 

velocity of the fluid in the flow direction which is function of y that is vx is function of y, 

y is vertical direction normal to the surface. T0 is the free stream fluid temperature; T is 

the temperature which is function of y changing in y direction and then α is thermal 

diffusivity right. 

So, now in this lecture what we are going to see? We are going to use this equation and 

then trying to find out what is this δ as function of x. In previous lecture we also found that 

this δ momentum boundary layer thickness or this δ over T even the thermal boundary 

layer thickness both of them are function of x they are increasing with increasing the x in 

the flow direction ok. 

So, now this equation if we solve you can get expression for a momentum boundary layer 

thickness that is what we are going to see in this particular lecture. So, for that what we 

need to know, what is this vx as function of y? That we need to know without that one we 

cannot solve the problem or we cannot simplify this equation. Once vx is known everything 

is known because this τyx this τ wx is nothing but τyx at y = 0 which is again having the 

contribution of 
𝑑𝑣𝑥

𝑑𝑦
|𝑦=0. 

So, if you know vx as function of y then you can find out 
𝑑𝑣𝑥

𝑑𝑦
|𝑦=0 as well. So, only thing 

that we need to have we need to have the velocity profile for that boundary layer flow and 



then use it in this equation to get the momentum boundary layer thickness. So, that is the 

aim of today’s lecture. 
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So, laminar boundary layer flow over horizontal flat plate we are considering that is the 

same scenario that we have consider in the previous lecture, where we developed integral 

momentum equation. Then for laminar flow of Newtonian and power law liquids, only 

force acting within the fluid are shearing forces and no momentum transfer occurs by eddy 

motion because we are assuming the laminar flow.  

We have done the analysis only for the laminar boundary layer flow. So, we have not 

consider anything in the turbulent boundary layer flows ok. So, as long as the flow is 

laminar within the boundary layer then there will not be any momentum transfer by eddy 

motions right. So, now, we need to know the velocity profile.  

So, under such conditions actually how this you know boundary layer is having the shape 

of this one right something like this is your x direction this is your y direction and then this 

is the plate right. So, now it is having certain this boundary layer flow is there only within 

this region right. 
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So, this region the thickness of boundary layer is nothing but δ it is function of x right. So, 

this is all δ which is varying with x. As x increasing δ is increasing. So, this velocity profile 

can be best approximated by higher degree polynomial. So, then what we are assuming?  

We are assuming the velocity profile here vx whatever function of y is there that can be 

best represented with 3rd degree polynomial right. Then what we have? We have this 𝑣𝑥 =

𝑎 + 𝑏𝑦 + 𝑐𝑦2 + 𝑑𝑦3 where this a, b, c, d are constants fine. So, now we need four 

boundary conditions to find out these constants. So, what are they, we see.  

So, one is that y = 0 location. At y = 0 location, what we have? vx = 0 because of the no 

slip boundary condition right at the solid surface because of no slip velocity is 0. So, vx is 

0 and then other boundary is that y = δ. We have only two boundaries, but we need four 

boundary conditions. So, for each boundary we have to assign two boundary conditions 

ok. 

So, at y = δ and then beyond y = δ, what we have? vx is approximately = v0 that is velocity 

is equals to the free stream velocity beyond the boundary layer within the boundary layer 

it changes with respect to y direction right. 

And then also at boundary layer the velocity gradient becomes approximately close to 0 

after boundary layer onwards what there will not be any velocity gradient. In fact, the 

boundary layer designation has been done such a way that the flow region is divided into 



2; one within this envelop the velocity gradients are existing after that from y = δ onwards 

you know this velocity gradients are not existing. So, two boundary conditions we are 

having here. 

Now, at y = 0 that is solid surface τwx is constant actually; constant shearing force is there. 

So, then what we have? 
𝑑τ𝑤𝑥

𝑑𝑦
 or 

𝑑τ𝑦𝑥

𝑑𝑦
, now we take τyx = 0 so; that means, τyx is nothing but 

τyx is proportional to 
𝑑v𝑥

𝑑𝑦
 right; that means, 

𝑑

𝑑𝑦

𝑑v𝑥𝑦

𝑑𝑦
 is nothing but 

𝑑2v𝑥

𝑑𝑦2
= 0 at y = 0. 

So, now at y = 0 that is at the solid surface we have two boundary condition that is vx is 0 

and 
𝑑2v𝑥

𝑑𝑦2 = 0 and then at y = δ which is other boundary vx is v0 and 
𝑑v𝑥

𝑑𝑦
= 0. So, when you 

apply these boundary conditions we can find out this a, b, c, d constants. At y = 0 no slip 

velocity that is in this equation 1 if you substitute y = 0 you get vx = a and then vx is 0. So, 

a = 0 you get here. 

At y = δ vx is v0. So, in this equation 1, wherever y is there you substitute δ. So, then this 

equation number 3 you get. And then at y = δ we also have 0 velocity gradient that is 
𝑑v𝑥

𝑑𝑦
=

0. So, 
𝑑v𝑥

𝑑𝑦
 is nothing but 𝑏 + 2𝑐𝑦 + 3𝑑𝑦2 and then you substitute y = δ here.  

So, that is 𝑏 + 2𝑐δ + 3𝑑δ2 = 0. And then at surface y = 0 constant wall shear stress is 

there. So, 
𝑑2v𝑥

𝑑𝑦2 = 0  at y = 0. So, 
𝑑2v𝑥

𝑑𝑦2  is nothing but 2𝑐 + 6𝑑𝑦 and then you substitute y = 

0 here.  

So, 2 c = 0 you get so; that means, c is also 0 out of four constants a and c are 0 already 

then remaining two constants b and d you can find out by solving this equation number 3 

and then equation number 4.  
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When you do that you get 𝑏 =
3𝑣0

2δ
 and 𝑑 = −

𝑣0

2δ3. Now, these constants you substitute in 

equation number 1. So, 𝑣𝑥 = 0 +
3𝑣0

2δ
𝑦 + 0 −

𝑣0

2δ3 𝑦3 that is 
𝑣𝑥

𝑣0
=

3

2

𝑦

δ
−

1

2
(

𝑦

δ
)

3

.  

So, now, vx you got it. So, you can find out 
𝑑v𝑥

𝑑𝑦
. So, then that those things you can substitute 

in integral momentum equation this equation and then solve it to get boundary layer 

thickness as function of x that we are going to do. 
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So, before directly going for the power law case what we are trying to do? We are trying 

to take a simple Newtonian case. So, 
𝑣𝑥

𝑣0
 we got this one. So, 𝑣𝑥 is this one the 𝑣0 we have 

taken to the right-hand side we also need 𝑣0 − 𝑣𝑥 to substitute in integral momentum 

equation. So, this equation what we do? We both sides we multiply by minus 1 and then 

add + 1. So, 1 −
𝑣𝑥

𝑣0
 is nothing but  1 −

3

2

𝑦

δ
−

1

2
(

𝑦

δ
)

3

. 

So, from here we get 𝑣0 − 𝑣𝑥 is nothing but v0 multiplied by 1 −
3

2

𝑦

δ
−

1

2
(

𝑦

δ
)

3

. So, now, 

we substitute this one in this equation −τ𝑤𝑥 =
𝑑

𝑑𝑥
∫ ρ(𝑣0 − 𝑣𝑥)𝑣𝑥𝑑𝑦

δ

0
 right.  

Now, here ρ(𝑣0 − 𝑣𝑥) is nothing but 𝑣0 multiplied by this one and then 𝑣𝑥 is nothing but 

𝑣0 multiplied by this one. So, 𝑣0 multiplied by 𝑣0 is 𝑣0
2 and this ρ also we have taken 

outside. So, −τ𝑤𝑥is ρ 𝑣0
2 

𝑑

𝑑𝑥
 of this one. 

Now, this you expand and then do the integration and then substitute the limits 0 to δ. So, 

right hand side what you get? You will get ρ 𝑣0
2 integration part you will be getting 

39

280

𝑑δ

𝑑𝑥
. 

So, that is what this one. So, now, you get δ as function of x some relation you got it right, 

but that you can solve only when you get what is this τ𝑦𝑥 τ𝑤𝑥.  

What is this τ𝑤𝑥 when you know then you can find out what is δ as function of y final 

solution. That you can get what is this τ𝑤𝑥 from the nature of the fluid that is from the 

rheological nature of the fluid. 
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For a Newtonian fluid we take a simple case of. Now, what we do? Before going into the 

details of a complicated case of a momentum boundary layer thickness of a non-Newtonian 

fluids, we take simple Newtonian fluids as a starting problem. So, for Newtonian fluids 

τ𝑦𝑥 is nothing but −𝜇
𝑑v𝑥

𝑑𝑦
.  

So, −τ𝑤𝑥 is nothing but −τ𝑦𝑥at y = 0, w we are indicating wall. So, wall location is y = 0. 

So, at whatever the −τ𝑦𝑥 is there in that one you substitute y = 0 that will provide you 

−τ𝑤𝑥. So, this is −τ𝑤𝑥is nothing but 𝜇
𝑑v𝑥

𝑑𝑦
 at y = 0; vx we have this one this is what the 

velocity profile we got.  

So, from here 
1

𝑣0

𝑑v𝑥

𝑑𝑦
 is nothing but 

3

2δ
−

3𝑦2

2δ3. So, now, you substitute y = 0 here. So, you 

get 
𝑑v𝑥

𝑑𝑦
 is nothing but 

3𝑣0

2δ
. So, that is what here. So, τ𝑤𝑥 is also known. So, now, −τ𝑤𝑥 =

39

280
ρ 𝑣0

2 𝑑δ

𝑑𝑥
 is nothing but our equation number 8 that we have previously derived.  

Now, here in place of τ −τ𝑤𝑥 we have to substitute 𝜇
𝑑v𝑥

𝑑𝑦
 at y = 0 that is nothing but 

3𝑣0

2δ
𝜇 

mu and then that should be balanced by the whatever the right-hand side term as it is. Now, 

this equation what we do? This 
39

280
 I take it to the left-hand side. So, 

280

39
 I will be getting 

and then that is multiplied by 
3

2
 that is nothing but 

140

13
 and then remaining 𝑣0 

𝜇

δ
 whatever is 

there.  



So, that I am taking to the right hand side. So, that I have 
δ

𝑣0
 𝑣0 δ is there 𝑣0 was there and 

then, but here in the numerator 𝑣0
2is there. So, the square and then divided by 𝑣0 cancel 

out. So, then we have only 
ρ𝑣0δ

𝜇
 here 

𝑑δ

𝑑𝑥
 as it is. 

So, now I keep this equation like 
140

13
 dx one side and then remaining terms other side an 

on integration, integration of dx is x integration of a δ d δ is nothing but 
δ2

2
+ 𝐶, but at x = 

0 δ = 0 that we understand already in the previous lecture. So, C should be 0 when you 

substitute this limiting condition here boundary condition when you substitute here you 

get C = 0. 
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So, we have 
140

13
 x = 

ρ𝑣0

𝜇

δ2

2
 that is what we are having, because C is 0. Now, this 2 I take to 

the left hand side. So, 
280

13
 and then this x I have taken to the right hand side. Next step I 

am multiplying and dividing by x in the right hand side. So, that I have 
ρ𝑣0𝑥

𝜇

δ2

x2. So, this is 

nothing but Reynolds number local Reynolds number Rex. 

So, 
280

13
= Rex 

δ2

x2
 we get. So, that is 

δ2

x2
 is nothing but 21.5385/Rex that is 

δ

𝑥
 is nothing but 

4.64/Rex
-1/2. So, this you might have studied or remember in any of your fluid mechanics 

courses sometime before during UG classes and then derivation is this one right. 



So, here this Rex is nothing but the local Reynolds number, it is not the overall Reynolds 

number it is local Reynolds number because x Rex = 
ρ𝑣0𝑥

𝜇
 is there, so, which is Rex ok. If 

you substitute x = L that is the length of the plane then it will become overall Reynolds 

number ReL ok, but we have to write in terms of Rex because we understand this δ is 

function of x ok. It is not a constant value.  

So, that is about the boundary layer thickness for a Newtonian fluid flowing over a 

horizontal plate ok. 
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So, now we take boundary layer thickness of power law liquid flowing over flat plate. So, 

let us assume slightly different velocity profile. So, now, rather obtaining the velocity 

profile by taking 4th degree polynomial and then applying boundary condition and all that, 

we already assume the velocity profile is having this form and this is consistent with some 

of the experimental results. In fact, this results has been taken from one of the experimental 

research work ok. 

So, 
𝑣𝑥

𝑣0
= 2 (

𝑦

δ
) − 2 (

𝑦

δ
)

3

+ (
𝑦

δ
)

4

 right. So, what we do? We multiply by minus 1 either side 

then we add 1 either side. So, 1 −
𝑣𝑥

𝑣0
 we are having this one so; that means, 

𝑣0

𝑣𝑥
 is 

𝑣0 (1 − 2 (
𝑦

δ
) + 2 (

𝑦

δ
)

3

− (
𝑦

δ
)

4

).  



Because we not only need vx, we also need 𝑣0 − 𝑣𝑥 in order to solve the integral 

momentum equation to get the boundary layer thickness ok. 
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So, integral momentum equation is this one which is same for the fluid whether it is 

Newtonian or non-Newtonian it does not change ok because it has been developed a 

generalized one. It is not so, specific to any fluid ok the nature of the fluid will come into 

the picture through this τwx information ok.  

Now substitute equation 1 and 2 they are nothing but vx and then 𝑣0 − 𝑣𝑥 in this equation. 

So, 𝑣0 − 𝑣𝑥  is nothing but 𝑣0 multiplied by this one and then 𝑣𝑥 is nothing but 𝑣0 

multiplied by this one right. So, ρ 𝑣0
2 I can take common and then 

𝑑

dx
 of this one I can 

expand like this and then right hand side −τwx as it is right. 
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Now, this right hind side further simplified in order to have you know the power terms y1, 

y2, y3, y4 like that you know terms have been written like this then now you integrate this 

one. So, then you get this expression integration of y is y2/2 next integration of y2 is y3/3 

like that integrations we have done for all the terms right. And then we are substituting 0 

to δ limits rest all the other terms are remaining constant remain does not change. 

(Refer Slide Time: 21:48) 

 

So, then we have after substituting the limits of 0 to δ we get 
37

315

𝑑δ

𝑑𝑥
. So, that is 

37

315
ρ𝑣0

2 𝑑δ

𝑑𝑥
=

−τ𝑤𝑥. Now, if you know the τwx you can simplify this equation to get the boundary layer 



thickness for power law fluids. But for power law fluid τ𝑦𝑥 is −𝑚 (
𝑑𝑣𝑥

𝑑𝑦
)

𝑛

 whereas, −τ𝑤𝑥 

is nothing but −τ𝑦𝑥 at y = 0. So, that should be 𝑚 (
𝑑𝑣𝑥

𝑑𝑦
)

𝑛

 at y = 0. 
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So, now what you have to do? You have to find out what is 
𝑑𝑣𝑥

𝑑𝑦
 from vx expression and 

then substitute y = 0. So, vx is this one. Now from here  
1

𝑣0

𝑑𝑣𝑥

𝑑𝑦
=

2

δ 
−

6𝑦2

δ3 +
4𝑦3

δ4 . And then 

now you substitute y = 0 in these two equations. So, you get this term is gone this term is 

gone because of y terms are there. So, you get 
2𝑣0

δ 
 as 

𝑑𝑣𝑥

𝑑𝑦
 at y = 0. 

So, −τ𝑤𝑥 = 𝑚 (
2𝑣0

δ 
)

𝑛

. Now, this equation number 4 and 5 this is equation number 4. In 

equation number 4 in place of −τ𝑤𝑥 we are substituting 𝑚 (
2𝑣0

δ 
)

𝑛

 from this equation 

number 6 right. 

So now here again, what we are doing? We are keeping (
2

δ 
)

𝑛

 in the right hand side 

remaining terms we are bringing to the left hand side. So, already left hand side 𝑣0
2 is there. 

Now, from the right hand side 𝑣0
𝑛 if you bring it we get 𝑣0

2−𝑛 and then whatever the m was 

there. So, now, that would be dividing by m is there ρ is already there remaining things 

are as it is. 



So, now, next step δn d δ we are keeping one side and then other terms we are keeping 

other side. So, that when you do the integration easily you can get 
δ𝑛+1

 n+1
 and then this is all 

constant integration of d x is x + C. Now, here also at x = 0 δ = 0. So, the constant C = 0 

you get. 
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So, then finally, what we have? We have only this term right. Now next step what I am 

trying to do? I am taking this n + 1 of left hand side to the that whatever n + 1 term in the 

left hand side that I have taken to the right hand side and then both sides I have divided by 

𝑥𝑛+1 both sides.  

So, left hand side (
δ

 x
)

𝑛+1

 and then right hand side 2𝑛 (
𝑚

ρ𝑣0
2−𝑛). And then so, here in the 

right hand side already we are having x and then dividing by xn + 1 that is x-n-1. So, we are 

getting x-n. So, that is in the denominator I am writing xn. 

Remaining 
𝑚

ρ𝑣0
2−1 as it is 2𝑛 as it is and then 

315

37
 as it is this is nothing but our 1/Rex right 

for power law liquid this is for the power law liquid. So, 
δ

 x
 we can write whatever 315 

multiplied by n + 1 multiplied by 2𝑛 and then divided by 37 this all constant whole power 

1/n + 1. And then Rex
-1 is there here.  



So, then 𝑅𝑒𝑥

−1

𝑛+1 is there because this step we are both sides taking the power of 1/n + 1 so 

that we can get rid of power of n + 1 from the left hand side. So, now these all constant 

and it is function of n. So, that is F (n) we are writing.  

So, boundary layer thickness we get this expression for the power law fluids 
δ

 x
= F (n) 

𝑅𝑒𝑥

1

𝑛+1 fine. Where Rex is nothing but the local Reynolds number for the power law liquids 

that is 
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
 ok. 
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Now, we do some more simplification. Rate of thickening of boundary layer if you wanted 

to find out that means, what you have to do? You have to get 
𝑑δ

𝑑𝑥
 right. So, for that we need 

to do some simplifications. So, in order to get 
𝑑δ

𝑑𝑥
 we have to do some simplification by 

making use our relation 
δ

𝑥
 is this one.  

So, now, here δ I can write it as F (n) which is function of n only it is independent of x, x 

and then this Re is nothing but 
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
 this is what I am having and this whole power −

1

𝑛+1
 

is there right. So, that next step I can have this F (n) and then (
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
)

−
1

𝑛+1
 as it is whereas, 

the 𝑥1−
𝑛

𝑛+1.  



So, that F (n) (
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
)

−1

𝑛+1
 and then 𝑥1−

𝑛

𝑛+1 that is nothing but 𝑥
1

𝑛+1. Now, 
𝑑δ

𝑑𝑥
 is nothing 

but this F (n) then (
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
)

−1

𝑛+1
 this is 

1

𝑛+1
 and 𝑥

1

𝑛+1
−1

. So, that we get F (n)  (
ρ𝑣0

2−𝑛𝑥𝑛

𝑚
)

−1

𝑛+1
 

and then 
1

𝑛+1
 and then x power what?  

1−𝑛−1

𝑛+1
 that is 

−𝑛

𝑛+1
. So, that F (n)  (

ρ𝑣0
2−𝑛𝑥𝑛

𝑚
)

−1

𝑛+1
then 

1

𝑛+1
 I can write, is not it. So, this 

𝑑δ

𝑑𝑥
 is 

nothing but 
𝐹(𝑛)

𝑛+1
 and this is nothing but 𝑅𝑒𝑥

−1

𝑛+1 or from this equation from this step what 

you can understand, 
𝑑δ

𝑑𝑥
 is proportional to the 𝑥

−𝑛

𝑛+1 ok.  

So, what we understand? The boundary layer thickness increases rapidly for the case of 

shear thinning fluid compared to the share thickening and then Newtonian fluids that is 

what we can understand ok. 
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So, now shear stress in fluid at surface y = 0 if you wanted to find out. Why you wanted 

to find out? Because you wanted to find out the drag force and then finally, drag coefficient 

as well. So, for that you need to know what is the shear stress at the solid surface that is at 

y = 0 ok. So, τyx at y = 0 is nothing but −𝑚 (
 𝑑𝑣𝑥

𝑑𝑦
)

𝑛

 at y = 0.  



 𝑑𝑣𝑥

𝑑𝑦
 at y = 0 is nothing but 

 2𝑣0

δ
 and then whole power n is as it is. δ just now we found it as 

x multiplied by F (n) 𝑅𝑒𝑥

−1

𝑛+1 ok this is nothing but δ right. So, whole power n is as it is. So, 

this in the similar way as we have done in the previous slide expanding the Rex and then 

simplifying so, that we get this final expression as (
−2

𝐹(𝑛)
)

𝑛

ρ𝑣0
2𝑅𝑒𝑥

−1

𝑛+1.  

It is simple straight forward simplification we can do it right. Now, shear stress acting on 

plate will be equal and opposite to shear stress in the fluids at the surface and then we 

wanted to know at the fluids at the fluid layer at the surface for that we wanted to know. 

So, then we should take the negative of this one this is at the wall at y = 0 right. So, at y = 

0 that is at this surface on the surface whatever the shear stress acting let us say if it is 

acting in this direction because it is given minus. 

So, with the very fast layer the fluid will be having the shear stress equal and opposite to 

this force, but in the other direction. So, we have to take the positive of that one. So, that 

will give τwx = (
2

𝐹(𝑛)
)

𝑛

ρ𝑣0
2𝑅𝑒𝑥

−1

𝑛+1.  

And this is nothing but local shear stress distribution that is how the shear stress is 

changing as x is increasing from 0 to whatever the x values you take ok. So, that is this 

local shear stress Rex is local Reynolds number. 
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Now, if you wanted to find out the average shear stress over the length of the plate then 

what you have to do? You have to take the integral of a τwx from 0 to L and then divide by 

L. So, that τw that is the average shear stress along the length of the plate is integral τwx dx 

divided by integral dx limits 0 to L. 

So, then we have 
1

𝐿
∫  τ𝑤𝑥𝑑𝑥

𝐿

0
 that is ρ𝑣0

2. And then this actually τwx we just found it as 

(
2

𝐹(𝑛)
)

𝑛

ρ𝑣0
2𝑅𝑒𝑥

−1

𝑛+1. So, other than this 𝑅𝑒𝑥

−1

𝑛+1 all other terms are constant. So, we are 

keeping outside of the integration. 

So, now here again you expand and only x terms you do the integration and then substitute 

the limits you get ρ v0 whole power you get ρ𝑣0
2 n + 1. This (

2

𝐹(𝑛)
)

𝑛

as it is and then after 

substituting the limits for x from 0 to L you get 𝑅𝑒𝐿

−1

𝑛+1 whereas, this ReL is nothing but the 

overall Reynolds number based on the length of the plate. So, that is 
ρ𝑣0

2−𝑛𝐿𝑛

𝑚
 right. So, the 

average shear stress also we got fine. 
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Now, total frictional drag force Fd exerted on one side of plate of length L and width W is 

nothing but τw (LW) because width of the plate in the z direction is W and then frictional 

force if you wanted to find out that τw should be multiplied by the surface area of the plate 

on which it is this frictional force is acting.  



So, surface area of the plate is nothing but the length direction that L and then width 

direction that is in the z direction the width of the plate is W. So, LW fine so, τw already 

we had this expression in the previous slide multiplied by LW. Now, if you wanted to find 

out the drag efficient then 𝐶𝑑 =
𝐹𝑑

(
1

2
ρ𝑣0

2)(𝐿𝑊)
 you have to do. So, this 𝐹𝑑 you substitute.  

So, the (𝐿𝑊), (𝐿𝑊) this ρ𝑣0
2, ρ𝑣0

2will be cancelled out. So, you have 2𝑛+1 or you can 

simply write 2 multiplied by n + 1 and then remaining things are as it is, that is (
2

𝐹(𝑛)
)

𝑛

 

and then 𝑅𝑒𝐿

−1

𝑛+1. So, this is nothing but the drag coefficient for a power law liquid flowing 

parallel to flat plate which is aligned in a horizontal direction right. 
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Now, this is this analysis all we have done in the previous slide when we taking this 

velocity profile right and then power law fluid. But the velocity profile you keep the same 

and then fluid nature if you change to Newtonian fluid then what you get 
δ

𝑥
=

5.8356

√𝑅𝑒𝑥
.  

Remember when you have taken 
𝑣𝑥

𝑣0
=

3

2
(

𝑦

δ
) −

1

2
(

𝑦

δ
)

3

. What you got? 
δ

𝑥
 you got 

4.64 

√𝑅𝑒𝑥
, but 

now when you change the velocity profile slightly by increasing the degree of polynomial 

that is by taking 4th degree polynomial you are getting this 
δ

𝑥
 that is 

5.8356

√𝑅𝑒𝑥
. 



So, what we understand from here? The boundary layer thickness or dimensionless 

boundary layer thickness that is 
δ

𝑥
 is inversely proportional to the square root of local 

Reynolds number that is what we can say ok. And then similarly if you do some more 

calculation so, then wall shear stress you get this thing as we do as we did similarly in the 

previous case.  

And then drag coefficient you get 
1.0283 

√𝑅𝑒𝐿
 these things you can take exactly in the same way 

that we have done in an until the previous slide same approach you have to follow. In this 

case a Newtonian case Rex is nothing but 
ρ𝑣0𝑥

μ
 whereas, ReL that is the overall Reynolds 

number is 
ρ𝑣0𝐿

μ
 this is local Reynolds number this is the overall Reynolds number. 
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Now what if the fluid is a Bingham plastic fluid, but the velocity profile is provided by the 

same expression this one? Then we get 
δ

𝑥
 is equals to same as a Newtonian expression that 

is 
5.8356

√𝑅𝑒𝑥
, but now 𝑅𝑒𝑥 is 

ρ𝑣0𝑥

μ𝐵
 plastic viscosity, Bingham plastic viscosity. 

And then average shear stress at the wall would be τ𝑤 = 𝜏0
𝐵 + 0.5141 (

ρ𝑣0
2

√𝑅𝑒𝐿
), 𝑅𝑒𝐿 is 

nothing but 
ρ𝑣0𝐿

μ𝐵
 plastic viscosity, this is a local Reynolds number this is overall Reynolds 



number. And C𝑑 you will be getting C𝑑 = 𝐵𝑖 +
1.0283 

√𝑅𝑒𝐿
 whereas, Bingham number is 

nothing but, 
2𝜏0

𝐵

ρ𝑣0
2. 

So, this also you can take as a take home problem, you have to follow the similar approach 

that we have followed for the power law liquids in a couple of slides before right. So, in 

the next lecture we will be discussing now how to obtain the thermal boundary layer 

thickness when the fluid is a non-Newtonian fluid ok. 
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The references for this lecture are provided here. So, details you can find out in this 

reference book, but derivations you have to do yourself, you do not find anywhere any text 

books. 

Thank you. 


