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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids, the title 

of today’s lecture is Momentum and Thermal Boundary Layer Flows. We are in the last 

week of the course. In this week we will be discussing different aspects of boundary layer 

flows and their analysis. Then how to obtain momentum equation and energy equation for 

boundary layer flows; especially in integral form that is integral momentum equation and 

integral energy equation for a boundary layer flows. 

Then we will be discussing how to obtain the boundary layer thickness for both the 

momentum boundary layer and then thermal boundary layer, those kind of aspects we will 

be discussing in this week ok. 
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So, first we see a few basics of a boundary layers at solid surface. Let us consider an 

incompressible liquid flowing steadily past a solid surface. Then what happens, what we 

understand because of the no slip at the surface will be having 0 velocity right. And then 

as we move away from the surface gradually the velocity increases. Further the velocity 



gradients are very steep at the surface and then velocity gradients gradually decreases as 

we move away from the solid surfaces right. 

So, this velocity gradient become 0 usually theoretically at infinite distance from the solid 

surfaces or the velocity becomes equals to the free surface or free stream velocity at infinite 

distance from the solid surface, but in general in reality in physical situations we cannot 

have a geometry of infinite size. 

So, we have to have a kind of trade off to consider up to which region the velocity 

variations are significant or the velocity gradients are significant and then separate that 

region from the region where the velocity is almost equal to the free stream velocity or the 

velocity gradients are almost equals to 0. The separation of the flow in these two region 

that is what we are doing by boundary layers. 

So, within the boundary layer the velocity distribution would be there and then velocity 

gradients would also be there. And then beyond the boundary layer the velocity is almost 

equal to the free stream velocity and then velocity gradients are almost equals to 0. They 

are equals to 0 velocity gradient becomes equals to 0 theoretically only at infinite distance, 

but we cannot afford that infinite distance. 

So, we are finding some δ distance under which the velocity gradients are significant. And 

then after which the velocity gradients are negligible right. That is what basically we are 

going to see in this boundary layer flows and then more details we keep on seeing in 

subsequent slides. 

So, when we have a liquid steadily flowing past a solid surface then what happens? Close 

to the surface liquid experiences the retardation because of the no slip that is because of 

no slip at the surface the liquid velocity is zero at the solid surface. Then on moving away 

from the surface the liquid velocity gradually increases, in terms of velocity gradient it is 

steepest adjacent to the solid surface and gradually decreases with increasing distance from 

the solid surface ok. 

So, theoretically the velocity gradient is a continuous function that becomes zero only at 

infinite distance from the solid surface. So, that infinite distance we cannot afford. So, we 

find out some distance δ under which the velocity gradients are significant and then beyond 

a distance velocity gradients are almost equals to 0 ok. 
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So, that is the flow may be divided into two regions; the boundary layer close to the surface 

where the fluid experiences retardation and velocity gradients exist and then region outside 

of boundary layer where the liquid is flowing almost at free stream velocity and velocity 

gradient is almost zero. 

So, the flow region whatever is there above the solid surface that can be grouped in two 

regions; one region in which the velocity distribution occurs and then velocity gradients 

are significant or existing. Another region the velocity is equals to the free stream velocity 

or the velocity gradients are almost equal to 0 right. So, that region whichever is the flow 

domain is being separated by these two regions. 

So, the interface between these two regions whatever are there, that is known as the 

boundary layer ok. So, boundary layer thickness is defined as distance normal to flow from 

the surface at which fluid velocity reaches some proportion of a free stream velocity; 

usually that proportion may vary some people say 90 percent, some say 99 percent, some 

say 99.9 percent right. 

However mostly people take it 99 percent is of 99 percent of free stream velocity is 

significant to define the boundary layer thickness ok. Flows in boundary layer are 

important because of existence of gradients near the solid surface. What happens? 

Whatever the transport rates are there whether it is momentum transfer or heat transfer or 



mass transfer, they are affected by the gradients corresponding gradients; that is velocity 

gradient it maybe, thermal gradient it may be or concentration gradient it may be right. 

So, depending on which kind of transport processes is occurring right. So, that is affected 

by this velocity gradient. So, that is the reason the information about the region in which 

velocity gradients are existing; you know that is going to be play that is more essential 

especially from the transport phenomena view point ok. 

So, rates of momentum and heat and mass transfer at the solid liquid interface are 

delineated using boundary layer theory right. So, that is the reason we need to study; why 

we need to study boundary layer theory is the main reason is this one only right. So, every 

time you cannot have you cannot afford to do numerical solution for the entire domain. 

So, then what you do? 

You divide the flow region such a way that you know one region within the boundary layer 

region that is where the gradients are existing which are essential for the evaluation of the 

transfer transport properties. So, whether the friction coefficient or drag coefficient or the 

heat transfer rate or in the mass transfer rate whatever you wanted to find out Nusselt 

number at the solid surface etcetera. You know for all that you need to know the 

corresponding gradients, corresponding gradients are essential these gradients are more 

significant in boundary layer. 

So, if you take the flow region only boundary layer region and then do the analysis we will 

be sufficiently you know having sufficient this thing to you know information to solve the 

problems without needing to go into the numerical part. The same thing pictorially we see 

now by taking an example parallel flow over thin flat plate boundary layer analysis. 
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So, we have a flat plate in x direction this slanted lines whatever are shown here you know 

these lines so, that indicates the solid surface like this right. So, here the coordinate system 

we have taken such a way that horizontal axis is x axis vertical axis is y axis. And there is 

a fluid which is coming or flowing at a free stream velocity V0 right and then velocity 

component in the horizontal is vx, velocity component in the vertical y direction is vy ok. 

So, now, here when the fluid comes and hits the leading edge of the plate ok now the plate 

you have to visualize in three dimension also; in the z direction we are not able to draw 

here. So, in the z direction whatever the width is there that we are taking W right. So, now, 

here what happens? When the fluid comes and hits the leading edge of the plate within the 

board or within this you know screen you have to see. 

So, then what happens you know the fluid elements experience the retardation only for 

infinitesimally small time negligible time. For negligible time the fluid elements 

experiences the retardation, but as you move further in the flow direction, in the flow 

direction only, but along the solid surface beyond the leading edge when you move you 

know like this you know what happens? The fluid element experience more and more 

retardation right. 

So, then gradually its flow whatever is there that you know slows down ok. So, for 

example, let us say at this location you take this I am calling x1 location right. So, if I draw 

the velocity profile let us say the velocity if I draw the velocity profile you know how does 



it look like that we are going to see. At the surface you know vx = 0, vy is also 0 let us take 

only one component horizontal component or velocity component we take let us not worry 

about vy and all that right. 

As you move up away from the surface in the normal direction the velocity gradually 

increases right gradually increases like this; we understand and then the point at which the 

velocity becomes 0.99 times the free stream velocity or 99 percent of the free stream 

velocity that you locate it. 

Similarly, you take another location x2 here let us say right. And then here also as you 

move away in the normal direction from the solid surface so, the gradually velocity 

increases like this. Is not it? Velocity increases and then you find out the location where 

the velocity becomes 99 percent of V0 you take another location like that let us say x3 here. 

So, here also as you move away in the normal direction to the surface gradually velocity 

increases and then the point at which the velocity becomes 99 percent of free stream 

velocity V0 that you locate. Like that for different x values you will locate those points and 

then you combine them draw them like this. 

So, that will indicate, that will indicates the region in which the velocity variations are 

there and then region after which the velocity is approximately equals to the free stream 

velocity. Or in terms of gradients the region the enclosed region in which the velocity 

gradients are existing and then beyond that region whatever is there their velocity gradients 

are almost approximately 0. 

So, this layer the points which we are joining then we got this curve that curve is known 

as the boundary layer and then flow within this boundary layer is known as the boundary 

layer flow right. So, as you increase or move in the flow direction with increasing x 

direction what happens? You can see now the boundary layer thickness now you see this 

boundary.  

This is nothing but all this boundary layer thickness only a different x values what you 

understand? The thickness of the boundary layer is a function of x. So, that thickness of 

boundary layer we are calling δ, δ is now function of x that is what we understand from 

here and then it is increasing with increasing x. But there is certain x value which we 



calling xc after that the boundary layer thickness abruptly increases or the slope of the 

boundary layer thickness curve changes abruptly right. 

So, that point xc up to that point xc whatever is the boundary layer is there that we are 

calling laminar boundary layer and then after that whatever the boundary layer is the that 

we are calling turbulent boundary layer ok right. Now, in the turbulent boundary layer also 

what we have? Close to the surface the velocity or at the surface velocity is anyway 0, but 

the closed surface the velocity is there, but that velocity is very small actually literally will 

be very small. 

So, that here the eddy contribution are you know eddy diffusion contribution is negligible 

in this boundary layer close to the surface; whereas, the viscous contribution is very high. 

So, this region close to the surface there is a small region. So, that region in which the 

viscous contribution is very higher compared to the eddy contribution in overall transport 

phenomena or momentum transfer that layer we call it laminar sub layer. 

Though in the main core the flow may be turbulent, in the main core the flow may be 

turbulent, but close to the surface you know because of the no slip velocity at the surface 

and then velocity gradients are steep at the surface. So, the eddy contribution is very small 

there and then viscous contribution is more at the surface. 

So, that region we call its laminar sub layer and then this turbulent core and the laminar 

sub layer are being separated by the buffer layer. So, all our discussion we are going to 

limit for a laminar boundary layer case only we are not going into the details of turbulent 

boundary layer in this course ok. So, now, this is about the basics about the boundary layer 

flows and then drawing the boundary layer how does it look like. 

So, now from this profile you understand this δ. δ is actually you know theoretically it 

when it is ∞ or close to ∞ then only the velocity gradients are you know negligible or 

becomes 0 in theoretically right. But you know considering the practical difficulties we 

are finding this region δ region under which gradients are existing and then beyond which 

𝑑𝑣𝑥

𝑑𝑦
 are approximately 0 not equals to 0 approximately 0 negligible right. 

So, why we are doing separation? Because in this boundary layer most of the gradients are 

existing, if it is momentum transfer then velocity gradient if it is heat transfer then thermal 

or temperature gradient if it is concentration boundary layer, then concentration gradient 



are existing within the boundary layer. And these gradients are going to affect the transport 

process right rate of transport. So, that is the reason we are doing this process the boundary 

layer analysis ok. 
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So, whatever we discussed here I have provided as a notes here right. So, considering 

incompressible fluid flowing at constant free stream velocity V0 over a thin flat plate 

oriented parallel to flow and then plate is assumed to be sufficiently wide in z direction. 

So, that flow remain uniform across any width W of the plate; in the z direction width of 

the plate is W. 

And then extend of fluid in y direction; in y direction is also assumed to be sufficiently 

large for the fluid velocity away from the plate to be unaffected and remain constant at V0 

ok. And then pressure gradient is zero in flow direction due to these two assumptions when 

you apply the Bernoulli equations then you get it. So, at the leading edge what we have? 

The liquid experiences retardation at the surface only for infinitesimal small time and thus 

boundary layer thickness will be zero at leading edge. 
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But beyond the leading edge, along the solid surface or plate surface liquid gradually 

experiences retardation for longer time as it flows over surface, thus boundary layer 

thickness increases in the flow direction. So, that is δ is function of flow direction now 

here in this case it is x. 

So, velocity gradient at surface y = 0 decreases as boundary layer thickens for gradually 

increasing x value in the flow direction. Near leading edge boundary layer is small flow is 

laminar and shear stress arises only from the viscous shearing effect 
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However, when boundary layer thickness exceeds a critical value at x c the flow in the 

boundary layer itself becomes turbulent. So, this transition from laminar to turbulent 

boundary layer occurs at Rex approximately 105. So, that is if the fluid is Newtonian ok 

for Newtonian fluid 
ρ𝑉0𝑥𝑐

𝜇
 is approximately 105.  

So, xc value up to which boundary layer is laminar that if you have to find out you have to 

use this one. So, what you understand from here? This xc value is dependent not only on 

the free stream velocity, but also on the density and then viscosity of the fluid ok. So, 

transition from laminar to turbulent flow is not sharp and strongly influenced by the surface 

roughness and irregularities.  

Flow parameter for describing the nature of flow is Reynolds number and then for power 

law fluids we know this is defined like this; this is defined for a boundary layer thickness 

δ. But local Reynolds number if you define for a power law fluids so then you have to have 

Rex that is 
ρ𝑉0

2−𝑛𝑥𝑛

𝑚
 ok. 
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So, for Newtonian fluids, transition from laminar boundary layer to turbulent boundary 

layer occurs approximately at Rex = approximately 105. Even when flow in main portion 

of boundary layer is turbulent flow remains laminar; in thin layer close to surface which is 

called a laminar sub layer or viscous sub layer. Interface heat and mass transfer rates may 

be increased by decreasing the thickness of the sub layer. 



Because bulk of the resistance to momentum, and then heat transfer lies in this thin film 

and then laminar sub layer and turbulent core are separated by buffer layer in which 

viscous and inertial effects are of a comparable magnitudes. All these details, basic details 

we have all we have also seen in one of the previous week where we were discussing you 

know transition from laminar to turbulent flow in the case of flow through pipes. 

So, basics are similar. Now the geometry is different, so the boundary layers are you know 

different you know analysis is different. So, frictional drag force on a submerged object 

will depend on flow conditions in the boundary layer. 
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If we can regard as unidirectional flow; that is now we are going to develop integral 

momentum equation. So, that we are doing for unidirectional flow where we have only vx 

that is in the flow direction velocity component vx is there that is predominating. Whereas 

the other direction vy is not there or approximately 0 because it is very small compared to 

the vx right. 

And this is true also until and unless the Reynolds number is not very small. If the 

Reynolds number is very small then the velocity would also be there in the normal 

direction that is in vy that is in y direction. So, vy component will also be there, but; 

however, this boundary layers are very significant in general at larger Reynolds numbers 

or higher Reynolds number flows. 



So, under such conditions we can safely disregard the contribution of vy which is very 

small compare to the vx. Assume there is no buffer layer that is sharp interface is there 

between laminar sub layer and turbulent core. If pressure gradient is negligible in the flow 

direction, then free stream exists outside of the boundary layer with constant v0. 

But if pressure gradient is positive then adverse pressure gradient tend to retard the flow 

and causes boundary layer to become more and more thicker rapidly; if the pressure 

gradient is negative then it reduces the boundary layer thickness ok. So, if you have strong 

gradients; that means, in such case we are go, we are expected to having the negative 

pressure gradients within the boundary layer. 
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Now, we are going to develop integral momentum equation for this boundary layer flow, 

laminar boundary layer flow only right. According to Schlichting differential equation for 

flow in boundary layer requires numerical solutions even when the fluid is Newtonian and 

the flow is laminar. 

So, that is the reason good estimates of drag on plane surface can be obtained by using an 

integral momentum balance approach due to von Karman. Actually if you wanted to find 

out the boundary layer thickness there are different approaches are there. So, we are taking 

one of them which is very simpler and the easier straightforward to get it that you can 

realize you know as we move subsequently to the next few coming slides or coming 

lectures. 



Consider steady flow of an incompressible liquid of density ρ over an immersed plane 

surface, remote from the surface free stream velocity of liquid is V0; boundary layer 

thickness δ develops near the surface. The details are similar, but now we are going to 

develop the integral momentum equation. So, that is the reason we have written them 

again. 
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So, now we are considering equilibrium of control volume A, B, C, D right. Velocity 

component normal to surface is negligible that is vy is approximately 0 vx is only there 

compare to vx vy is approximately 0 very small. So, now, this is the control volume let us 

say, equilibrium of control volume. 

So, A, B, C, D is the control volume that is designations are given. Flow direction is x 

direction here also vertical direction is y direction, in the z direction you know width is 

width of the plate is W, the fluid is coming at free stream velocity V0 right. So, A is located 

at some x distance and then C is located at some x + δx or x + d x location this B and then 

D are outside of the boundary layer right. 

So, whatever this line is there this indicates the boundary layer within this region only 

there right. So, the thickness of boundary layer is δ, the height of this control volume is H, 

this vx component is existing vy component is very small or 0 compared to vx right. So, 

now, here for this case we have to develop the integral momentum equation that is what 

we are going to do now quickly right. 
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So, now, let us say what is the rate of mass in this control volume let us say AB phase is 

the inlet phase of the control volume. So, that is nothing but ρ vx multiplied by the width 

multiplied by the area of the plate that is in the z direction since we are taking in the x 

direction normal to x direction or z and y direction, in the z direction size of the plate or 

width of the plate is W. 

And then in the y direction it is height of the control volume is H right, but we are worried 

about this analysis within the, about this analysis within the boundary layer only, but some 

of the control volume is outside of the boundary layer. And then also the velocity is 

changing, it is 0 at surface at location A and then gradually it is increasing is not it? 

Gradually increasing at this point it is becoming 0.99 times V0 and then after this 

approximately it is V0 becoming right. 

So, then this vx is changing with y. So, that is the region, W dy we are taking as area and 

then we are integrating it over 0 to H region right. So, this is the rate of mass in. If you 

wanted to know the rate of momentum means, so, then this has to be multiplied by another 

vx that is ρ 𝑣𝑥
2 W dy. This is occurring at x location. 

Similarly at CD if you wanted to do, what is the momentum is going out? Then exactly 

∫ ρ𝑣𝑥𝑣𝑥  𝑤 𝑑𝑦
𝐻

0
ρ you will be having and then this is occurring at x + dx location. This is at 

x location this is at x + dx location, expression wise they are looking same right, but they 

are evaluated at different location. 



So, at AB location AB phase within the boundary layer, the flow would be higher because 

the lower cross section it is having. As well the fluid is experiencing lower retardation 

compared to the at CD location. CD locations, CD phase the cross section area of this 

boundary layer is more so, that the flow rate would be small so; obviously, the momentum 

would also be small. 

So, expression wise they are looking same, but the you know overall integral quantities at 

AB plane it would be higher at CD plane it would be lower because of the increasing cross 

section of the boundary layer as you move from x to x + δx location. So, from AB to CD 

when you move, what is the change in momentum right, in the x direction? That would be 

nothing but this minus this divided by δx and δx tends 0 that you do. So, that is nothing 

but 
𝑑

𝑑𝑥
∫ ρ𝑣𝑥

2𝑤𝑑𝑦𝑑𝑥
𝐻

0
 right. 

And now we understand more momentum is coming at AB, but less momentum is going 

at CD. So, the remaining has to be balanced through the BD plane. So, from the BD plane 

actually that momentum goes out right, but we wanted to get the what is the momentum 

coming into the boundary layer; because we wanted to find out the integral momentum 

equation within the boundary layer region. 

So, through BD phase how much momentum is coming into the control volume that would 

be again 
𝑑

𝑑𝑥
[∫ ρ𝑣𝑥

𝐻

0
𝑉0𝑤𝑑𝑦] 𝑑𝑥, why V0? Because this BD surface is outside of the 

boundary layer and then outside of the boundary layer vx is approximately equals to V0 

right. 

Now at the solid surface also AC, at the solid surface also now this case what we have 

seen that 
𝑑𝑝

𝑑𝑥
 is 0 within the boundary layer 

𝑑𝑝

𝑑𝑥
 is approximately 0 there is no pressure 

gradient. So, only forces acting at the AC plane is the shearing force. So, that shearing 

force let us say τw we are calling.  

And then area of this plane through which this shearing force is you know entering to the 

fluid that is nothing but the size of this plane in the x direction that is d x and then size of 

this plane AC in the z direction is nothing but w. So, τwx W dx, so, now, if this is quantity 

1 this is quantity 2 this is quantity 3. So, if you do 1 is quantity 1 is equals to quantity 2 + 

quantity 3. So, that will give you the integral momentum balance equation right. 
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The same thing have been written as a text here right. 
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So, now mass flow of fluid equal to difference between flow at plane CD and AB must 

occur through plane BD. So, since BD plane lies outside BL this entering fluid must have 

a velocity V0 in x direction. Along the flow direction boundary layer thickness gradually 

increases with increasing x value. So, because of that one fluid in BL is being retarded 

larger at plane CD than plane AB. 



So, smaller flow at plane CD than at plane AB this way also you can see or you can see 

through the cross section area of the boundary layer at AB plane and then CD plane. At 

CD plane cross section is more so, then less flow would be there. So, hence amount of 

fluid entering through BD plane is negative that is fluid leaves the control volume through 

BD plane. So, we want how much is entering the momentum how much momentum is 

entering into the boundary layer. So, that is the reason we take the negative of this one.  
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So, the rate of momentum transfer through BD plane into control volume would be nothing 

but 
𝑑

𝑑𝑥
[∫ ρ𝑣𝑥𝑉0

𝐻

0
𝑑𝑦] 𝑑𝑥. So, net rate of momentum change in x direction associated with 

fluid in the control volume must be equal to rate of addition of momentum from outside 

the boundary layer through BD plane, together with the net force acting on control volume. 
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For 
𝑑𝑝

𝑑𝑥
= 0 there are no pressure forces and only external force is due to shear stress that 

acting on plane AC that is at y = 0 line that we are calling τwx. So, and this is retarding 

force thus it should be negative. So, both at BD and then AC planes whatever the 

momentum is there that they are negative. So, thus net force acting on control volume 

would be τwx W dx as described in the figure. 
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Now, substituting all these in momentum balance equation you know we get whatever the 

change in momentum rate from AB plane to CD plane that should be balanced by what is 



the momentum entering at BD plane and what is the momentum entering at AC plane that 

is wall. 

So, when you take out this constant W’s and then rearrange this equation you get −τ 𝑤𝑥 =

𝑑

𝑑𝑥
[∫ ρ(𝑣0 − 𝑣𝑥)𝑣𝑥

𝛿

0
𝑑𝑦] right. So, because this dx, these dx, this dx, are also cancelled 

out. So, now, here this upper limit also we change to δ because we wanted to have this 

integral equation only for the boundary layer region and then boundary layer region is in 

the y direction that is from y = 0 to y = δ only. 

If you take y = H that is outside of the boundary layer and then outside of the boundary 

layer the velocity vx = v0. So, then integrand would become 0 that is the reason upper limit 

has been changed to δ right because of these two reasons; one is that we are interested 

about the momentum transfer within the boundary layer only that is between 0 to δ distance 

only. And then outside of the boundary layer vx = V0. So, integrand will become 0 if you 

take upper limit H ok. 

So, this is about the momentum boundary layer analysis if the surface temperature and 

fluid temperature are different from each other there is also possible that thermal boundary 

layer would be developing because of the heat transfer. So, that part we see heat 

transferring boundary layer. 
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So, when the fluid and immersed surface are at different temperatures, heat transfer will 

take place. If heat transfer rate is small in relation to thermal capacity of flowing a flowing 

stream its temperature will remain substantially constant. Surface may be maintained at 

constant temperature or constant heat flux or combination of two. 

So, we can have a constant temperature Ts or we can have a qw at wall or combination of 

these two also possible in general. Since temperature gradient is highest in the vicinity of 

the hot surface and the temperature of fluid stream will be approached asymptotically, 

thermal boundary layer may be postulated which covers the region close to the surface and 

in which the whole temperature gradient existing. 

Exactly, similar way or analogous to the momentum of boundary layer case if at all there 

is a heat transfer also. The flow region is divided into two regions; one region in which the 

temperature gradients are existing within that is within the boundary layer; another region 

in which temperature gradients are approximately 0 they are they become exactly 0 only 

at infinite distance. 

But we can have some δ T distance in the y direction. So, after which you know when y is 

greater than δ T then 
𝑑𝑇

𝑑𝑦
 is approximately 0 because physically infinite distance we cannot 

have theoretically we can have right. So, this is what exactly the similar way we are doing 

as we did for the momentum boundary layer case. 
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Thus, momentum and thermal boundary layer will develop simultaneously whenever the 

fluid stream and the immersed surface are at different temperatures, we are going to see 

the picture also. Momentum energy equations are coupled in general especially for non-

Newtonian fluids.  

Why because the non-Newtonian fluids the properties are physical properties not only 

shear dependent, but also they are dependent on the temperature gradients that is the reason 

ok. So, because of that one we will be having you know both momentum and thermal 

boundary layer together and then we may be requiring numerical solutions in general. 

So, but that is not possible in general so; however, if we assume the physical properties of 

the fluid do not vary significantly over the temperature gradient of concerned, then we can 

assume that these boundary layers are you know forming independent of each other 

independent of each other. There can only be little interaction between these two boundary 

layers and then both may be assumed to be developing independent of one other if this 

physical properties are independent of a temperature gradient. 
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So, that case only we are taking. So, pictorially it is shown here. So, again the horizontal 

direction is x direction vertical direction is y direction and then z direction in the z direction 

width is nothing but w right. So, surface temperature Ts we are taking right; a free stream 

fluid a fluid moving with a free stream velocity V0 at temperature T0. 



Now, this T0 and Ts are not equals to each other they are different from each other. So, 

because of that one thermal boundary layer is also forming. So, for simplicity what we 

assume? We are temperature scale we take such a way that at the surface the temperature 

is 0 right and then as we gradually move up right at certain location like this. 

So, temperature gradually increases right and then at certain location the temperature 

becomes 0.99 times the free stream temperature T0; like that a different locations if you 

try to develop you know then here also Ts = 0. And then gradually as move up the 

temperature gradually increases and then find out the location where the temperature 

becomes 0.99 time the T0. 

Like that you may find out different points for different x values and then you find here 

also you know when you joining these lines you can have a region one region in which the 

temperature gradients are existing right. So, that region we are calling boundary layer 

region whose thickness is δ T and this δ T is function of x that is what we are saying. And 

in beyond this δ T value in the y direction when y is greater than δ T what you have?  

You have the region where 
𝑑𝑇

𝑑𝑦
 is approximately 0; the other one is the momentum boundary 

layer this already we have seen. So, that we are calling δ this we have already seen in the 

previous slide ok. So, in order to differentiate them they are of different thickness, thermal 

boundary layer thickness is written as δ T. Now, this δ T is less than δ or greater or greater 

than δ it depends on the Prandtl number or the Peclet number.  

If it is very small then δ T is usually greater than δ, but that is true only when the small 

Reynolds number cases very small Reynolds number flows are there. However, but this 

boundary layer; however, this boundary layer flows are more important at higher Reynolds 

number and then higher Prandtl number case. So, then Peclet numbers would be greater 

than very very larger than one.  

So, under such conditions the thermal boundary layers are thinner than the momentum 

boundary layer. So, for that case only we have drawn here ok. So, now for this case also 

we are trying to, we will be trying to develop an integral energy equation to conclude this 

lecture ok. 
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Let us consider the case of non interacting boundary layers that is physical properties are 

independent of temperature gradient. Let the temperature of bulk of fluid is T0 which is 

constant and that of immersed plate at Ts that is also constant. For convenience temperature 

scale is chosen such that surface temperature is 0 thus giving a boundary condition Ts = 0 

at y = 0 locations that is corresponding to 0 velocity along the plane. So, that we can have 

an analogous development and it will be easy right. 
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So, now we develop integral energy equation, here the same equilibrium of control volume 

we are taking. Now, here in addition to V0 free stream velocity the temperature of free 

stream fluid is T0 and the surface temperature is Ts right. So, flow direction is x direction 

vertical direction is y direction. 

The size of the control volume you know in the x direction is δ x that is A is located at x 

and then C is located at x + δ x. Height of this control volume is H and then this BD plane 

is outside of the control volume. So, this is momentum, boundary layer δ and this is a 

thermal boundary layer of δT. 

So, δT is function of x that also we understand. So, when the fluid comes and hits the 

surface at the leading edge what happens? The fluid experience retardation only for 

infinitesimal time. So, then the boundary layer thickness is 0 and then gradually as you 

move along the flow direction along the surface then fluid molecules experience more and 

more retardation. So, then gradually boundary layer thickness increases in the x direction. 

So, δ or δT both of them are function of x. Now here what is the rate of heat in here that 

we have to find out. Similarly, we have to find out other planes also at this plane the 

∫ ρ𝑣𝑥𝑤𝑑𝑦
𝐻

0
 is nothing but rate of mass in that is 𝑚̇, 𝑚̇ m 𝑐𝑝𝑑𝑇. So, now, this quantity if 

you multiply by 𝑐𝑝𝑇, you get this one. 

So, that is at the AB plane the rate of heat in is ∫ ρ𝑐𝑝𝑇𝑣𝑥𝑤𝑑𝑦
𝐻

0
 this is at x location. 

Similarly at CD plane that is x + d x location what we will be having? This 0 to H whatever 

is there in addition to this one there would be some change in rate of heat transfer that is 

in x direction; that we do not know let us say that we are calling 
𝑑

𝑑𝑥
 of whatever the entering 

one δ x. 

So, this is entering and then + this much of change is occurring. So, that overall is going 

out right; how much is the heat is entering through the BD plane? That would be 

∫ ρ𝑐𝑝𝑇0𝑣𝑥𝑤𝑑𝑦
𝐻

0
 and then 

𝑑

𝑑𝑥
 of this one; because this BD plane is outside of the boundary 

layer and outside of the boundary layer temperature is equals to T0 right. 

So, at the surface whatever the heat transfer rate is there that is qw; let us say that multiplied 

by the area of the plane of this AC in the we have to take in the z direction also, in the x 

direction size of the plane is dx in the z direction width of the plate is w so, w dx. So, 



whatever the entering let us say this is entering is 1, leaving one is 2 and then entering 

from BD is 3 and then entering through all by conduction is 4. So, quantity is 1 + 3 + 4 

should be equals to quantity 2. 

So, these quantities we substitute here and then simplify then we get integral energy 

equation ok. So, assume steady state with no source or sink present in control volume. 

Heat balance for constant volume ABCD can be stated as follows. Heat convection in 

through planes AB that is 1 and then BD that is 3 + conduction at wall at AC that is 4.  

So, quantities or expressions written 1, 3 and 4 should be balanced by heat convection out 

at plane CD that is this 2 and this plane that is written expression 2 here right.  

(Refer Slide Time: 45:42) 

 

The pictorially I have explained whatever there, so, the same thing I have written here. 

Rate of heat entering control volume at plane AB is this one rate of heat transfer at plane 

CD is nothing but this one + 
𝑑

𝑑𝑥
 of that whatever 2 b expression right. And then mass rate 

of fluid a cross plane BD that we have already seen that is nothing but 𝑊
𝑑

𝑑𝑥
{∫ ρ𝑣𝑥𝑑𝑦

𝐻

0
} 𝑑𝑥 

that we have seen. 
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So, this if you multiply by ρ cp T0 you will be getting the rate of heat entering through 

plane BD ok. Then heat conduction at wall is nothing but q w multiplied by the area W dx 

W is in z direction dx in x direction ok. So, now, these things you substitute here in the 

equation number 1. So, this is what we are having. 

So, this quantity and this quantity are exactly same then from remaining quantities W you 

can cancel out from all three quantities and then d x also you can cancel out. And then in 

place of q w you can write −𝑘
𝑑𝑇

𝑑𝑦
|𝑦=0 because q dw is at the solid wall that is at y = 0 

location and then rearrange that equation. 
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So, you get this x equation as integral energy equation integral form of the energy equation. 

Here also the upper limit of integration has been changed from H to δT; because we wanted 

to have this integral energy equation for the boundary layer region only within the 

boundary layer region only which is encapsulated between y = 0 to y = δT and it is function 

of x. 

We do not want what is happening outside of the boundary layer because outside of the 

boundary layer gradients are approximately 0 or outside of the boundary layer temperature 

is equal to T0. So, then integrand will become 0. So, that is the reason upper limit has been 

changed to δT from H right. So, here this alpha is nothing but 
𝑘

ρ𝑐𝑝
 which is nothing but 

thermal diffusivity of the fluid. 

So, now this integral momentum equation that we have developed few slides before and 

then integral energy equation developed in this slide here. These are going to be used in 

our next classes to find out the momentum and thermal boundary layer thickness for power 

law fluids and then Bingham plastic fluids in addition to the regular Newtonian fluids as 

well. 
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References for this lecture are provided here. So, you can find out details in three four 

books which are available. But primarily this lecture I have prepared from this book, but 

more concepts on boundary layer analysis you can find out from the remaining three books 

as well. 

Thank you. 


