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Welcome to the MOOCs course transport phenomena of Non-Newtonian fluids the title of 

today’s lecture is Quasi Steady Analysis of Simultaneous Heat and Mass transfer, part 3. 

We have been discussing considering several problems where both heat and mass transfer 

occurring, but in addition to that one there is a time dependent behaviour also. So, but that 

time dependent behaviour we are taking only quasi steady analysis right. 

So, under that category we are going to see one more problem today ok that is evaporation 

of a water droplet. A water droplet is suspended in a nitrogen atmosphere and that is being 

evaporated slowly it is evaporating slowly that is the reason we can consider the quasi 

steady analysis for this problem also. 

So, how much time is required to completely evaporate the that droplet that is what we are 

going to see from the transport phenomena details that we have learnt in the course ok. 
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So, consider evaporation of a small droplet of known radius suspended in a stream of 

nitrogen. Temperature and composition far away from droplet are T∞ and then xi∞. Now, 



here only two components are there so one is the water droplet, water component and then 

another one is the nitrogen component. So, water droplet is suspended in nitrogen. So, i 

can be W for water and then i can be N for nitrogen. 

Coordinate origin is chosen at the centre of the droplet assume that droplet radius r (t) 

changes slowly with time so that a pseudo steady model can be used. Because let us say 

initially the droplet size is this much slowly what happens evaporation is taking place. So, 

then subsequently the size reduces, we are assuming that reduction of size is also in the 

spherical ok that is the simplicity. 

So, gradually and by some more time it reduces to some more smaller size like this like 

that after some time tE evaporation time let us recall. So, the droplet complete evaporates 

and then it is not in the liquid state it is in the vapour phase and then it is mixed with the 

nitrogen. 

So, how much time required for this droplet to completely evaporate that is what we have 

to find out. So, this R (t) and then evaporation is slow so then that is the reason pseudo 

steady or quasi steady model we are adapting for this problem also. 

So, what we basically need to understand or develop? We have to develop a reliable 

equation for 
𝑑𝑅

𝑑𝑡
 and in from there we have to find out you know what is the time required 

for this R to become 0 ok, this R becoming 0; that means, droplet is completely evaporated. 

Further assume Peclet number is very very less than one for both heat and mass transfer 

so that problem can be reduced to one involving steady diffusion and conduction with 

spherical symmetry. So, when we have this assumption we have already seen previously 

also previous problems also. 

Then whatever the changes are there, changes would be there only in the radial direction. 

In the θ direction nothing would be there no changes would be there and then in the ϕ 

direction also there will not be any changes whatever the changes whether the velocity 

change or temperature change or flux etcetera whatever are there.  

So, they are all, they all will be in R direction only and then this is true also from physics 

point of view also as long. As you provide or you maintain Peclet number is very very 



smaller than 1 ok. Then what is the time required for complete evaporation of droplet that 

is what you have to find out. 
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Now, the solution what we have to do? We have to develop an equation for the flux which 

is function of both R and t that we have to develop and then that equation we have to solve. 

So, that we get a relation for 
𝑑𝑅

𝑑𝑡
 as function of temperature or mole fraction or both right. 

So, that is what basically the mathematically mathematical object is that one basically 

right. 

So, how do we do? This developing the flux that we already seen for other problems, but; 

however, we can have a recapitulation or the same thing we can discuss here also. So, let 

us say this is the droplet whose size is R and it is changing time t. So, now, within this 

spherical cavity, so within this circular object because now we are taking only r direction 

variation so then we can have a circle of radius R which is changing with time. 

So, the outside domain also whatever the nitrogen is there that is also in the; that is also in 

the spherical object like this ok. So, that you know that is how the domain we take right. 

So, let us not worry about that one this R is decreasing with time ok. 
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So, now, if you wanted to know the flux so what we do? We take a control volume after; 

a control volume of thickness d R. So, that is a in a circle whose radius is r we take and 

then there would be another circle whose radius is r + d R. So, that the circle thickness or 

the control volume thickness is dR right. 

For this control volume if you do the balance right mass balance species conservation 

equation for this for this control volume if you write. And then apply the differential 

principles by taking delta r or dR tends to 0, then what you get? You get this equation. 

𝜕

𝜕𝑟
(𝑟2𝑁𝑖𝑟) = 0 that is what we get. This is i stands for any component nitrogen or you 

know water it can be anything right. 

So, because it is valid for the outside also, outside the outside circle like you know outside 

of the droplet also we can have you know circle like this and then develop the equation. 

Because the domain also outer confined fluid whatever are outer nitrogen gas whatever is 

there that also spherically confined that is what mathematically we are taking. So, it is 

valid for both so then generalized one we have written right. 

Now, when you integrate you get 𝑟2𝑁𝑖𝑟 is equals to constant it is constant with respect to 

r, but it is dependent on the time. Because we know this flux is also function of time in 

addition to the function of radial distance r right. So, that is because the quasi steady 

analysis we are doing it is slowly evaporating so we can apply quasi steady analysis right. 



So, this constant is function of time, but it is independent of r that is what it mean by. So, 

what is that constant? We do not know. So, let us say if you obtain this flux at r = R that 

is at the interface of the droplet then 𝑁𝑖𝑟  would be called as, 𝑁𝑖𝑟(𝑅, 𝑡). Whereas, this 

𝑁𝑖𝑟(𝑟, 𝑡) is there that is for 𝑁𝑖𝑟 that is for 𝑁𝑖𝑟. So, that means when you apply this boundary 

condition you will get 𝑅2𝑁𝑖𝑟(𝑅, 𝑡) is also constant. 

So, both the constants are same for the either of the cases. So; that means, we can write 

𝑟2𝑁𝑖𝑟(𝑟, 𝑡) = 𝑅2𝑁𝑖𝑟(𝑅, 𝑡)  we are calling function of (𝑅, 𝑡) because this r is also function 

of time ok. 

So, now these two are equals to this constant F (t). So, this is going to be useful in our you 

know subsequent calculations though we are not able to find out what is this F (t) by 

applying this boundary condition here ok. Now; that means, from here 𝑁𝑖𝑟(𝑟, 𝑡)  we can 

write it as 
𝑅2

𝑟2 𝑁𝑖𝑟(𝑅, 𝑡). So, now, what we do? Interfacial balance equations we are going 

to write for both the components nitrogen and then water. 

So, mass transfer at gas liquid interface assuming droplet is pure water; water is pure water 

that is negligible nitrogen gas in the liquid. So, this is the water droplet right and then it is 

in a surrounding you know nitrogen atmosphere. So, this water droplet is pure water, there 

is no nitrogen and then surrounding is the nitrogen, but here some water may also be there 

water vapours because of the evaporations right whereas, no nitrogen is present in the 

liquid droplet ok. 

Then at the interface, at this interface what we are calling we are calling G if it is towards 

the nitrogen gas side and then we are calling it L if it is towards the liquid droplets side ok. 

So, that is 𝑁𝑖𝑟 − 𝐶𝑖
𝑑𝑅

𝑑𝑡
 towards the liquid side should be balanced by 𝑁𝑖𝑟 − 𝐶𝑖

𝑑𝑅

𝑑𝑡
 towards 

the gas side right. So, they are not same, but they are evaluated at the same location of 

interface droplet interface ok. Now, this we have to write for individual components for 

nitrogen as well as the water ok. 
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Let us assume whatever liquid concentration is there water concentration in the droplet is 

there. So, that we take as CL, but the same water vapours whatever the first layer towards 

the gas side whatever is there that concentration or the interface concentration or 

concentration in gas at the interface that we call it Cw function of R. Why function of R? 

Because the size of the droplet is decreasing because of evaporation and then that R is 

function of time. So, there is a possibility that it may also change keep on changing. 
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Now, the above equation previous slide whatever we have written for you know 

generalized species I if we write for water and nitrogen then for water (𝑁𝑤𝑟 −

𝐶𝑤
𝑑𝑅

𝑑𝑡
) |𝐺should be balanced by (𝑁𝑤𝑟 − 𝐶𝑤

𝑑𝑅

𝑑𝑡
) |𝐿. L is towards the liquid side G is 

towards the gas side, but both of them are at the interface. 

Similarly, for nitrogen (𝑁𝑁𝑟 − 𝐶𝑁
𝑑𝑅

𝑑𝑡
) |𝐺 = (𝑁𝑁𝑟 − 𝐶𝑁

𝑑𝑅

𝑑𝑡
) |𝐿. This N stands for the 

combine flux that we know C stands for the concentration that also we know right and then 

this w stands for now water and then N stands for the nitrogen the r stands for the direction 

in which the flux is taking place or the change in mass transfer is taking place that is r 

direction. So, that this notations we already know ok. 

And then 
𝑑𝑅

𝑑𝑡
 is the change in size of the droplet with respect to the time that is integrated 

by this so now, these are the generalized one. So, now these things we are going to write 

towards the gas side so that to get what is this 𝑁𝑤𝑟(R) because this we wanted to know.  

Because this if you find out from the combined flux we get this relation, another relation 

for this 𝑁𝑤𝑟(R) in terms of the mole fractions right xw or x∞ etcetera. So, that is what we 

are going to see now. 
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In the gas side(𝑁𝑤𝑟 − 𝐶𝑤
𝑑𝑅

𝑑𝑡
) |𝐺 = (𝑁𝑤𝑟 − 𝐶𝑤

𝑑𝑅

𝑑𝑡
) |𝐿, so this is for the water ok. So, now 

in the liquid side water concentration whatever is the C w is there that is pure water. So, 

that concentration is CL right, but in the liquid side that is the droplet concentration is same 

CL is not changing from the centre of the droplet to the interface of the droplet, surface of 

the droplet. So; that means; obviously, that flux would not be there right. 

And then this Cw is nothing, but is nothing, but the water concentration at the interface, 

but towards the gas side. So, that we calling we are calling Cw as function of R and this is 

the water flux towards the gas side at the interface, but at the interface. So, we can write 

𝑁𝑤𝑟 (𝑅), this G and L are designating which side of the interface liquid side or gas side 

that is it. 

But they are at the interface at the R only at the R, though this R is changing with respect 

to time so that we take care ok. So, the now what you get 𝑁𝑤𝑟 (𝑅) = 
𝑑𝑅

𝑑𝑡
 this is coming to 

the right hand side. So, Cw (R) and − this Cw is nothing, but CL as per the notations given 

in the problem or that initially we have taken ok. 

Now, similarly for nitrogen you write 𝑁𝑁𝑟 − 𝐶𝑁 
𝑑𝑅

𝑑𝑡
 towards the gas side should be balanced 

by 𝑁𝑁𝑟 − 𝐶𝑁 
𝑑𝑅

𝑑𝑡
 towards the liquid side right. So, now, here in the liquid side in the droplet 

there is no nitrogen in the droplet there is no nitrogen that is what it is given. So, then CN 

is 0 and then since there is no nitrogen in the droplet side or liquid side so then; obviously, 

its flux would now would also be not there. 

But in the gas side there is a nitrogen and then there is a concentration variation of nitrogen 

because for N component water is being added up as the water is being evaporated 

progressively with respect to time slowly. So, it would be there and then; obviously, CN 

would also be there. 

So, 𝑁𝑁𝑟 (R) is nothing, but 
𝑑𝑅

𝑑𝑡
 CN (R) ok. Remember this R as function of time we are not 

writing every time because we know it ok. So, next low density of gas at ambient 

conditions that implies that CL is very very greater than Cw right. 

So, Cw this this is the water droplet and then its concentration is CL. So, Cw is nothing, but 

the very first layer or the in a towards the gas side at the interface whatever the water 



vapour concentration is there that we are calling 𝐶𝑤 (𝑅). So, this is going to be 𝐶𝑤 (𝑅) is 

going to be very very smaller compared to the CL. So, from this equation number 3 we can 

take off so that 𝑁𝑤𝑟 is nothing, but approximately −𝐶𝐿
𝑑𝑅

𝑑𝑡
. 

So, now we have an expression for 
𝑑𝑅

𝑑𝑡
 actually we have this is what our primary aim right. 

So, now if you know this, what is 𝑁𝑤𝑟(𝑅) you know perfectly in measurable quantity so 

then; obviously, we can simplify this equation and find it out right. But, we do not know 

what it is, we know this is like you know 
𝑟2

𝑅2 𝑁𝑖𝑟(𝑟, 𝑡) so that is if you use that equation that 

is equation number 1 it is not going to be helpful anyway. 
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So, what we do? This combined flux we go back to the basics of combined flux so we 

write a combined flux equation right. When we write combined flux equation that is 

𝑁𝑤𝑟(𝑟) = −𝑐𝐷𝑤𝑁
𝑑𝑥𝑤

𝑑𝑟
+ 𝑥𝑤(𝑁𝑤𝑟 + 𝑁𝑁𝑟) right. Here 𝐷𝑤𝑁 is nothing, but diffusivity of 

water vapour in the nitrogen gas ok. 

Now, here it has been said that the nitrogen flux it interface is negligible related to the 

water flux right, its very small because it is not getting into the water droplet nitrogen is 

not getting into the water droplet. And then its concentration variations at the interface are 

very small compared to the you know that of a water vapour. 



So, compared to that one we using that statement we can say this 𝑁𝑁𝑟 is very much smaller 

compared to the 𝑁𝑤𝑟 so then we can take off. That means, 𝑁𝑤𝑟 from this equation we get 

−𝑐𝐷𝑤𝑁

(1−𝑥𝑤)

𝑑𝑥𝑤

𝑑𝑟
. So, this equation we can integrate right by taking 𝑁𝑤𝑟 dR one side and then 

remaining terms to the other side. 

Integration limits are R to ∞ because from the surface from the surface to faraway distance 

we are finding the flux at the gas side because the liquid side there is no flux because it is 

a pure water. Also, from the physics of the problem water is evaporating and then getting 

into the gaseous phase side ok. 

So, surface interface radius is R and then faraway distance is ∞ 𝑁𝑤𝑟 we have already 

𝑁𝑤𝑟 (𝑟) we have already found it as 
𝑅2

𝑟2
 𝑁𝑤𝑟 (𝑅) dr this we already know so, dr is as it is. 

Right hand side this you integrate you get 𝑐𝐷𝑤𝑁 ln(1 − 𝑥𝑤). 

So, minus 1 and then minus it is a +. So, 𝑐𝐷𝑤𝑁 ln(1 − 𝑥𝑤) you get. Limits are at the 

surface, what is the water concentration we do not know right because it is changing 

interface is changing. So, we do not know it is function of time actually xw is also function 

of time, but we are writing 𝑥𝑤 (R) because we know that this R is again function of time. 

So, indirectly xw is function of time we are writing. 

Faraway concentration this is known xw∞ is known, xi∞ and then ti∞ are known far away 

from the droplet so this is known. So, now this left hand side when you integrate you get 

minus 1/r limits R to ∞ you substitute. Then here right hand side this limits when you 

substitute you get this one. 

Now here you get you know 
𝑅2

𝑅
 so that 𝑁𝑤𝑟 (𝑅)  multiplied by R you would be having. So, 

that R in the left hand side that you bring it to the right hand side. So, then 𝑁𝑤𝑟 (𝑅) =

𝑐𝐷𝑤𝑁

𝑅
𝑙𝑛

1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
 right. 

Equation number 5 we already got that 𝑁𝑤𝑟 (𝑅) is approximately −𝐶𝐿
𝑑𝑅

𝑑𝑡
. Now, you may 

be thinking this equation this equation you can combined and then find out what is 

this 
𝑑𝑅

𝑑𝑡
 expression and then find out what is this tE when R becomes 0 that you can you 

may be thinking. That we can do indeed there is no harm, but in this equation here what is 

this xw (R) that we do not know. 



It is changing, it is changing with the size of the droplet so it changing with the time. Had 

it been constant so then we could have equated equation 5 and 6 and then get this 

𝑑𝑅

𝑑𝑡
 relation and then find out the tE total evaporation time right.  

So, now we have to do some more analysis to find out what is this xw (R). Either as function 

of R we have to find out or we have to find out as function of the temperature because the 

evaporation is taking place because of the non isothermal conditions being maintained ok. 
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Now, if system were isothermal then surface temperature would be same as far away 

temperature T∞ then; obviously, xw we could have got it by vapour pressure of water 

evaluating at T = T∞. And then that xw (R) we could have substituted in this equation 

number 6 and then also we could have found what is this Nwr (R) and then equate to the 

equation number 5 that is Nwr (R) = or approximately equals to −𝐶𝐿
𝑑𝑅

𝑑𝑡
. 

And then also we could have got, but the system in our case it is not the isothermal it is 

non isothermal system. So, we cannot use this equation so; obviously, we have to use the 

energy equation to calculate the surface temperature and then that energy equation we have 

to do for this you know domain as well as for the interfacial energy balance we have to do. 
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So, we have conservation of energy equation for present system as this because here also 

the same thing, the droplet you have taken right. Now, you take a within the domain you 

know you take a you know one circle of radius r unknown r and then another circle adjacent 

to it whose radius is r + dr. so that this thickness is dr ok so that is so that this thickness is 

dr and then you do the energy balance so, then you get this one.  

Or heat transfer equation whatever we have developed in Cartesian coordinates the same 

similar things we have we can also develop further you know spherical coordinates and 

then do this one ok. So, better you we do this kind of balancing by taking er; er includes 

the all the modes of heat transfer conduction, convection in and all that whichever are you 

know important associated with this problem all of them are included.  

Rather writing you know heat entering because of the conduction, heat entering because 

of the convection etcetera and then heat leaving because of the conduction and then heat 

leaving because of the convection and conduction etcetera all those things writing and then 

equating to accumulation that becomes complicated. 

So, we have included all of them in er and then written balance so then we get this equation 

by applying the differential quantities dr tends to 0 right. That means, when you integrate 

this equation you get further 𝑟2𝑒𝑟 = constant, here also this constant is constant with 

respect to the r radial position, but it is function of time that time function we are calling 

f1 (t). 



So, from here 𝑒𝑟 =
𝑓1(𝑡)

𝑟2 , but this 𝑒𝑟 is having several contributions; however, for our 

problems it is having only two contributions one is the conduction another one is the heat 

associated because of the mass transfer part. So, both of them we have written here. And 

then we are writing for water only for the time being so let us not worry about the nitrogen 

ok right. 

So, 𝑒𝑟 for water as function of r we write so then conduction term is −𝑘𝐺
𝜕𝑇

𝜕𝑟
+

𝑁𝑤𝑟𝐶𝑝̅𝑤(𝑇 − 𝑇0) + 𝐻̅𝑤
0 . 𝑇0 is the reference temperature and this 𝐻̅𝑤

0  is evaluated at 

reference temperature 𝑇0 right. This suffix G is what? k is thermal conductivity of water 

only, but suffix G indicates towards the towards the gas side ok. 

So, from here 𝑓1(𝑡) is nothing, but 𝑟2𝑒𝑟. So, this equation is being multiplied by 𝑟2 here 

ok. Now, this 𝑟2 𝑁𝑤𝑟 we know it as 𝑅2 𝑁𝑤𝑟(𝑅). Explicitly if you are writing 𝑁𝑤𝑟(𝑅); that 

means, that is at the interface right. If we are not writing explicitly 𝑁𝑤𝑟(𝑟); that means, 

that is if now explicitly we are not writing function of r; that means, that is it is r any r 

value, R is at the interface right. 

So, now here this equation what we do? We keep only 𝑅2 𝑁𝑤𝑟𝐶𝑝̅𝑤𝑇 here and then 

remaining terms whatever are there that is 𝑅2 𝑁𝑤𝑟𝐶𝑝̅𝑤(𝑇 − 𝑇0) + 𝐻̅𝑤
0  all that we mix, all 

that we combined with 𝑓1(𝑡)  and then write it as 𝑓2(𝑡) for simplicity ok. 
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So, that equation number 7 we have written once again here. So, now, what we do? We do 

interfacial energy balance that is towards the gas side whatever 𝑒𝑟 − ∑𝐶𝑖𝐻̅𝑖
𝑑𝑅

𝑑𝑡
 is there that 

should be balanced by the same 𝑒𝑟 − ∑𝐶𝑖𝐻̅𝑖
𝑑𝑅

𝑑𝑡
 towards the liquid side right. 

Now, we are writing in the gas side −𝑘𝐺
𝜕𝑇

𝜕𝑟
 and then whatever [𝑁𝑤𝑟𝐻̅𝑤 + 𝑁𝑁𝑟𝐻̅𝑁]𝐺 this is 

because of the mass transfer contribution. The changes in the temperature because of the 

mass transfer contribution, the changes in the temperature because of the conduction is 

this one −𝑘𝐺
𝜕𝑇

𝜕𝑟
. And then remaining −∑𝐶𝑖𝐻̅𝑖 

𝑑𝑅

𝑑𝑡
 that we are writing this one, that is 

[𝐶𝑤
𝐺𝐻̅𝑤

𝐺 + 𝐶𝑁
𝐺𝐻̅𝑁

𝐺] 
𝑑𝑅

𝑑𝑡
, this is gaseous side. 

 Same is true in the liquid side also that is −𝑘𝐿
𝑑𝑇

𝑑𝑟
+ [𝑁𝑤𝑟𝐻̅𝑤 + 𝑁𝑁𝑟𝐻̅𝑁]𝐿 −

[𝐶𝑤
𝐿 𝐻̅𝑤

𝐿 + 𝐶𝑁
𝐿 𝐻̅𝑁

𝐿 ] 
𝑑𝑅

𝑑𝑡
. This here now 𝑘𝐿 we are writing, that is the thermal conductivity of 

the same species whichever we are taking right, but it is, but it is you know towards the 

liquid side it is G stands for towards the gas side ok. 

Now, in the gas side there is a temperature variation from 𝑇0 surface temperature to 𝑇∞ 

surface temperature. So, 
𝜕𝑇

𝜕𝑟
 is there that we cannot cancel out right and then in the gas side 

water flux 𝑁𝑤𝑟 is there. So, it should be there right, but N what happens this 𝑁𝑁𝑟 in the 

gas side it may be there, but it is very very smaller compared to the 𝑁𝑤𝑟. 

So, we can in comparison with 𝑁𝑤𝑟we can strike off 𝑁𝑁𝑟 right. And then towards the gas 

side what is 𝐶𝑤
𝐺  𝐶𝑤

𝐺  is nothing, but Cw (R) we have written and then it is very much smaller 

compared to the CL. So, in comparison to that one we can cancel out this one also and then 

whatever 𝐶𝑁
𝐺  is there, 𝐶𝑁

𝐺  that is nothing, but CN (R) is also very very less than compared 

to this CL. So, that way also we can cancel out this one. 

Now, coming to the liquid side; liquid side what we have temperature is not changing from 

the centre of the droplet to the interface of the droplet temperature is maintained same. So, 

there would not be any temperature gradient so then this conduction is not possible within 

the droplet so it is 0. 

And then in the, within the liquid side only water pure water is there so then there will not 

be many flux. And then this nitrogen is not getting into the liquid droplet side that is 



mentioned in the problem so its flux in the liquid side would not be there or inside the 

droplet there will not be flux of either water or nitrogen. 

Now, in the liquid side in the liquid side what is the concentration of water is nothing, but 

CL so it is there so it should be there. But nitrogen is not penetrating into the liquid droplet 

whereas, the water droplet is evaporating and getting into the nitrogen. So, because 

nitrogen is not getting into the liquid water droplet so this CN in the liquid is also 0. 

So, now what are the terms are remaining only 1 2 3 terms which are presented in red font 

or are remaining. And then cancellation have been done because of this thing. So, this 

𝑘𝐺
𝜕𝑇

𝜕𝑟
 I take to the right hand side so then +𝑘𝐺

𝜕𝑇

𝜕𝑟
 is equals to what we have −𝑁𝑤𝑟𝐻̅𝑤

𝐺 . So, 

𝐻̅𝑤
𝐺  and 𝑁𝑤𝑟 (r) this is what we are having + quantity. 

So, this 𝐻̅𝑤
𝐺  this is nothing, but 𝑁𝑤𝑟 (R) is nothing, but −𝐶𝐿

𝑑𝑅

𝑑𝑡
 that is −𝐶𝐿𝐻̅𝑤

𝐺  
𝑑𝑅

𝑑𝑡
; and from 

the other side already what we have? We have this −𝐶𝐿𝐻̅𝑤
𝐿  is there. So, that we are taking 

to the other side so that is becoming 𝐶𝐿𝐻̅𝑤
𝐿  

𝑑𝑅

𝑑𝑡
. 

So, these two terms are combined and dR taken common from these two term −𝐶𝐿 and 

𝑑𝑅

𝑑𝑡
 taken common. So, then we have 𝐻̅𝑤

𝐺 − 𝐻̅𝑤
𝐿  so that we can write −𝐶𝐿 

𝑑𝑅

𝑑𝑡
 𝜆̅𝐿. So, that is 

latent heat of evaporation for the liquid water ok. 

So, this we can write like this or again you can rewrite back in place of −𝐶𝐿 
𝑑𝑅

𝑑𝑡
 you can 

again write Nwr (R) right. Now, this Nwr as function of temperature gradient or the 

temperature profile we got a relation all this is what we are doing only for this one actually 

because Nwr (R) if you know.  

So, we can substitute in equation number 6 or 5 and then find out what is 
𝑑𝑅

𝑑𝑡
 ok. So, now 

that also we cannot do now, though we have an expression because what is this 
𝜕𝑇

𝜕𝑟
 we do 

not know ok. 
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So, let us see what else we can do. Now, this expression we are substituting in equation 

number 7 and then finding out f2 function of time at r = R. What is equation number 7 is 

this one. So, now, this equation we wanted to find out at r = R ok. So, here now this first 

quantity at R in place of 𝑘𝐺
𝜕𝑇

𝜕𝑟
 we have written −λ̅ Nwr (R). You can have this suffix L r 0 

it does not matter now, because we have already came across that step of interfacial 

balance it is only for the water droplet that we know and this part is as it is now ok. 

So, this here, this is also at r = R, but there is no r term so need not to worry here. So, now 

from these 2 steps what we get 𝑓2(𝑡) is this one −𝑅2λ̅𝑁𝑤𝑟 (R) + 𝑅2𝑁𝑤𝑟(𝑅)𝐶𝑝̅𝑤 T (R) right. 

So, this T is now function of R at R that is at the interface right. 

So, now this we if from these two if you take −𝑅2𝑁𝑤𝑟(𝑅) as a common term then we get 

λ̅ − 𝐶𝑝̅𝑤𝑇(𝑅). So, now this equation 6 and 7 you can equate to get this relation. Why are 

we doing? We can get an expression for 
𝜕𝑇

𝜕𝑟
 that is the reason we are doing. 
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So, from that equation previous slide 𝑘𝐺𝑟2 𝜕𝑇

𝜕𝑟
 we have written one side and all other terms 

we have written other sides ok right. So, this T without any you know r locations; that 

means, it is at any r location. This at R; that means, that is at the interface only, at small r 

we are not writing as function of r because that is for any r value starting from R to ∞. 

So, from this equation 
𝜕𝑇

𝜕𝑟
 we can write like this right. So, this equation we can write d T 

by whatever this constant terms and then other side we can write 
𝑅2𝑁𝑤𝑟(𝑅)

𝑘𝐺𝑟2 𝑑𝑟 and then 

integrate it. Integrating from r to ∞ at r = R temperature is T (R) at r = ∞ T is nothing, but 

T∞ it is known, but it is not known T (R) is not known. 

So, when you integrate this one this equation what we get left hand side we get ln of this 

particular term divided by minus of minus + 𝐶𝑝̅𝑤 and the limits T(R) to T∞ we are 

substituting here. So, right side 
𝑅2𝑁𝑤𝑟(𝑅)

𝑘𝐺
 is constant, integration of 

1

𝑟2 is −
1

𝑟
 limits R to ∞. 

So, when you substitute a limits here what you get? You get + 
1

𝑟
 you get and then that R 

and then square of this R you can cancel out. 
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Then you get this expression 
𝑘𝐺

𝑅𝐶̅𝑝𝑤
𝑙𝑛 [1 +

𝐶̅𝑝𝑤

λ̅
(𝑇∞ − 𝑇(𝑅))] right. So, left hand side right 

hand side after substituting the limits this is what we get for the 𝑁𝑤𝑟. Now, 𝑁𝑤𝑟(𝑅)  we 

got as function of surface temperature T (R) right. 

From equation number 6 this is already we have right. So, now these two equations when 

you equate it you get this expression that is we do in one step. So, that is what we have 

𝐶𝐷𝑤𝑁

𝑅
𝑙𝑛 (

1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
) =

𝑘𝐺

𝑅𝐶̅𝑝𝑤
𝑙𝑛 [1 +

𝐶̅𝑝𝑤

λ̅
(𝑇∞ − 𝑇(𝑅))]. 

So, this left hand side 1/R right hand side 1/R cancelled out. So, what we have? 

𝑙𝑛 (
1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
) =

𝑘𝐺

𝐶𝐷𝑤𝑁𝐶̅𝑝𝑤
 and then L N of whatever this 1 + 

𝐶̅𝑝𝑤

λ̅
(𝑇∞ − 𝑇(𝑅))as it is right. 

So, now what we can take this entire thing as a Lewis number 𝐿𝑒
∗  so then we can write 

1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
= one + 

𝐶̅𝑝𝑤

λ̅
(𝑇∞ − 𝑇(𝑅)) this whole to the power of Lewis number we can right.  

So, then what we can what we are writing we are writing that Lewis number to the left 

hand side term. So, one by Lewis number 𝐿𝑒
∗  we are writing so this is nothing but this 

equation number 10 is given here. So, now this equation also you know this xw (R) T (R) 

are there, they are not known actually or you can find out what is T (R) if you know xw 

(R)  right. So, that is the problem so we can have some approach to overcome this one. 
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Assuming ideal gas behaviour and then vapour liquid equilibrium gives as the following 

relation xw (R, t) is nothing, but vapour pressure of water at T (R) divided by the total 

pressure ok. And now using the Clausius-Clapeyron equation to relate vapor pressure of 

water to its normal boiling point TB we can have this expression. 

xw (R, t) is 𝑒𝑥𝑝 [
λ̅

𝑅𝐺
(

1

𝑇𝐵
−

1

𝑇 (𝑅)
)]. 𝑇 (𝑅) is nothing, but surface temperature or temperature 

at the interface 𝑇𝐵 is the boiling point temperature for this component and then 𝑅𝐺  is 

nothing, but the universal gas constant. So, these things are known here. 

So, now here if 𝑇 (𝑅)  is not depend on this not dependent on the size we can say that xw 

is also not dependent on the side size of the droplet. See all these analysis after developing 

equation number 6 we are finding we are trying to do what is this xw (R, t) is it constant or 

not.  

If it is not constant which function it is if it is; obviously, it is dependent on the temperature 

how is it dependent on the temperature that we are trying to find out. Otherwise, there 

itself we could have got the solution of the problem ok. 
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So, we will see that one also how we can play around with the equations to find out whether 

this xw (R) is really you know function of you know droplet size. Similarly, 𝑇 (𝑅) is really 

function of the size of the droplet that we are going to see. 

So, this equation number 10 this is what we are derive previous slide what we are trying 

to do here. In this place now what I try to write, I try to take this 
1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
, xw as R I am 

keeping one side and then whatever 1 + 
𝐶̅𝑝𝑤

λ̅
(𝑇∞ − 𝑇(𝑅)) is there. So, this whole I am 

taking Lewis on the power star to this side right. 

Next step what I am trying to do? I am trying to write the inverse of these two so; that 

means, I get 
1−𝑥𝑤(𝑅)

1−𝑥𝑤∞
=  [1 +

𝐶̅𝑝𝑤

λ̅
(𝑇∞ − 𝑇(𝑅))]

𝐿𝑒
∗

 because inverse I have written right. 

So, now this I can write 1 − 𝑥𝑤(𝑅) = 1 − 𝑥𝑤∞ and then multiplied by right hand side 

whatever is there. And then this 𝑥𝑤(𝑅) just now we found from the Clausius Clapeyron 

equation in the previous slide as 𝑒𝑥𝑝 [
λ̅

𝑅𝐺
(

1

𝑇𝐵
−

1

𝑇 (𝑅)
)] ok. 

So, now here this equation we can solve to find out T ® because there is no unknown 

𝑥𝑤(𝑅) here, we could eliminated it right. So, what we can say here this 𝑇 (𝑅) this 𝑇 (𝑅) 

here also, you see any of the terms are having R as function of time here in this equation 



number 12; no. So, whatever the solution that you are going to get for 𝑇 (𝑅)is going to be 

independent of the size of the droplet right. 

So, if 𝑇 (𝑅) that is the surface temperature is independent of size of the droplet so then; 

obviously, xw (R) that is the water concentration at the interface towards the gaseous side 

that would also be independent of R. So, that equation number 5 and 6 we can directly use 

to find out the time required ok. 
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So, now equation number 5 this is there and then this is there. So, all these analysis after 

the equation number 6 we did in order to find out what is this xw (R). We found that it is 

independent of R that is independent of the size of the droplet so then we can directly 

equate these two equations and then do the integration to find out R as function of time. 

So, when you equate these two equation this is what you have, you keep 
𝑑𝑅

𝑑𝑡
 term one side 

and then initial condition at t = 0 whatever, R is there that is nothing, but R0. So, now this 

equation what you do you integrate it then you get 
𝑅2

2
=

𝑐𝐷𝑤𝑁

𝐶𝐿𝑅
; 𝐶𝐿 because this R we are 

taking to the left hand side then only we get 
𝑅2

2
 on integration. 

And then 𝑙𝑛 (
1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
) which is constant or independent of R and then multiplied by T + 

constant C, at is equals to 0 R = R0. So, 
𝑅0

2

2
= −

𝑐𝐷𝑤𝑁

𝐶𝐿
𝑙𝑛 (

1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
) multiplied by 0 + c. 



So, c is nothing, but 
𝑅0

2

2
 so; that means, R square you can write 

𝑅0
2

2
−

2𝑐𝐷𝑤𝑁

𝐶𝐿
𝑙𝑛 (

1−𝑥𝑤∞

1−𝑥𝑤(𝑅)
). 

So, this is what you get multiplied by time t right. Now, the total time for evaporation is 

nothing, but time E and then that is when R becomes 0. 

So, in this equation you substitute t = tE and then make this 𝑅0
2 then you get expression 

for tE as this one. So, this is the total time required for the droplet evaporation. 
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References for this lecture are provided, but these problems are can be found from this 

book analysis of transport phenomena by Deen. 

Thank you. 


