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Lecture - 37
Quasi-Steady Analysis of Simultaneous HT and MT - 11

Welcome to the MOOCs course Transport Phenomena of non-Newtonian Fluids. The title
of today’s lecture is Quasi-Steady Analysis of Simultaneous Heat and Mass Transfer, part
I1. In this lecture also we will be taking two problems which we will be studying or you
know analysing using pseudo steady state analysis or quasi steady analysis. The first one

is freezing of salt water.
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Freezing of Salt Water
This problem involves a simplified model for growth of ice crystal in salt water
Crystal, which is pure Hi/O, is idealized as a sphere of radius @
Main effect of salt is that it lowers the freezing point (FF) T¢

L.
Freezing point depression is described by T = T — BICS]; where Ty s freezing

point for pure water, f§ is known +ve constant and Cj is salt concentration
Far from crystal, T = T and C; = C,, and solution is stagnant

Assume that temperature\/ and concentration fields are both pseudo steady and
spherically symmetric - % (9.4) 85 Su, b
\_’—/ ) )

: —
For simplicity, assume that ice, pure water and salt solution all have sameé density.
Use notations: I = Ice, W = Water, S = Salt and L = Salt solution

So, here this problem involves a simplified model for growth of ice crystal in salt water.
We have an ice crystal of certain radius R and then it is in a salt water. So, the purpose is
that the growth of this ice crystal how is it going to take place in salt water that is what we
are going to have the problem. So, in that case, so, if we in order to know the change in

radius with respect to time etcetera how to do the analysis.

If you wanted to know the temperature profile etcetera in the liquid phase then how to do
all those analysis with that is what we are going to do here. Crystal which is pure H20 is
idealized as a sphere of radius R function of time t; that means, it is increasing as growth

of crystal is taking place.



Main effect of salt is that it lowers the freezing point. Whatever freezing point T is there.
Now, that would be lowered if you add or if you do this crystallization salt water rather
than in pure water right. Freezing point depression is described by Tr = T, — B Cs, Where
To is freezing point for pure water, beta is non positive constant and Cs is salt concentration
ok.

So, this To is freezing point for pure water right, but this crystallisation or growth of ice
crystal whatever you wanted to do little rapidly faster. So, then rather crystallizing in pure
water, what you do? You do in salt water. So, that by using that salt water this freezing
point will decrease and then the depression in freezing point is given by this expression.

Far from crystal the temperature T., and then concentration C.. are known and then solution
is stagnant, that is the other condition. So, these things are known to us. C» and T are

known for which are far away from the crystals.

Assume that temperature and concentration fields are both pseudo steady and spherically
symmetric. When we say spherically symmetric then what we can say? Whatever the
changes in Species concentration which has a species conservation and then change in
temperature etcetera because of solving the energy equation that we get the all those things

would be waiting in only r direction.

So, we do not need to worry about 6 and then ¢ direction variations. We need to worry
variations in r direction only as long as the sphere is symmetrically spherical. For
simplicity, assume that ice, pure water and salt solution all have the same density. So, pi,
pw, pL all these are equal to each other that is what it mean by. Notations | we are using
for ice phase, W for water, S for salt alone, L for salt solution ok. So, they are different

fine.
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* A) use EoC to show that v, = 0 throughout the fluid

: S D
* B) assuming for the moment that no salt is present; determine dR/dt
* C) Now for case of salt water, note that temperature and salt

concentrations in liquid at 7 = R are both unknown, as is dR/dt. Use
conservation of salt to obtain one relationship among these quantities

* D) Use conservation of energy to obtain second relationship among
the quantities mentioned in (C) part of problem. Assume that partial
) bl e
molar enthalpies in the liquid are constant, i.e., assume that

temperature variations in the liquid produce enthalpy changes which
are negligible compared to the latent heat @
Pabe D e

* E) describe how to compute the calculation of dR/dt for salt water

Now, the first part of the question is we have to prove that v, = 0 throughout the fluid by
simplifying the equation of continuity. Then second part assuming for the moment that no

salt is present that is you take you are taking pure water. Then what is the expression for

Z—Ij? How this R is increasing with respect to time as the crystallization process continuous?

Now, for case of salt water note that temperature and salt concentration in liquid at r =R

are both known, right. So, temperature and then salt concentration at the surface are known
and as is Z—f. Use the conservation of salt to obtain one relationship among these quantities

that isamong dR dt To and then Cs at the surface etcetera for these relating these quantities

we have to develop one relation.

Then use conservation of energy to obtain second relationship among these quantities
mentioned in part C of the problem. Assume that partial molar enthalpy is in the liquid are
constant. Assume the temperature variations in the liquid produce enthalpy changes which

are negligible compared to the latent heat A. Describe how to compute the calculation of

Z—i for salt water that is the last part of the question.

So, we take one by one as we have done in the previous two lectures and then try to obtain
these things. Problem looks lengthier, but the sequence when we go step by step it looks
very simple and straight forward because we have already done couple of problems like
this.
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Solution "

* Freezing point depression: Ty = Ty — B[05]

A) use EOC to show that v, = 0 in liquid

* Continuity Eq. for v,(r, t) and constant p:
d I'd
( E(rzvr) = 0= r?v, = f(t) = R*v.(R,t) ¥

* Conservation of mass at interface (r = R):

. ( = d_R) = ( . ﬂ) Salt solution
p}’{ Pa), =\ sla), (NaClin H,0)
* For stationar-y solid ice, v, = 0 T=T,and
e -
Cs=Cgyat

* Density of ice is p; and that of liquid is py

* =2u[Rt =ﬂ=0for =P
B o

* 2 0(r,t) =0 everywhere

So, schematically if you take the system, we have a spherical crystal whose radius is R
initially and then it is function of time it gradually increases. This crystal is of pure water
ok and it is in a salt solution. Far away from the crystal that is at r = «, T., and C. that is
temperature and then salt concentration are known at far away distance from the crystal

right.

Now, freezing point depression this is what is given. This is Cs. T = T, — 8 Cs. Cs is salt
concentration. Now, we use equation of continuity to show that v; = 0 in the liquid. So,
continuity equation v, now we understand only r coordinate variations are only there

because of the spherically symmetric condition that is given.

So, 0 and then ¢ we will not be taking for anything whether it is conservation of mass,
conservation of momentum, conservation of energy or conservation of species transfer
whatever is there. So, we take only r coordinate variations because it has been mentioned
in the problem that symmetrically spherical crystal is there.

And then under such conditions this v; or temperature or concentration variations whatever
are they will be function of r only with respect to the space, but in addition to the space it
is also dependent on the time. So, v as function of r and t we have to find out and then
when the density is constant. Why constant? Because it has mentioned that densities of all

three are equal.



So, continuity equation if you write you know in spherical coordinate ;—T(rzvr) =0+

d . 1 d
— vg sin 6 would also be there + —

———s o550 Vo SID 0 these terms should also be there,

but you know we are not taking these terms right, v, terms or 0 terms we are not taking.

So, that is a reason we are writing only this part ok.

This we understand by this now because we have already solved so many problems. So,
in the continuity equation | am writing only the term which is having you know r
coordinates are the function of r that term only we are writing vg v,terms I am not writing
because it is clearly mentioned and then we have already solved so many problems, we

know how to do that one.

So, we get %(rzvr) = 0; that means, (r%v,) is equal to constant, but that constant is

function of time at constant is function of time, but it is independent of r ok, independent
of space, but dependent on the time ok. So, if you apply boundary condition at r = R then

again we get the same thing R?v, (R, t) is again f (t) ok.

So, but now this from here we cannot prove that v, is 0 everywhere. So, we have to leave
it as it is now, but we write conservation of mass at the interface that at r = R right. So,
then towards the crystal side whatever is there that we are writing R~ towards the liquid

side whatever is there and that we are writing R* both of them are at the surface only.

Towards the crystal side we are writing indicating R~ quantities or towards the liquid side

we are writing quantities at R* or R* quantities R;, R. whatever we are taking. So,

(pvr — pd—R) = (pvr — pd—R) right. In the ice there is no velocity. So, v,.is 0. Now, here
dt I dt L

p1, this is py, this is p, this is also pL. So, then what we get?

By applying the stationary solid ice vy is O then remaining part ice density you write p; and

then that of liquid you write p. then simplify then you get v, = (M) Z—I:. And then that

PL

should be 0 because p;, — p; = 0 because in the problem it has been mentioned that you

know densities of all three are equal to each other.

So that means, v; is 0 in the entire liquid ok. So, that is the first part is done. First part is
done that we have to show v; = 0 in the liquid.
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/

B) determine dR/dt for 3V = 0 (pure water case):

oo
i(rze)—0=>r2e —f(t)( Sfm”tf‘ L
or 1 = _/_L,_J 'y‘/\.ﬁﬁ_

_f0)

k, 17k,

Now, we take the second part of the problem. Determine Z—}; for pure water case when there

is no salt. When there is no salt added to the liquid then it is a pure water. So, then Cs is 0,

because Cs indicates the salt concentration, right. For pure water with v; = 0 then energy
equation e if you write you get only this —k,, Z—: or er would be having the only conduction

terms other terms will not be there right because the v, is 0. So, the convection terms are

anyway not there ok.

And then system is so small, there is no velocity etcetera. So, the viscous dissipation,
etcetera all those terms would also be not there or work done by pressure etcetera those

terms are not there right. The simplified energy conserve equation for liquid if you write
that is aa—r(rzer) = 0 would be there right. In spherical coordinates you write energy

equation in terms of e quantities that is er eq €4 etcetera.

So, then ey if are any way not there and then e terms are also only variation with respect
to you know r direction are there that also only conduction terms are there. Now,

convection side terms are not there because v is 0 right. So, then we get %(rzer) =0

right.

Now, again here again if you integrate r2e,is equals to you will get a constant, but that

constant is function of time. It is a constant with respect to r or with respect to space it is



a constant, but with respect to time it is function of time some unknown function f (t) let

us not worry about what it is.

So, now from this equation what we can write? We can write g—: = —:—T right and then

f()

from here we can write e, is nothing but —= and in minus and divide by k,, as it is right.

So, this if you solve, you get the temperature profile ok.

(Refer Slide Time: 13:51)

—r%:)-,wcget f= —ft)

* By integration of above eq. = B + g(t)
o B

* BCs: atr = @, T= Tm—g(t)

tatr= RT=Tp=To- p;{c) To "‘+g(t) — I;—”:R(TO—Tw)

T(T’ t) (TO m)@ 100

v Usc energy conservation eq. at interface to relate T to
= (R
! (e, ¥, G dtb (e, ¥ G dt)@
. /ﬁ/w kwa_ké/c X

So, now this equation we integrate first ok. Then we get T = % +
another constant g(t). So, this is also constant with respect to r, but it is function of
some function of time. What it is we do not know right. Now, we have two boundary

condition.

It has been mentioned that you know at the surface the concentrations are known, far away
concentration or anyway known that both of them at the surface temperature is known and
then far away from the crystal surface also at r = r.. also the temperature is known that is

given.

So, atr=rs, T =Ty is given. If r = oo that if you substitute in this equation. So, 1/ is 0.
So, then first term is gone. So, T« = g (t) right. Other boundary conditionatr =R, T =Tr
freezing point which is given as T, — 8 Cs(R, t), but it is a pure water. Pure water case we

are doing problem B.



Problem C is for the salt water case. So, for problem B pure water, so, salt concentration

O]

is 0. So, Tr is nothing but T,, and then this you substitute here. So, you get ' g(t). So,

O] f()

thati Is—+ g(t) is nothing but T., from the first boundary condition. So, — we can write

R(T, — T,,). So that means, this fk( ) is now known and then g (t) is also known to us.

w

S f() (To Too)

0, —= is nothing but is there and + g (t) is nothing but T... So, this is the relation

for the temperature as function of time. You may be thinking that right side everything is
function of r, there is no time function. So, that is not true because this R whatever is there

that R is function of time. So, that is the reason here also we have written T (r, t) ok.

Now, use energy conservation equation at interface to relate T to Z—I:. Actually, our purpose

of question B is not to get temperature profile, but we have to get relation for i—f and then
that relation that should be related to T. What we have done now? T we have related to R,
but we have to relate T to Z—Iz. So, that is the reason we are writing energy conservation

equation at the interface, at the interface.

So, now crystal side ice we are writing W and then water side liquid side now it is pure

water. So, then W we are writing. So, e, — ).C; H to towards the ice side should be

balanced by e, — Y.C; H towards the water side should be balanced at interface right.

So, now this e, is nothing but —k Z—: Now, again we are replacing this | by R~ just to

indicate that it is towards the ice side. And then this W we are replacing by R indicating
towards the liquid side or water side now because it is a pure water. So, this we can write

e, is nothing but only conduction term is there here no, other contribution is there.

Convection term and then viscous dissipation contribution etcetera are not there. Whatever
because of the concentration or enthalpy changes etcetera are there they are we have

already written them here. So, e, is having only conduction contribution that is
—k,g—i lr- — C; H as it is. You may be thinking that you know what about that Nir or

Nix terms Ni in this case Nir terms or Nsr terms etcetera why they are not coming.



They will be coming if we have you know dilute system or more than one component is
there. Now, its two phases, but only one component H,O, pure water and then water crystal
made up pure water. So, other those other terms are also not coming into e-term. They will
be coming in the C problem where we are doing the same this B problem for the case of

salt water or salt solution right. So, this is what we have.

Now, towards this right side also what we have? e in place of e, we have only —k,, Z—T and

this is C,, H,, There IS no summation because only one component is there ok. So, now,
towards the ice side temperature is constant from this centre to the interface. Temperature

is constant in the crystal; obviously, it has to be. So, that is the reason Z—; is 0.

or —
So, now what we can write? From here —k,, - CWH

WL C,H, We can write. So,

that we have written here right.

(Refer Slide Time: 19:39)

S : ar
* Towards the ice side, temperature is constant and = R_= 0

¢ R
A (B (9 By~ GH)G
.ﬂ =

- G WY
Th & =

=\ dR
= E(R ,t)=(Pw w_lel)E e
il dR dR

& PW(H HI)E“'pw}L dt ’a' =0 W

LR e L ( ) _M
.ﬂg_ plar( D) (To I) 12)p=p  pwAR

So, but this Z—Z at R* ok. Now, this molar enthalpies we have written. The concentrations

are not known. Cy, C, etcetera are not given, but p is given. So, that is the reason this molar
enthalpies, partial molar enthalpies we are writing you know per unit mass enthalpies

specific enthalpy.



So, py H,, — p;H, for the partial molar and then tildes per specific per unit mass ok and
then this the Z—I: fine. So, now, densities are also constant it has been mentioned. So, that

we can take up p,, and then multiplied by this one. So, now, the change in enthalpies
whatever are there because of the temperature variations, temperature variations are shown
in the left hand side.

So, change in enthalpies are very small that is | had mentioned. Compared to the latent

heat this change in enthalpy is very small. So, then this we can replace by A here. So, we

aT dRr

dR . dRr . .
get _kWE = pW}‘E' So, . relation we want. So, that —; We are keeping one side, rest

everything we are writing other side.

In the previous slide we got T =or T (r, t), we got it as (T, — Tw,) RT(” + T,, we had. So, if

you do g—: here you get (T — Tw,) (— %) |-=g. So, that we have written here right, R that

is function of time. So, as it is we are writing here.

So, this equation we can write, you know when you substitute r = R, you will get %. So,

that is ©wTo=T) This is the relation for & ok.
AR dt

w
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* C) use conservation of salt to relate Ty, Cs(R, t) and dR/dt: 7

* Species conservation eq. for salt: %(TZNS,) =02 12N, = constant = F(t)

* BC:at r= B No, = Ny (R,0) 377N (r,0) = F(O) = R*Ngy(R.1) 4
e

=

* But for dilute solution with = Ng,(r,t) = —DS% ($oren (B) = V3 (mH=0

\w A )
aCs _ Nsp(rt) _  Nse(RY)R?

ar Dg @ T

* BC: Cg(oo,t) = Co = G(t) v

N (Rt) R? -
. Cs(r,t)=—S;(S e, | *

U=

2
== S

.—/&7gﬂ = G = (o

=40

Now, the same thing we do by taking a salt solution ok. Till now we are taking ice crystal

in pure water for the problem B. Now, for problem C that same pure ice water crystal



whatever is there that we are taking in salt solution because by adding some salt depression

of freezing point is taking place. So, crystal growth can be little faster ok.

So, for that case what is Z—Izthat we have to do. Species conservation equation for salt

solution we write, you get % (r?Ns,) = 0; that means, 2N, is equals to constant which

is function of time, but independent of r with respect to r it is constant, but it is function of
time ok. So, this we are getting. Here also Ngg and then Ngg, etcetera those terms would

also be there, but we are not writing them.

Why we are not writing? Because we already know that spherically symmetric system is
there. So, variations are there only in r direction, 6 and ¢ direction those variations are not
there. Boundary condition at r = R, it has been mentioned that the flux is known. Let us
say that flux is Ng, (R, t) right.

So that means, 72 and N; (r, t) = F (t) that should be equal to RZNs,(R,t). Now, this
equation is also of no use until and unless what is this relation that we find out, what is N,

(r, t) that is what we have to find out then only we can use this equation.

So, for but dilute solution with vy = 0, if v, is 0 that means, there is no bulk motion. If there
is no bulk motion in the combined flux you will be having only diffusive flux terms only

be there right. So, due to the bulk motion whatever the flux contribution is there that is not
there. So, that is Ng, at N, (, t) is nothing but —DS% because v = 0 in the liquid that

we have seen problem A.

From a problem A, we have already proved that v, (r, t) = 0 in liquid. So, in the Ng,.only

diffusive flux contribution would be there, convective flux contribution would not be there.

So, Ng,-(r,t) is —Ds %. This is again still not complete because what is the Cg function

of r that also we did not know.

So, for that reason we have to go for interfacial balance equations anyway that we will do.

So, from this equation g—f we can write — NS;—(”) Ng,-(r, t) from this equation what we can
S

2
write? Ng, (R, t) 1:_2 we can write and divided by Dy is as it is.



We get Cs = N, thisis at Ng,-(R, t). So, it is a constant. It is changing in radial direction,

but at the interface it is constant. So, we have to treat it as a constant divided by Ds and
then R? and then integration of f—riz is +%+ constant integration constant. That is

constant with respect to r, but it is constant that constant whatever is there that is function

of time. So, G (t) here right. So, this we have to find out.

We know at far away distance from the crystal that is at r = o concentration of salt is

known that is C. So, here if you substitute r = oo then Cs would be C.., so that means, G
(t) = C because é is 0 here. So, G (t) = C that we know. So, what we get from here? Cs

as function of r, t is nothing but given by this expression right.
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* Use species conservation eq. at interface to relate Cs to dR/dt
dR dR dR
* (ng - ;zéa)f (Nor - € 5F) = N (R ) = GRS
= @

2
* but G(R,t) = Cs(r = R t) = ®IR 4 =”i;f:i)k+cm

D
Q«fy‘p — S -2

¥d U}' NU».‘ z
Cs(Rt, R Coo
“ Cs(R,t) % Coo 2(Cs (R ) = —5me
= g (l'@)

* Note: C(R,t) > C, fordR/dt >0
——

* Since salt must diffuse away from the moving interface

. . . . dR .
Now, use species conservation equation at interface to relate Cs — because the previous

equation Cs as function of r, t that we got and then that is in terms of r as function of time

is there right in this slide here. So, now, here Cs is related to R right. This R is related to
time, but we want this Cs related to Z—f. So, that we wanted to do. So, that we can get here

by using the species conservation equation at the interface.

So, now here you can see Ng, — CSZ—}; towards the ice side should be balanced by Ng, —

CS‘;—'; should be balanced by liquid side right. So, in the ice side or the crystal whatever is

there ice crystal is there of it is pure water. So, Cs is 0. So, if there is no salt in the crystal



phase, so, then obviously, its flux would also be 0 in the crystal side. So, what we have

dR
here? Ng, = Cs e

So, now this Cs (r, t) we know, but now here it is as function of R, t that is what we have.

So, the previous slide what we got? Cs (r, t) we got it as Nsr(RE)

R? .
and — was there. So, in
Dg r

place of this r you are writing R because you want Cs(R, t). So, in the previous expression

previous slide whatever Cq(r, t) was there. So, this r you replace by R.

So, get Cs(R, t). So, then we have this one. So, that is this one right. So, what we have

- Ngr(R,t)
DgsR

here? Cs(R, t). + C. was there, but Ng,-(R, t)we do not know right. So, what we

know? It is nothing but Cs(R, t) ‘;—Iz.

So, Cs(R, t) Z—}zin place of, in place of N, (R, t) that we have written. And then remaining
this Di + C. terms are as it is right. Then what you can write? Cs(R, t) terms one side
S

remaining terms other side if you write you get the relation between Cs and ‘;—f by given

way this one, fine.

So, now here C at R, t would be very much greater than C,, for Z—f if it is large greater than
0 according to this equation that is what we can understand. Species salt must diffuse away

from the moving interface that is the reason that has to be Z—f has to be positive.



(Refer Slide Time: 30:27)

¢ D) Use conservation of energy to get a second relationship among the
unknowns for salt water case:

* Now energy equation for liquid:

. g%(7’1,_):/0:& r2e, = constant = f(t) = r* (—kL% + ZiNirHi) =

-

ar = aT =
© 21ty + YN H = f(8) =2 ~rth o = () - XN
f©-% iy P (
t)-)..T“NiH; h(t =
_=—%;k,‘u=—rz_k,‘ where h(t)=f(t)— ZierirHi l, ’

—

h(t

L) + Constant
Tk,

—*——”—,_.—

Now, the fourth question or fourth part of the problem use conservation of energy to get a
second relationship among the unknowns for salt water case. So, energy equation for liquid
if you write you get though by % (r?e,) = 0 because egeg, terms we are not taking. And

then r2e, should be constant upon integration that constant is constant with respect to r,

but it is function of time. So, f (t) we are writing.

So, but now e here in the previous case when pure water was there only conduction part
was there right. Flux because of the mass transfer etcetera those terms were not there. So,
now, those terms are being added here because this case we are doing for the salt solution
case. Problem C and D are for the salt water case salt solution case. So, this term is being
added that is Y N;,.H; = f(t).

So, r2k; Z—: these term Y.r2N;, H; = f(t). What we are writing? This 3 term is also we are
taking to the right-hand side right then Z—z we are writing one side and rest all other term

we are taking other side right.

So, this f(t) — X;7%N;-H; we are writing h (t). This 72N, is constant right. From the
species conservation equation simplification previous slide that we have what we got?
r2Ng, = F(t) = R%Nq,, this is at R, t, this is at N, (r, t).



So, this is what get. So, 72N, only for salt part we have written there, but that is true for
all the cases. We get the same thing. So, that is a function of time only. So, combining
these terms and then writing as one simple function of time is not going to affect the further
integration that we are going to do because this entire term though here by appearance it

is looking r2 term is also there.

So, how can we take as a constant because we have to integration, we have to do with
integration next step that you may be thinking, but that 72 Ng,. or 2N, is constant and that
is function of time only as per the previous slide we have done the species conservation
equations simplification right. So, this is what we have. Now, you integrate this one

T (rt) = + constant. So, we have to find out two constants h (t) and then that constant.

(Refer Slide Time: 33:28)

¢ =T(nt)= %[) + Constant
—

© BCLT(r=R,t)=T(R,) = Tr = Ty — BCs(R. 1)
Ml

t
= Constant = Ty — BCs(R, t) —L)
Rk,

———as

* BC2:T(r = ,t) = T,, = Constant = T

t) ht)

¢ 2T, =Tg - pCs(R,t) - -To BCGR ) -T, X

* 2ht)= RkL(To-ﬁCs(R.t)-Tm)

W
r,-OSEIT p y T R
L

* =T = [Ty~ BGR. O - Tol 2+ T

RCHE S
g

- e
Tﬁ;*

So, one boundary condition in the fourth problem it has been mentioned that the at surface
the temperature is known that is at r = R temperature is known that is mentioned in the
problem, D part of the problem clearly. So, T (R, t) is known. So, that is Tr and then that

is given in terms of T, — B8 Cs(R,t) ok. So, now, here when you apply this boundary

condition here at constant should be T, — 8 Cs(R, t) — M

Other boundary condition atr = oo, T = T. So, in this equation if you substitute r = c you

get constant = T«. So, for constant we have two relations, this relation and this relation.



When you equate them together you have this relation. So, from here you get this one.

So, we have constant as a T |n also we got it by this relation.

So, h tis also known and then that constant we have written as a constant only that is also

known. So, that we substitute here T (r, t). h (t) is nothing but Rl (To—f rf‘f(R't)_T“) is as it
L

is + T, fine. So, now, this is T related to R function of time right. Whatever R’s are there

they are all function of time, but we wanted to relate this T to Z—I:.

So, for that what we do? We will be doing in the next slide you know by writing the balance
at the interface ok. So, temperature distribution as function of space and time is given by

this expression finally.

(Refer Slide Time: 35:44)

* Use energy conservauon eq. at interface to relate T to dR/dt

* At the interface: (;z Z G _1 Z’: er z Cl_, (::)

= dR
colGHS kLE 4 Nyl geHy + N g s = (€, HW+CSHS)|EE

dR\ =
. =>—kLa—-| =I(CHy CIHI)|R+—' ‘R*H ( STlR*_CSI)HS

= (pwHw —plﬁ: Ezp,w Hw =

e 07' lldR
Lﬂr dt.

So, use conservation equation at interface to relate temperature to Z—f. When we do we have
— dR . . . . . .
( — Y.C;H; ) = (er —YiCiH; —) , liquid side and then ice side right. So, here ice
dt dat/,

side this e, /e, whatever is there g—: is 0 because whether it is conduction or anything

whatever no changes are taking place in the ice crystal side because the temperature is

constant in the entire crystal from the center to this interface ok.



So, remaining one is that in the ice side we have only ice, no salt nothing is there ice crystal
is there. So, —Y};C;H; ‘;—I: only we are writing without any summation because in the crystal

side we have only, we have only ice crystal no other component is there. In the liquid side
e, 1S having you know conduction term then whatever the energy changes because of the

species flux terms and then because of the enthalpy variations in terms.

And then in the liquid side we have liquid is having both water and then salt. So, w, S

quantities are there. N,,.|z+H,, + Ng.|g+Hs — (C, H,,+CsHg)|p+ % right and then

. aT
conduction to —k;, e

So, liquid side whatever are there that those quantities we are indicating with R*. So, at
liquid side all these quantities there when you expand this equation you get, but ice side
we have only this one. All other terms would be 0 because ice is pure water crystal ok and
then temperature variations are not there. So, conduction term should be 0, flux term
should be 0 right and then pure component is there. So, that is what we have only this
component of ice, only pure ice is there. So, only this part is there right.

So, now next step what we do? We write this —k;, g—: one side and then this C,, H,, % and
then the C; H; Z—fthat we are combining together right and then multiplied by %. Remaining

—N,,.-|p+H,, and then —Ng,.|+H; and then this minus of minus +CSZ_I: term as it is here

fine.

So, we have found just now in the one of the previous slide Ng, (R, t) is nothing but CS%

at R, t. So, these two terms together 0 because this is equal to this one and then one is
having plus another one is minus. So, this is 0 together right and then dilute solution, it is
a dilute solution. So, flux of water would be negligible. Flux of salt would be higher, but

flux of water would be very negligible because it is a dilute solution right.

So, this again concentration to Cw C, are not known, but pw pi are non are known. So, then
we are writing this enthalpy also per unit mass units. So, these remaining two terms are
anyway 0. So, densities are also equal to each other. So, then pw we are taking common.

And then problem statement it has been given that the change in enthalpies because of the



temperature variations are there very negligible compared to the latent heat. So, then this

. dR .
we can write pw A = fine.

(Refer Slide Time: 40:20)

STaIS
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dR _ ki

oo ®R__ kT py K s (R
=>dt pwlar(,li;t)_ pwlw](ﬁﬂk

_ ky[Ty = BCs(R.t) = Too) *
pwAR
E) describe how to compute dR/dt for salt water

—_—

* From (D), we have: = ‘;—R _ kulTo=BCs(R)-T]

* From (C), we have: Cg(R, t) = (C;”
— 1

ki, oT

+ I
.Y (R, t) ok. This is

So, that equation ‘;—': you right one side remaining term that is —
what we have. Now, the previous slide temperature distribution what we got? We got T (r,

t) is nothing but [Ty — B8 Cs(R, t) — T ] (é) + T, (Refer Time: 40:58), alright.

So, from here ‘;—i if you do, you get that whatever this one multiplied by (— %) you will

get and then you have to substitute r = R because this is this ‘;—: is it R* ok. So, now, when

you do this one, so, what you have? You have pk;R [To — B Cs(R,t) — T,] as an

w

. dR
expression for — ok.

So, now next part last part of the question is that come how to compute Z—f for salt water.
So, that is Z—f these expression we got for %for salt water case ok, but how to evaluate this
one? So, for that from D part, we have already Z—I: is this relation right. Here in terms of

temperature we are getting you know | mean like in Z—I:related to temperature and then R

as function of time. So, it is here already we have and then from C part Cs(R, t) we have

already this one.



So, this Cs you substitute here right and then take all Z—I: terms one side and then solve this

equation to get the final Z—I: in terms of known quantities you will get.

(Refer Slide Time: 42:33)

Effect of Mass Transfer on Heat Transfer Coefficient

* Effect of mass transfer on heat transfer coefficient at interface can be
approximated using a stagnant film model

* Assume that there is a stagnant film of fluid of thickness 0 adjacent to
an interface located at x = 0 i
=

* Interfacial and bulk fluid temperatures are T and T, respectively

* In general, there will be non-zero fluxes of one or more species
normal to interface

* assume that these fluxes (N;,) are known constants throughout the
film i.e., there are no chemical reactions in the fluid

So, now we take another problem, effect of mass transfer on heat transfer coefficient. Here
effect of mass transfer on heat transfer coefficient at interface can be approximated using
a stagnant film model. Assume that there is a stagnant film of fluid of thickness 6 adjacent

to an interface located at x = 0, fine.

Interfacial and bulk fluid temperatures To and T. respectively are known they are given
that is at x = 0, To and X = 8, T.. In general, there will be non 0 fluxes of one or more
species normal to interface. Assume that these fluxes Nix are known constants they are
known they are constants, and they are known ok throughout the film there are no chemical

reactions in the fluid.
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* Recall that heat transfer coefficient is defined so that it represents only
“conduction” (Fourier) energy flux at x = 0, i.e.,

ar
+(3)..
h= =0
= TO = Too
A) show that in absence of MT, HTC is given by h = k/6 = h
S e = =

Thus, measured or theoretical value of hy determines apparent film
thickness to use in this type of model

B) derive expression for h/h, for a general case where MT is involved

— =)

So, recall that heat transfer coefficient is defined so that it represents only conduction

oT
. . —k(== = . . .
Fourier energy fluxat x =0 is M that is nothing but heat transfer coefficient. Now,

0~ foo
what you have to find out or prove? In the absence of mass transfer HTC is given by k/3

which is a constant because film thickness is constant for given system K is constant.

So, that constant let us say ho that is the first part of this problem. The second part of the
problem derive an expression for h/ho for a general case when there is a mass transfer as

well right. So, these two problems we have to take.
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J SOlutiOn: Tnterface

{ Bulk Fluid

Pictorially now, we have an interface which is located as x = 0 at which temperature is
equal to To right. Next to this interface there is a film. Film thickness is 6 and then at the

boundary between film thickness and bulk fluid that is at x = & temperature is Te.

So, between these two limits that is x = 0 to x = & that is within the film this flux are
constant and they are known ok. They are moving from x = 0 to x = & side right. So, here
the h is defined like this.

(Refer Slide Time: 45:21)

A) show that h = /8 = hyfor N; =0 (o m1)
* Energy eq.‘umgtate conditions including only thermal effects:

dey d dr - a*r
| kdx+2i}¢@,) 0= =0T=Cx+0,
L et AT
*BCsatx = 0, T=Tp (=T,

L

¢ atx= 6,T=Tg,:rm,=clas+cz:c1=T°'T'T0

L (Tw-r‘,) s "‘(g—DLo _ 'k(zﬁi‘))

5 To=Too

e

dx




For first case when there is no mass transfer we have to find out this h is a constant. Show
that h = k/d = ho for Nix = 0. Nix is 0 that means, no mass transfer case the problem 1, right.

So, energy equation under steady state conditions including only thermal effects if you

write % = 0 you will be getting.

This is a Cartesian coordinate system now we are having and then ex is having only
conduction and then mass flux terms are there or energy associated because of the mass

flux whatever is there. So, aa—x (—kg—i + ZiNixﬁi) and then this variations in temperature

and flux whatever are there they are also only x direction we are taking as per the problem

confinement ok.

So, if it is 0 then from here this actually this Nix is anyway 0 for the case of problem A
2

when there is no mass transfer. So, we get ZTZ =0thenT=Cy1x+CoatT=0, T=To. So,

Co=ToatTisatXx=8T = Tx. S0, T =C1 6+ Cp C1 is -

So, now this C, and then C; if you substitute here then you get T = C1. Cy1 js o= To (x +

T-Ty

C2). Cais Top that |s = %. Now, we need Z_Z right. So, this equation Z—z you do. You

0

get % multiplied by 1.

axlx 0 Teo To

0=Too

divided by T, — T, is as it is. So, this T, — T, this T, — T,, cancelled out with —. So, —

And then h definition is given by this —k— is nothing but =— and then whole

k
of — +E.

So, which is a constant, that constant we are calling ho as per the problem statement. So,
this is the first part, exactly similar way we have to do the second part, but there we cannot
cancel out this Nix because in the second case we are taking mass transfer also included in

the system.



(Refer Slide Time: 48:07)

B) Derive general expression for h/h,:

* Steady state energy eq. for w is

de, _ d dr =\ dH; _
= u(Hat I Nufl)=0 F‘;Z,.fod—_x-"

* For ideal solution with 7 as ref. temperature:

_ i di; .
Hi = H + Cyi(T — T;) and thus d—x' = Cy
o dLT

dx? k

So, Nix # 0, but it is constant and then constant is known that is what it is given in the
problem. So, energy equation here the % = 0 and then ey is nothing but conduction term

and then energy associated because of the mass transfer. So, that is }};N;, H; that is also

known right.

So, this equation we can what we can do? We can divide by minus k both sides and then
differentiate with respect to -, Then t £ L5 Ny M= g right. So, for ideal

ifferentiate with respect to —. Then you get — kZi ix— = 0 right. So, for idea
solution with Ty as a reference temperature you know H; we have to define because in

general this H; are not known right.

But these H; are related to the C,; etcetera, so, which are known for a given system from

the standard text books. So, that is the reason we write H; = H;y + C,;AT. So, from here

dH; . . = dT . a’r 1
— s nothing but C; — SO, that you can substitute here. Then you get =3

YNy Cpi Z—: = 0. This equation we have to solve right to get the temperature profile then

only we can get the h definition.
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dspe 5 dT _
. ”E‘kz N!,c,,l]

* Now nondimentionalize above eq using following scaling paratemers:

X
3'3' i To—Tw' - kZ”wa
4

~T)d0 Uy -T.
52 dn? ké
d29 o
i
* Dimensionless boundary conditions:
6(0)=1 and 6(1)=0

So, now non-dimensionalizing this above equation using following parameters we are

doing for simplicity of integration only. So, this x/6 we are writing as n and We are

writing as 6 and whatever ;ZiNixC_pi which is a constant that we | am writing as a y. This

is all a constant because N;, is constant throughout the film that is mentioned and this

constants are known that is also mentioned.

So, that in this relation except Z_Z; whatever you say that entire thing is a constant right. So,

now, this when you use this expression to convert this equation in terms of non

dimensionalized variables then we get first equation (T, — T,,)920 divided by, T you

will get (T, — T.,)320 and then dx? you get §2dn? and then —%, whatever ¥;N;, C,; is
nothing but T3 rlght

And then dt from here dt is nothing but (T, — T, ) d 6 and then dx is nothing but 8 d n =
0. So, here this k this k is cancelled out anyway. So, this equation both sides you multiply

by —T Then you have this equatlon e y— = 0 right.

So, this equation you have to solve to get 6 as function of n right. So, you need two

boundary conditions for 0 for different n values right. n = 0, x = 0; that means, n = 0 and



then x =0 T = To. So, 6 should be 1 and then x =& n = 1. So, 6 should be and then x = &
0 is equal to nothing but T is nothing but Te. So, Te, — Te, IS0 by Ty — T, iS 0.

So, boundary conditions 6 atp =0is 1 and 6 at n = 1 is 0 right. So, this equation when you

integrate first you get % = C,e""

(Refer Slide Time: 52:41)

* Now solve above equation and use BC to get integration constants:

yd9=0=>3—3=61e7" :W
’/_/ SEAL N Sl R

* BCs: ¢9(0)=1=%+cZ D
* and 9(1)=g=%eV+C2
eV

)i -
Y =>C1——m and Cz—m

=

Then second time when integrate it you get 6 = %eV’? + C,. This C1 C; are integration

constants. | have written directly you can do by steps ok. So, first boundary condition when

you substitute that iswhenn=00=1.S0,1= %eo is1+Ca.

And then whenn =16=0.So0,0 = %e” + C,. You have two equations two constants.

When you solve you get C; is equal to this one, C; is equal to this one. | have written

directly, you can do them, very simple, straight forward.

. . . . . . . Y—e¥n
So, this C1 C2 you can substitute here in this equation to get 6 that is this one. 8 = ===

e¥-1

right. So, this is nothing but temperature distribution in non-dimensional form right.
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= 3 T h
dxly=p A =

e ;{

i O

ax eY-1

o .'.h:

14
= Tﬂ-_}:w i 8 (_e_Y;l_

* Fory >0, Ly
o —
* andy <0, X
LI

* ie., net mass flux away from interface tends to reduce h, whereas, mass flux
toward interface tends to increase h

* If species move both directions, then the relative values of Epi are important

A

oT
- - _k E™ =
So, but we want Z—z because in the relation that h = —Mthen that we have to do.
0~ 1o
So, s 0; that means, in terms of 6 it is nothing but To~Teo 48
dx 5§ dn

In place of dT you can write T, — T, d 0. In place of dx you can write 6 d  and then if x

= 0 that means, n = 0. So, previous slide we just got a 6 as function of n that you

O_Yeyn
e¥-1

differentiate with respect to 1. So, then you will get this expression right,

Now, here n = 0 if you substitute here e°. So, that is 1. So, e;—‘_fl and then remaining

Y CAT
constant is as it is ok. So, h = w and this — k as it is. (a—T) |x=o IS nothing but
To—Teo ox

To-Two Y
S e¥-1
To—Too

This T, /T, this T, /T, we can cancelled out and then minus and minus multiplied. So,

k . - Y k . . h vy
then, + : multiplied by 7 So, 5 s nothing but ho that we know. So, Pl And then

this y we already know it is a constant.

If it is a positive constant from this relation hi < 1. If itis a negative constant then hi > 1,
0 0

right. So, that is net mass flux away from interface tends to reduce h whereas, the mass
flux towards the interface tends to increase the heat transfer coefficient h according to



these two conditions. If species move both direction, then relative values of C,; are

important because the C,,; terms are coming into the picture in y definition ok.
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The references for this lecture are provided here. So, you can find these problems in this
reference book Analysis of Transport Phenomena, by Deen.

Thank you.



