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Welcome to the MOOC’s course Transport Phenomenon of Non-Newtonian Fluids. 

The title of today’s lecture is Quasi Steady Analysis of Simultaneous Heat and Mass 

Transfer. In the previous lecture, we have taken a case where simultaneous heat 

transfer, mass transfer and reaction are taking place. 

So, under such conditions how to apply the quasi analysis and get the time dependent 

properties as well those things we have seen. So, in this lecture we will be taking a 

couple of cases where only heat and mass transfer occurring and then we apply the 

quasi steady analysis approach to get the required information, ok. 
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So, first problem we will be discussing evaporation of column of liquid right. So, here we 

have a cylindrical column whose radius is R and then height is H right. So, in this one 

initially a liquid which is organic in nature so, that is filled in so, that we are designating 

with B and then outside there is air. 

So, that we are designating as A right liquid is B and then air is A and then we are assuming 

the air is single component material we are not we are not taking into account the 



composition of the air. So, that to avoid the diffusion between multi component. So, now, 

we have pure liquid and then air. So, that only we can have a binary diffusion case, right. 

So, initial interface is taken at z = 0 as shown here right. So, now, initially it is opened to 

the air and the evaporation begins at t = 0 right. Evaporation is lowering the gas liquid 

interface by an amount h (t) that increases until the liquid is completely gone. 

So, initially it was here. So, then gradually the interface is falling down. So, let us say at 

certain time t the height is z = h (t) and then completely when complete evaporation takes 

place the height would be H ok, interface height should be said there should not be any 

interface after it is completely evaporated; however, till the last layer we can call it as H, 

ok. 

So, then z = 0 is chosen as a origin which is the gas liquid interface ok. So, this is the origin 

we are taking for our coordinate system. For simplicity air is viewed as a single component 

so, that diffusion in the gas is binary only. So, we do not need to worry about the diffusion 

of multi component systems because if you take oxygen, nitrogen separately and then if 

any other gas is present in the air then the system will not be binary anyway ok. So, that is 

the reason for simplicity we are taking air is as a single component. 

So, now initially the concentration now the actually you know evaporation of liquid B is 

taking place right evaporation of liquid B is taking place ok so; that means, we need to 

find out NBz; z direction you know it is taking place right, we need to have the boundary 

conditions as well. So, the evaporation whatever is taking place. So, then that is diffusing 

out. So, that near the interface the organic whatever is there that is very less amount only 

the organic vapours mostly it is occupied by the air right. 

So, at z = 0 whatever the concentration of xB is there. So, that we call x0. And then z = h 

(t) whatever the concentration of B should be there that should be 0 because we are saying 

that you know most of the organic whatever is there that is only small amount of organic 

is evaporating and then that is at the interface only right. 

So, rest most of the remaining space is occupied with the air so; obviously, at the top which 

is you know z = h (t) location as per this schematic your xB would be 0. So, we need two 

boundary condition need to be understand right. And then this NBz is there in the liquid 



NBz towards liquid side whatever is there is very much higher compared to the NBz towards 

the gas side. 

Because liquid B is evaporating so; obviously, towards the liquid side whatever is there. 

So, the flux would be higher right and then we are going to do the interfacial balance as 

we have done for the previous problem where we have taken the quasi steady analysis. So, 

then this understanding is required in simplifying the interfacial flux balance equation 

right. 

And then also here vz the liquid whatever is there that height is decreasing so; that means, 

there is a motion. So, that 
𝑑ℎ

𝑑𝑡
 would be there towards the liquid or the vz in the other side 

would be 0 because that gas is not moving ok. So, these understanding is required to 

simplify the interfacial balance equations, right. 
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Additional details if you see we are taking air as A and then organic vapour as B. Mole 

fraction of organic vapour at z = 0 is constant and it is x0 actually it should be time of 

actually it should be function of time as well not only position. So, xB (0, t) is x0 ok. 

Air above the container is assumed to be well mixed and contain a negligible amount of 

organic such that xB (h, t) = 0 that is at the top layer at which there is no organic or very 

little organic is there mostly it is air is there, ok. Assume no air enters or leaves the liquid, 

as would be true if the organic were pre-equilibrated with the ambient air. 



So, this is the additional conditions. So, what does it mean by? If no air is entering or 

leaving; that means, flux of this component is 0 this component is designated as A and 

then it is we are flux we are taking in the z direction. So NAz = 0 that is for the air NAz has 

to be 0. So, in the combined momentum flux equation when you write so, there you can 

substitute this NAz = 0 as per the statement. 

And then what is the time at which evaporation will be completed that is the expression 

for the process time scale tp we have to find out ok. So, since the time you are finding out. 

So, you have to have go for you must go for you know so called quasi steady analysis or 

completely time dependent approach completely time dependent approach is not possible 

analytically doing. So, then that is the reason we are going for quasi steady analysis. 
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So, what we do if you recollect we have done a similar problem diffusion through stagnant 

gas film where a liquid A is evaporating and then mixing with gas B and then diffusing. 

So, what is the you know expression for the mole fraction 
𝑥𝐴−𝑥𝐴𝛿

𝑥𝐴0−𝑥𝐴𝛿
= that expression we 

have derived right. 

So, that expression if you remember this problem is quite similar to that one, but while 

solving that problem that was a first problem we discussed in our mass transfer part of the 

course we assume that you know interface is constant, there also I clearly specified that 

we are going to take a similar problem where interface is not fixed as a constant it is 



varying. So, now, here that same problem similar if not the same we cannot say the same 

problem similar problem we are taking by considering the moving interface as well ok. 

Now, we assume this pseudo-steady analysis is valid for this problem again. Then in the 

absence of time derivative and or in the absence of chemical reactions both NAz and NBz 

are independent of z how it is, that you can realise when you simplify the species 

conservation equation. So, for species C this is the equation. So, now, in the case of there 

is no time derivative and then in the absence of reaction we have this equation right. 

So, here time derivative we are not taking right and then NAz is there only in the z direction 

only NAz is there NAx NAy are not there and then NAz is varying only in z direction. So, 

𝜕𝑁𝐴

𝜕𝑁𝐴𝑧
= 0; that means, NAz is independent of z direction is not it? So, this is going to be 

very useful in further simplifying the equations similarly for the B component you do no 

time derivative no reaction. 

So, B flux also it is there only in the z direction right. So, 
𝜕𝑁𝐵𝑧

𝜕𝑧
= 0. So, this is in fact, very 

much essential compared to this one because this one we anyway know that NAz is 0 from 

the problem statement. So, this one is going to be very much useful in solving you know 

subsequent balance equations. 
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So, now combined molar flux for B; we are writing. Why we are writing for B why not A? 

Because now here B is the organic liquid which is evaporating so, for that only we are 



writing this combined flux equation. So, 𝑁𝐵𝑧 = 𝑥𝐵(𝑁𝐴𝑧 + 𝑁𝐵𝑧) − 𝑐𝐷𝐴𝐵
𝜕𝑥𝐵

𝜕𝑧
 𝑁𝐴𝑧 is 0 in this 

case as per the problem statement. Because no air enters or leaves the interface so; 

obviously, 𝑁𝐴𝑧 is 0. So, with no transport of air across the interface and with z chosen so, 

that the interface is stationary 𝑁𝐴𝑧 is 0 everywhere. 

So, now accordingly the instantaneous flux of B anywhere in the column of gas we can 

get by simplifying this equation number 1 that is nothing but 𝑁𝐵𝑧 at t instantaneous because 

𝑁𝐵𝑧 is varying with time also because concentration is varying with time interface is 

varying with time. So, then; obviously, the flux of B component which is there that will 

also be varying with the time. 

So, now, this 𝑁𝐵𝑧we cannot write just 𝑁𝐵𝑧 we have to write 𝑁𝐵𝑧 function of time should be 

=
−𝑐𝐷𝐴𝐵

1−𝑥𝐵

𝜕𝑥𝐵

𝜕𝑧
 which is coming from equation 1 only from equation 1 only, but we are 

specifically writing 𝑁𝐵𝑧 as function of time because now we realise that the interface is 

moving so; obviously, 𝑁𝐵𝑧 should be changing with the time. So, the same thing we can 

write this equation as 𝑐𝐷𝐴𝐵
𝜕

𝜕𝑧
ln(1 − 𝑥𝐵), right. 

Now, this equation if you integrate because what we understand? Already we understand 

that 𝑁𝐵𝑧 is not function of z. By simplifying the species conservation equation in the 

previous slide where we get 
𝜕𝑁𝐵𝑧 

𝜕𝑧
= 0. So, when you integrate this one we are going to 

integrate with respect to z. So, 𝑁𝐵𝑧as function of time can be taken as or can be treated as 

constant because we are integrating with respect to z. And then at z = 0 what is 𝑥𝐵 it is 𝑥0 

and z = h (t) what is 𝑥𝐵 it is 0 that also we have seen. 

So, 𝑁𝐵𝑧 (𝑡)𝑧|𝑧=0
𝑧=ℎ(𝑡)

= 𝑐𝐷𝐴𝐵 ln(1 − 𝑥𝐵) would be there. So, after integration; integration of 

z is z, integration of dz is z and then z = 0 to z = h (t) and then integration of 𝑑 ln(1 − 𝑥𝐵) 

would be ln(1 − 𝑥𝐵) limits when x = 0, 𝑥𝐵 is equals to a constant which is say 𝑥0  and then 

z = h (t) then 𝑥𝐵 = 0 that also we have seen, right. 
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When you substitute the limits and then simplify you get 𝑁𝐵𝑧 is equals to this and then 

finally, 𝑁𝐵𝑧 at some given t time t is −
𝑐𝐷𝐴𝐵

ℎ(𝑡)
ln(1 − 𝑥0) right. So, now this is the final flux 

equation for component B if you simplify this equation you can get the probably required 

time to get the complete evaporation done. So, that we can do only when this ℎ(𝑡) is known 

right so, otherwise we cannot use this equation that we are going to do anyway. 

So, now what this equation indicates the flux of B decreases over time because of growing 

distance between gas and liquid interface and top of the container ok. So, initially you 

know this is the origin that we have taken. So, this z = 0 gradually decreasing with 

increasing time. So, that is what it means by so; obviously, the flux of B decreasing over 

time. But, this relation cannot be used as complete final form of solution because ℎ(𝑡) is 

not known thus interfacial flux balance would be useful as below that we are going to do 

now. 



(Refer Slide Time: 14:43) 

 

So, interfacial balance that we do for the flux of B then (𝑁𝐵𝑧 − 𝐶𝐵 𝑣𝐼𝑧 ) we are writing just 

indicating interface at z = 0− and that should be balanced by (𝑁𝐵𝑧 − 𝐶𝐵 𝑣𝐼𝑧 ) at z = 0+ 

location. So, this container this is what we are having initially. So, this is z = 0 towards the 

liquid side whatever layer is there that we are calling z = 0−, towards the vapour side 

whatever is there that we are calling z = 0+ the same location, but which side are we taking, 

right 

Now, towards the vapour side there is no velocity. So, this term is 0 because you know its 

air is stationary right and then the vapour B is also very small quantity in the gas that is 

what it has been mentioned. So, compared to the flux in the liquid side this flux should be 

very small. 

So, this can be cancelled out compared to the flux towards the liquid side. So, that is what 

and then liquid side the velocity is nothing but 
𝑑ℎ

𝑑𝑡
 that we know because interface is moving 

down with respect to time, right. So, then z = 0− and z = 0+ denotes liquid and gas sides 

of interface respectively with the interface as the origin 𝑣𝐼𝑧 = 0 in the gas side and 𝑣𝐼𝑧 =

𝑑ℎ

𝑑𝑡
 in the liquid side. 

In this reference frame it is the flow of liquid relative to the interface that supplies the 

material that is evaporating. So, now if you take CL be the molar concentration of B in the 

liquid that is CB in liquid side whatever is there that we are calling now CL, right. Then 



this equation 4 you will be getting CBz = CL 
𝑑ℎ

𝑑𝑡
 remember we are writing 0+ 0− or 

0+ locations like that in the previous problem also only for doing the balance required 

balance to in order to write the required balance. 

Once the required balance is balanced equation has been written and then simplified then 

we remove all those things because it is the same location at the interface only thing that 

here in this case z = 0− indicates towards the liquid and z = 0+indicates towards the gas 

side ok, but it is at the same z = 0. 
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So, now this is the flux equation. Now, this equation number 3 that previously we solved 

and then this equation number 5 just we got because of the interfacial balance equation. 

Then if you integrate both of them what you get CL 
𝑑ℎ

𝑑𝑡
= −

𝑐𝐷𝐴𝐵

ℎ(𝑡)
ln(1 − 𝑥0)  and then initial 

condition what is that? At t = 0 h = 0 ok. 

So, now, this equation if you integrate ℎ2(𝑡) = −
2𝑐𝐷𝐴𝐵 ln(1−𝑥0)

𝐶𝐿
𝑡 that is what you get right; 

that means, h varies with √𝑡, right. But, now we need to find out tp; tp is the time at which 

this h becomes H, h as function of time whatever you say that becomes H that is complete 

liquid has evaporated. So, if the complete liquid has evaporated; that means, height is the 

height of the column that is H. 
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So, that if you substitute here you get 𝑡𝑝 = −
𝐶𝐿

2𝑐

𝐻2

𝐷𝐴𝐵

1

ln(1−𝑥0)
 ok. Now, if the vapour pressure 

is low enough then 𝑥0 would be usually very very smaller than 1 under such conditions we 

can write ln(1 − 𝑥0) ≈  −𝑥0. 

So, this equation we can write like this  𝑡𝑝 =
𝐶𝐿

2𝑐𝑥0

𝐻2

𝐷𝐴𝐵
 right because now ln(1 − 𝑥0) is 

nothing but −𝑥0 and then this 𝑐𝑥0 we can write CG which is nothing but molar 

concentration of B in the gas, but at the interface. 

So; that means, if you know the molar concentration of component B in the liquid side and 

then if you know the molar concentration of the same component B in the gas side then 

you can find out you know total evaporation time using this equation. Because in general 

DAB for such for majority of the systems are known or available or we can measure, ok. 
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Now, we take another problem melting of spherical crystal ok we have a spherical crystal 

it is having the initial radius R0 it is gradually you know melting. So, R0 whatever initial 

radius is there that gradually decreases. So, R is function of time ok. So, how much time 

it required for the complete melting of the spherical crystal that is what we are going to 

see in this problem ok. 

Assume that a spherical crystal of initial radius R0 and then temperature T0 is immersed in 

a large stagnant volume of same liquid at temperature T ∞; that means, the crystal is let us 

say if you have taken the you know water as a system. So, in the water you have the ice 

spherical crystal of radius R0 ok. 

So, that is the material is of same whether it is you know whichever material you are taking 

water or some organic liquid the crystal and then liquid phase both are of them of both of 

them are of same material only they are only that they are in different phases right.  

And then liquid at temperature T∞ the volume of liquid is very large and it is also stagnant. 

Melting temperature Tm of that crystal is such a way that Tm is in between T0 and T∞ right. 

So, that the crystal immediately begins to melt and latent heat for melting per unit mass is 

lambda tilde. 

For simplicity assume that the solid and liquid densities are equal. So, that you know there 

is no question of rising or settling of this crystal and there is no radial flow also that is also 



given. So, select centre of crystal as the origin of coordinate system. So, we are taking 

origin as the centre of the spherical crystal whatever has been provided assume symmetry 

so, that temperature is function of r direction and then time only because it is a quasi steady 

problem, ok. 

Liquid velocity has at most a radial component that is vr and function of r and t that is there 

is no need for this spherical angles; that means, you know whatever the let us say this is 

the crystal is there. So, the liquid you know vibrations like you know moving the velocities 

is like that or contours should also be like that spherically moving in the radial direction, 

right. As we move in the radial direction. So, there will be no effect of θ or ϕ directions 

etcetera. Obtain the time for the crystal to melt completely that is the question. 
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So, now pictorially we have a spherical crystal of radius R0 initial radius R0 right it is 

initially at temperature T = T0 it is suspended in a liquid of the same material and then the 

liquid is at some other temperature T∞ ok. Solid-liquid interface moves inward as melting 

proceeds; however, according to equation of continuity 𝑣𝑟 = 0 in the liquid that we can 

prove how to prove. So, let us say equation of continuity in spherical coordinates we write. 

So, I have written only the r and θ components phi component also we can similarly write, 

ok. 



So, but now 𝑣𝑟 is function of r ok, but vθ is not there so, then what we understand from 

here? 
𝜕

𝜕𝑟
(𝑟2𝑣𝑟) = 0 everywhere in the system, right. So, this should be valid everywhere 

in the system that is inside here and then surrounding liquid also because it is a continuity 

equation; that means, 𝑟2𝑣𝑟 = 𝐶 right. 

Now, if you substitute r = 0 that is at the centre 𝑟2𝑣𝑟 should be 0, right so; that means, 

obviously, C should be 0 because of the C = 0 𝑟2𝑣𝑟 = 0. So, that 𝑣𝑟 = 0 for all values of 

r ok it is very important otherwise we cannot able to solve the problem without this 

information that is everywhere in the system of both liquid and crystal 𝑣𝑟 is 0 and then; 

obviously, heat transfer in both phases would be by conduction only. 
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So, now the question is that determine R as function of time and then melting time tp 

assuming pseudo steady conditions right. So, the interfacial balance if you do. The qr in 

the crystal side. So, that is what we are having here also we have a crystal and then there 

is a surrounding liquid. 

So, in the crystal side what is the flux qr|c and then what is the flux at liquid side that is qr|L 

that should be balanced by 𝜆̂ρ(𝑣𝑟|𝑐 − 𝑣𝑟|𝐿) right this we should have the understanding 

and then these two are right at the interface right, not somewhere far away in the liquid or 

not somewhere towards the centre of the crystal right on the crystal surface, but one 

quantity is towards the crystal another quantity is towards the liquid side fine. 



Now, this equation here the liquid side whatever is there liquid side because the crystal is 

gradually melting. So, because of that one there is a motion or you know disturbance in 

the liquid side. So; obviously, in the liquid side this velocity whatever is there that is 

nothing but 
𝑑𝑅

𝑑𝑡
. 

So, now, 𝑞𝑟|𝐿 − 𝑞𝑟|𝑐 is related to 
𝑑𝑅

𝑑𝑡
 by this balance equation so; that means, 𝑞𝑟|𝐿 and then 

𝑞𝑟|𝑐 that is the heat flux towards the liquid and then towards the crystal side, but at the 

interface at r = R (t) if you find; you can find out what is this R function of time once it is 

there. So, then you can find out the tp also. 

So, this equation we can use only when we know what is 𝑞𝑟|𝐿 𝑞𝑟|𝑐. So, for that reason 

what we do we will be writing a balance equation or energy balance equation whatever is 

there or the energy equation that we have derived previously that we simplify. So, we have 

to write that for the liquid as well as the crystal separately. So, now, heat flux from energy 

equation for crystal we can find out. 

So, what we have already realised that here you know only conduction is mode of heat 

transfer previous slide that we have seen because vr is 0, vθ, vϕ are anyway 0 that statement 

given they are not under concentration no spherical angles need to be considered. So, vr is 

function of r and then that vr also we found it as 0, if vr is 0 there would not be any 

convention there would only be conduction. 

So, in the energy equation temporal term and then conduction terms have been included. 

Conduction terms also only in the radial direction we have included because heat 

conduction is taking place only in a radial direction. So, remaining terms we have not 

written directly because now we have done several problems almost we are end of the 

course. So, then you can understand this way right.  

So, that is the reason directly I have written right. So, now, temperature as function of time 

we are not considering because the time factor we have considered in the balance equation 

interfacial balance equation right. Because it is not completely time dependent solution it 

is a quasi steady solution ok. 

Then here whatever αc we do not need to worry. So, then what we get 
𝜕

𝜕𝑟
(𝑟2 𝜕𝑇

𝜕𝑟
) = 0 

(𝑟2 𝜕𝑇

𝜕𝑟
) = 𝐶1; that means, 𝐶1 should be 0 because 

𝜕𝑇

𝜕𝑟
= 0 at r = 0 right. So, this is the 



crystal that we have we are doing for the crystal only at the centre what is the temperature 

right. 

So, that we do not know actually, but then what we can say? We can say 
𝜕𝑇

𝜕𝑟
 at the 

𝜕𝑇

𝜕𝑟
= 0 

at the centre. So, that centre is nothing but at r = 0 location. So, at r = 0 
𝜕𝑇

𝜕𝑟
 is 0. So, then; 

obviously, C1 should be 0 in this equation. 

If C1 is 0 then what we get 
𝜕𝑇

𝜕𝑟
 would be 0 because C1 is 0 because C1 is 0. So, 𝑟2 𝜕𝑇

𝜕𝑟
= 0; 

that means, 
𝜕𝑇

𝜕𝑟
= 0; that means, everywhere in the crystal 𝑞𝑟|𝑐 is 0 right. So, that is what 

we got. So, 𝑞𝑟|𝑐is 0. So, now, you take off this 𝑞𝑟|𝑐 from this equation number 1 because 

now you realise that 𝑞𝑟|𝑐 = 0, then what you have? 𝑞𝑟|𝐿 = ρ 𝜆̂
𝑑𝑅

𝑑𝑡
 right. 

(Refer Slide Time: 30:04) 

 

And then this 𝑞𝑟|𝐿 is nothing but −𝑘𝐿
𝜕𝑇

𝜕𝑟
 at r = R (t). So, now, we have to find out what is 

𝜕𝑇

𝜕𝑟
 for the liquid side. So, similar energy equation we have to write for the liquid side. So, 

that heat flux from energy equation for liquid for the liquid side also the energy equation 

is nothing but having only conduction terms. 

Because convection terms are not there vr is 0 and then conduction also and then 

conduction also it is there only in the r direction θ and ϕ direction we do not need to 

consider that is given in the problem. So, simplified energy equation would be this one 



and then temperature variation with respect to time we are not taking because it is a quasi 

steady, right. 

So, from here 
𝜕

𝜕𝑟
(𝑟2 𝜕𝑇

𝜕𝑟
) = 0; that means, (𝑟2 𝜕𝑇

𝜕𝑟
) = 𝐶2 or 

𝜕𝑇

𝜕𝑟
=

𝐶2

𝑟2. Now, you cannot say 

you know you apply that r is equals to you know zero boundary condition and say here 

also the constant is this C2 and then all that. 

Because, this equation now is valid for r = R0 to ∞ far away from the crystal then, but this 

R0 is changing we cannot say that at R0 T = T0 and all that; that boundary condition we 

cannot take because this R is function of time ok. So; however, after integration you get 

𝑇 = −
𝐶2

𝑟
+ 𝐶3. 
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So, now the boundary condition we have to carefully use that is what we are saying that T 

= T∞ at r = r∞ it is clear it is clear. So, the crystal is here that is at T0, but far away liquid 

whatever is there. So, that is at T∞. So, this is clear. So, then C3 would be you know T∞ if 

you substitute this boundary condition here. And then at r = R0 T = T0 this boundary 

condition we cannot use because the surface location is changing, right. 

Initially this is at r = R0, but gradually this r is changing because R is function of time. So, 

we cannot use that boundary condition. So, what should we use? We should use at r = 

some R function of time T = Tm, T = Tm that is the melting point temperature, right. 



Then you get C2 = −𝑅(𝑇𝑚 − 𝑇∞). So, now, you have both C1 C2 you substitute here. So, 

then T as function of r and t you get 𝑇∞ + (𝑇𝑚 − 𝑇∞)
𝑅(𝑡)

𝑟
. So, it is this temperature 

distribution is function of both space and time now and this is for the liquid phase only. 

So, from here 
𝑑𝑇

𝑑𝑟
 is nothing but −(𝑇𝑚 − 𝑇∞)

𝑅

𝑟2
 that is what we have, but this we wanted to 

know this 
𝑑𝑇

𝑑𝑟
 we wanted to know at r = R as function of time t; that means, 

𝑑𝑇

𝑑𝑟
 at r = R (t) 

is nothing but 
−(𝑇𝑚−𝑇∞) 

𝑅(𝑡)
, because 

𝑅

𝑟2 you get r 
1

𝑟
. So, then R (t) right. 

(Refer Slide Time: 33:48) 

 

So, this you can substitute in the simplified equation 𝑞𝑟|𝐿 = whatever ρ 𝜆̂
𝑑𝑅

𝑑𝑡
 in this 

equation we can substitute. So, 𝑞𝑟|𝐿 is nothing but −𝑘𝐿
𝑑𝑇

𝑑𝑟
 at r = R (t). So, that is −𝑘𝐿

𝑑𝑇

𝑑𝑟
 

just now we got this one that is −(𝑇𝑚 − 𝑇∞)
1

𝑅(𝑡)
. So, 𝑘𝐿(𝑇𝑚 − 𝑇∞)

1

𝑅(𝑡)
 is nothing but 𝑞𝑟|𝐿. 

So, that we can substitute here and then equate it to the ρ 𝜆̂
𝑑𝑅

𝑑𝑡
. So, then we have this 

equation, right. 

Now, we know this r function of time and then 
𝑑𝑅

𝑑𝑡
 is also there. So, then we integrate and 

then get that relation. So, again here also what we are doing we are writing 2R 
𝑑𝑅

𝑑𝑡
= 

𝑑

𝑑𝑡
 𝑅2  

by multiplying either side with 2. So, 2 is here. So, 
𝑑

𝑑𝑡
 𝑅2 is nothing but −

2𝑘𝐿(𝑇∞−𝑇𝑚)

ρ 𝜆̂
 ok. 

So, if you take the initial condition at t = 0 R = R0 that is given. 
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So, now then you get this equation. So, that how you get? So, let us say if you integrate 

this equation you get 𝑅2 = −
2𝑘𝐿(𝑇∞−𝑇𝑚)

ρ 𝜆̂
𝑡. So, when t = 0, R = R0 so that means, 𝑅0

2 =

 then thus + c the constant integration constant would be there. So, that should be 0 + c. 

So, the integration constant is nothing, but 𝑅0
2. 

So, that if you substitute here and in place of integration constant you get 𝑅2 = 𝑅0
2 − 

whatever 
2𝑘𝐿(𝑇∞−𝑇𝑚)

ρ 𝜆̂
𝑡 as it is, right. So, now, melting time is defined as R as function of tp 

which is when it becomes 0; that means, what is the time required when R becomes 0 when 

R becomes 0; that means, the crystal has completely melted the crystal has completely 

melted and then there is only one liquid phase there is no crystal phase at all. 

So, in this equation you substitute t = tp and then take = 0 then you get  0 = 𝑅0
2 −

2𝑘𝐿(𝑇∞−𝑇𝑚)

ρ 𝜆̂
𝑡𝑝; that means, 𝑡𝑝 =

ρ 𝜆̂ 𝑅0
2

2𝑘𝐿(𝑇∞−𝑇𝑚)
. So, tp is proportional to 𝑅0

2; that means, if you 

double the size of you know crystal then you time required for the complete melting of 

that crystal would be increased by would be increasing by 4 folds. 
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So, the references for this lecture are provided here, but both of these problems you can 

find out from this book as exercise problems. 

Thank you. 


