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Lecture - 33
Simultaneous Heat and Mass Transfer
Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title
of today’s lecture is Simultaneous Heat and Mass Transfer. So, now, in this lecture we will
be taking a situation where both heat and mass transfer are taking place. So, then how to
obtain the mass transfer flux and then heat transfer or temperature distribution etcetera

those things that we are going to see ok.
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Simultaneous Heat and Mass Transport

* Hot vapor@ is diffusing at steady state through a stagnant film of non-
condensable gasg E) to a cold surface at y = 0, where A condenses.

* Assume ideal gas behavior and uniform pressure

* Assume physical properties to be constant evaluated at some mean
temperature and composition

* Neglect radiation heat transfer

(a) Develop expression for mole fraction profile X,(y) and temperature profile

7" T(y) for the figure shown here for given mole fractions and temperatures at i‘,’?‘
both film boundaries (lﬂnd‘yi () g Suzbi |

(b) Generalize results for the situation where both A and B are condensing on

/' the wall and allow for unequal film thickness for heat and mass transport ] i"g,

So, consider a hot vapor A is diffusing at steady state through a stagnant film of non-
condensable gas B to a cold surface at y = 0 where A condenses. So, hot vapor A is
condensing on a cold surface, but when it reaches the cold surface in between there is a
stagnant film of non-condensable gas B and this A is diffusing into B when it reaches to

the cold surface and condenses in that process ok.

So, then under such conditions what is the you know concentration profile of that
component A and then what is the temperature profile that is what we have to find out.
Assume ideal gas behavior and uniform pressure assume physical properties to be constant

evaluated at some mean temperature and composition neglect radiation heat transfer right.



So, this is the simple base simple you know statement of the problem. So, this problem we
can divide into two parts. First part as | mentioned you know developing concentration
profile xa as function of y temperature profile as function of y as shown be figure in the
next slide as shown in the figure next slide right.

So, when mole fractions and temperatures at both film boundaries are known aty =0 aty
= 6. The thickness of non-condensable gas film is & it is having two boundaries; one
boundary location is y = 0 another boundary location is y = §. At either or at both of these
locations what we know? We know the temperature and concentration. So, boundary

conditions are known.

So, this we are going to do when by taking non condensable gas film B. So, Ng; that is
what we are taking 0 here right and also when both heat transfer and mass transfer was
taking place. So, then there would be different film thickness in general. So, 6x oT, but
what we are assuming that it is same here whether you know mass transfer or heat transfer

the film thicknesses is same that is the assumption.

That for that for those conditions we are obtaining you know xa as function of y and T as
function of y. The second problem what we are doing we are generalizing the results for
the situation where both A and B are condensing. Now not only A, B is also condensing
on cold surface right. So, then that A and B are you know we cannot say that B is non you
know non condensable and then its flux is 0 that we cannot say now because it is also you
know condensing on to the cold surface ok.

And allowing for unequal film thickness for heat and mass transport then we are taking 6x
=T # 6. So, then what are the solutions that you know what are the concentration profiles

and then temperature profiles that we are going to find out.
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Direction of moveme:
of condensablle vapor

So, pictorially we have a cold surface here which is designated as y = 0 and then close to
this one there is a boundary of stagnant gas film made up of B right. So, now the direction
of diffusion or you know condensable vapor is coming in this direction and then reaching

this cold surface and then condensing like this here right fine.

The coordinate system is taken such a way that the direction in which the change in
concentration or temperature is occurring that is y film thicknesses is 6. So, aty =0 T is
To and xa is Xag at y = 8 T is Ts and then Xa is Xas. S0, now, for this case we are going to

find out this two.
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Solution of Part (a):

* To determine the desired quantities, we must solve the equations for
species conservation and energy equations for this system

=—(V'NA)+}{

¢ Continuity of Species A

ac 6 NAy
0x ay

/67 0- (1)

e
ey

This is part a; to determine the desired quantities we must solve the equations for species
conservation and energy equations for this system. So, then this is the species conservation

equation in generalized form vectorial notation it is given. If you expand this one for

aCs | ON
species A you have this one —2 2+ Ax

ONg4 ON
+ Y + aAZ

and then reaction there is nothing
dx dy

occurring no reaction occurring. So, Rais O right.

And then what we have seen diffusion are the concentration variations and temperature

variations are only in y direction. So, only Nay would be there and that would be function

of y whereas, Nax Na; are 0 and then it is a steady state problem. So, this i is %4 is also 0.

2 = 0. So, now, if you know the Nay you can find out the

concentration profile very conventional way in that we have been doing ok before getting
the concentration profile what we do we try to look at the energy equation and its
simplification as well as per the constraints of the problem.
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* Energy equation: a(p (U o0 )) =—(V-e)+p(

: ;{(p(m;,,z)):_%_t % pto g0

* To determine the mole fraction profile, we need the molar flux for
diffusion of A through stagnant_’Bq

* Combined flux: NAy = _CDAB aai: ar xA(NAy s %)

(?xA
o s vy
% - (3) /n_,v
%9"#"9

Energy equation we have derived in an equation we have derived in week number 4. So,
this is what we have got. Whereas this e is there in all 3 direction x y and z direction and
then each e and it consist of a contribution from the conduction convection work done
because of the pressure you know viscous dissipation etcetera all those terms are included

in all three directions right.

So, whatever the energy because of the gravity is this. So, then that part is in the last it is
given right net less potential energy etcetera those things are coming from here. So, this
equation we know ok. So, if you expand this equation only this part we are expanding
because this e is having all the components like you know all the contributions from the
conduction convection viscous dissipation work done because of the pressure etcetera all
those things right, then we simplify it.

dey

So, this if you expand you get ™

] L
+ aiyy + %. So, that is written here. So, now we apply

the constraints of the problems steady state. So, then left hand side all terms are cancelled

out gravity we are taking you know in the other direction.

So, in the direction of diffusion or temperature variations whatever are occurring in that
direction there is no gravity. So, this we can take out 0 right. So, the variations in the

energy or temperature are occurring only in the y direction and that is function of y. So,

- a ..
the remaining ex e; are 0. So, what we get aiyy = 0 this is what we get.



Now, to determine the mole fraction profile we need the molar flux for diffusion of A
through stagnant B. So, this how do we get? In general we write a combined flux equation.

So, that is this one now in this equation Ngy is O for part a of the problem.

So, if you simplify this equation by taking all Nay terms one side and then remaining terms

CDAB axA
1-x4 0y

other side you write you get Ny, = . S0, now this you can substitute i in 24y 3y =

0 and then you get a concentration profile as function of y.
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* Substitute equation (3) in (1) and simplify
W

.i(—cl),wdﬁ)zo‘:> d( 1 dXA) dey=>
dy \ 1-x4 dy dy \1-x4 dy =
R e s

A
l_xA—l}’ — S L 7%

* At y=0, “In(1-x4)=C, ¥
e A
y =46, —In(1-x4)=Cd+ C 2

_ln(l Z XAG) - CZ

: . . . a
So, when you substitute you know this is nothing, but Nay term we substituted % =0.

So, Nay is this one now for this situation part a situation the concentration and then

diffusivity we can take constant. Then we have a | %(1 1x aai;
XA

)=0 dy that is

(1 1x aaXA) Cythen further integrating you get —In(1 — x,) = C;y + C,.
A

Now, we have our two-boundary condition at y = 0 Xa = Xao. S0, here if you substitute Xao
you get —In(1 — x,,) = C, because y is 0 in this boundary condition. So, C, you already

got then other boundary condition at y = 3, Xa = Xas.

So, in place of xa you write xas in place of y you write & and then C> you already got it as

1-X40

—In(1 — x40). Then you get C; that is nothing but —ln( ) So, this C; and then this

XA8

C> we are substituting in this equation to get the concentration profile.
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* Substitute constants in eq.: = —In(1 —x,) = C;y + C;

*5-In(1-x,) =% c_i’:) In(1 - xAQ)

Y
)

1-x =%
el
1-xy4 1- Aa

1 X4
1- X0

1-% 1=
2In(; ") o=
'on 1-x40

)
(il

In this term is Cz and then this term is C right then if you further simplify in the sense

what we do we take this —In(1 — x4,) to the left-hand side. So, that we can write
1—XA0 _ X 1—XAO

In ( 1—xA) S In (1—XA5).

So, this is the final concentration profile. Further you can write by taking this % as a power

of the whatever In (ﬂ

- ) then you have this one if you take exponential both sides. You
—XA0

get this as a concentration profile right of course, any of these two equations you can use

as a concentration profile right.
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* We just derived that (In ( - ) =3l (ﬂ)

1-X40 ) 1-X40

1-x40

(N ]n(l EJCA) - ln(l A1 on) = _9[1 (1"‘.45)

1 dxA> 1 (l—xAg)
O e[ o s =240
l—xA( dy Gln 1-%40
s B A0
* Flux of component A:
_CDAB dxA
A = —_—

o~y dy

ey

Now, what we do? We differentiate this equation with respect to y because we wanted to

know the flux also, we have to find out the mass flux also for that we need to know %.

So, that is the reason we are differentiating this equation with respect to y. So, so this from

- 1x (— aﬂ) this is constant. So, 0 derivative of constant is O.
—AA

this term what we have 3y

Now, this equation except y everything is constant. So, %ln (i_—’;‘”) multiplied by 1 right.
—AA0
cDyap dxg

this is what we derived so; that
1-x4 dy

So, now, flux of component A what we have —

means, this equation if you multiplied by c¢D,p you will get flux that is given by this

equation right.

Now, what we got? We got an expression for the concentration profile; we got an
expression for the flux also. So, then what we try to do? We try to write these expressions

you know concentration profile in a in a very conventional way of writing like what in

XA—XAS

in this form we try to write. So, that is what we are doing
XA0—XAS

general what we write

in the next slide.
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cD, 1- Ngyd 1~
D NAy =_ABln(ﬂ) ﬁi: In(ﬂ)
,_%@ 1=Xa0

N ’—_’_’/ Ay
Duz )ﬂi_l—_x,w—,l & p(cn,,,,s)

1= cDyp

(e

1 =-XA0 cDyp

g X4=X4o Nay )
. =1 eV
and similarly, we can get on 1-exp (CDAB y

Nay
t-enp22y)
SO AAsdAOE P@D,5” = )

*a5=*40 1—exp(c%%8)

So, Nay is equals to this one we have. So, from this equation | can write you know Ay 8

one side and then In terms other side. Then | am taking exponential here then | am

multiplying by minus 1 either side and then adding plus 1 either side then in the left hand

side what I am doing? | am trying to do LCM. So, that | have xfa 40 js equals to right
—XAo

hand side term as it is right.

If you wanted to know 40 expression so, then what you have to do? Simply you have

—XA0

to replace this x4s5 by x4 and then here whatever § is there that you have to replace by y
because at y = 6 x, = x4 aty is equals to some unknown y x, is equals to some unknown
x4 right. So, that if you do you get this expression.

XA—XA0 __
XA5—XA0

Now, if you divide this equation by the above equation, then you get

Ny
1-exp( 5 0)

N
1—exp(cD':3;8)

this is what we have right.
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/
v

A
* Temperature profile: e = p(U het )V +q+pV+[t-V]

. e=p(U+@V—k7T+ S HlotpV +leV]
//‘1 — — - ———

. 7 )
o=+ Y Hafo+p(0+ POV +3p02V + 1]
— S

N = - N ks
©e=—kVT + Za=1Ha]a+plilV = —kVT + Za=1Haja+M

N
* se=—kUT+ ZZ=1Ha]a +Zan1@Ha@V GV &

N N -
ve=-kiT+ Y HuJet Y, CoV~ (7)

Now, we try to get the temperature profile. So, what we got by simplifying the energy
equation we got aaiyy = 0, but what is the e, we have not simplified in that slide. So, that

we are doing here. So, the e is having the contribution from the conduction convection
then any work done because of the pressure. And then any molecular stress you know
energy because of the molecular stresses like you know viscous dissipation etcetera those

terms are included.

But now we have to in incorporated term because of the mass transfer also. Remember
when we are deriving the energy equation, we had incorporated most of the common
contributions which are you know important from chemical engineering applications
specific to the transport mass transport problem or heat transport problem like that specific
to the heat transfer problem only.

But at the same time what we have mentioned, if any additional contributions are coming
because of the reaction or mass transfer etcetera. So, those terms should be added up in
this expression or final energy equation that we have derived either way we have to do that

is what we have discussed.

Because in a generalized manner we cannot include each and every terminology like

nuclear power, energy associated with the electrochemical reaction reactions, energy



associated because of the you know hydrodynamic magneto hydrodynamics etcetera all

those things we cannot include because they are specific to the problem.

So, now specific to this problem we have to incorporate term related to the mass transfer
how it is affecting this e or the heat transfer problem. So, if you can understand clearly,
you can simply add you know ¥, N,, C, & T that you can do it right. So, but if you are not

able to understand how it is coming so, then we have to do this one.

So, before adding we will be adding that mass transfer part here, but also we are doing
some kind of readjustment. Readjustment in the sense this conduction term we are bringing
here right and then this whatever the mass transfer because of the mass transfer the

contribution should come in e that is nothing, but ¥ H,, J,.

], is nothing but a molar flux because of the diffusion and then H, is nothing but the
enthalpy of component molar enthalpy of that component o there are N number of
components right.

So, now in the next step from this P v and then this p v we are combining such a way that
p U + P and then remaining %pvz V we are writing here [t.V] is as it is in place of minus

whatever the —k 8 T is there that we are writing first and then this flux terms we are

writing as a second one.

Why are we writing? So, that this U + P we can write H. So, now, here H we are using
tildes so, we are writing for only one component. So, there are N number of components
would be there. So, then we have to write a summation remaining two terms are as it is ok.
Now next step what we are doing? This term we are multiplying by the molecular weight

of that component alpha and then dividing by the same.

Why are we doing? Because we can write this 2% we can write C, and then that C, V we

My
can have a relation for in terms of the flux. So, that is the reason. So, C, H, V we are

having here.
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*ButN,=CJ, and],=C,¥,~V)
T e =CVCY=N-CVCY=N],

S o

* Substituting above equation in (7) T
N N N
e=—kVT+Z%+ZHa(Na—@=—kVT+ZF1aN,,
a=1 a=1 a
e

=
&, gk X
* For a binary system: e = —ka—y + (HANAy +Hp

ar R
Se = _ka_y+NAy€&A.(T—TO

But we know that N, = C,V, and J, = C,(V, — V) this we have already seen in the
beginning in the first lecture of mass transfer part right. Now, this J, if | expand C,V, —

C,V.

So, in place of C,V, | can write N, now from here | can write C,V is nothing, but N, — J,.
So, this we are going to use in equation number 4 here what we had C,V. So, in place of
C,V we are writing N, — J,. So, that this H, J,and then this H, J, cancelled out and then

we have only sigma H,, N,, right.

Now, this if you write for the binary component, you have H, you have HyN,;, + HzNp,,
and then conduction is also only in the y direction. So, —k g—; Now this H, and then Hp
we can replace by you know Cp4 & T, but Nay is anyway 0 in this problem.

So, that Nsy Cppd T we don’t need to write. So, now this equation you can substitute in

B] N . .
aiyy = 0 and then simplify to get the required temperature profile.
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Sl

d ar =
d—y("ka i NAyCPA(T = To)) =0
e Sl

dT = daT =

—

dr NAprA dr o
S Mg g 60 g

NAyCPA(T T )
__,_———%-—

. NAyCPA(T T)
O = _NAyC—PA —;" + 9’—) (10)

ke

a . . . -
So, aLyy = 0 this we integrated one. So, this term as it is equals to C3 now next step we are

keeping —k Z—; one side all other terms we are taking other side. next step, we are what we

are trying to do? We are wrltlng yCPA (T—-T,) —=

So, next step dy term we are keeping one side all other terms we are taking the other side.
So, dT by and this term you will be having right now what we can do? You can integrate.
So, when you integrate you get In of this term divided by the differentiation of you know

Ay Cpa

T terms. So, then that is ——— you will get as a denominator right side you get y and then

constant Cy right.
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C
In| Ay “(T T)

T R (10)
k

NayCpa c
Inf—=2220y-To) 2

cay=0T=Ty=>
=

NayCpa

O aty=6',T=T3:
b7

So, now we have two boundary conditions two constants we can evaluate. So, aty =0 T
= To so, then here when you substitute T/To. So, then you get this term is O then; that
o[-

Ny CPA.
k

means, what you get C4is nothing but

Now, we apply the other boundary conditionsy =6 aty =8 T = Ts. So, then here Ts we
are having in place of y we are having & right. So, now, what we do? We take this term to

the right hand side. So, that in the right hand side we have this one right.
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NayC) G]  NayC NayCi
= In [P (7 - 1y) - 2] = 2 g 4 Dr%eA
TG4 DR S SRS

NayCi (e NayCi N4yCi
o Nay PA(Tg—To)——3=eXp{ Ay PA6-+ Ay PAC4]
k } k k

= —NA};( ek (Ts = Tp) = exp [—N”kc“ 5+ —NAka“ C4] +%—» (12)

NayC,
From eq. (1), = = —exp[“274C, | & substiute this in eq. (12

= NAykpr (Ts=Ty) = exp [NAyCPA § + NayCea NAyCPA C ] +& G
Ny, C; Ny € Ny, G
= I AyPA Ay PAC4]—€XP[ A};c PAC4]
e

fa s




Next step what we are trying to do? We are writing exponential rather writing in you know

In terms. So, then this is what we have. Next step what we are trying to do? We are taking

this % to the right hand side right.

Next step, what we are writing in place of %We will be writing minus exponential of
NayCpa
k
condition this is what we got. So, that you substitute here as this term remaining all terms

C, which we just derived in the previous slide by applying the first boundary

are same right. So, that the same equation is written once again here.
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A M

i =1 :
" = -—NA’k SPA (T~ Ty) = exp [—NAka“ 5+ -——NAy:” C4] - exp [——-—N”kc” C,,,] - (120)

* By similar simplification of eq. (10) will give

NayCi N4y Ci Ny Ci NayC
. %(/Z—To) =exp[%y+%(]4] —exp[ Ayk “C,,]—» (12b)

’\4*‘ . . gqe . =
,\ // Now by dividing eq. (12b) with eq. (12a), we get
o V%
- (13)
N

P

NayCra_ NayCpa . NayCpa
P Ty U4 —exp k4

NayCpa . NayCpa,
XD 5+ 'y

NayCpa
k k 4]’“" };: Ca

So, now what we do? We need to have (T — T,) also. So, that in place of Ts we write T
and in place of 6 we right y right. Because at y = 6 T = Ts and then at y is equals to some
unknown y T is equals to some unknown T right so, that if you do you get this equation.

T-T,
Ts—To

So, now, you do 12 b divided by 12 a equations then you get = this one. Next step

what we do? We take this term common from both numerator and denominator. So, that

you know that can be cancelled out and then we have this particular term.
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* Further simplification of eq. (13) as below will give us temperature profile eq.

NayCpa NayC
explyCea, NayCea

|
/H—cll

NayCeao NayCpa . | [NayCea |~ [ [NayCea, NayCea,
Xp B 4—2—C4|-exp Cy P G4
e

NayCpa_ NayCpa . NayCpa .
V=G TG4

k k

NayCpa .NAy%, Naghta,. |, o] ”AnyAy
o L IT 7k 7t T-T, k

S
T |NayCpa. NayC NpyC = NayC,
Ts-Ty - A!kPAa ayCor, Na ‘]_1 Ts-To ) AszAB

% ﬁ »
A~

Lok NayCra
* Temperature profile is not linear except for —kL -0

Now, this is exponential of A by exponential of B form. So, we can write exponential of
A minus B. So, that you write. So, then this would be cancelled out. So, in the exponential
we will be having only 1 term both in numerator and denominator terms that we can right

NayC
1—exp|—2Y-PA
T-Tp _

T N 4~,C
Ts—To 1_exp[%8]

Yy

now . S0, this is the temperature profile right.

Now, we try to find out the rate of heat transfer as well right. So, before going into the

finding out the rate of heat transfer what we understand from here until and unless %

is tending to 0 this temperature profile is not linear it is non-linear ok it can be linear only

when this particular term tends to O right.

That is what it means by when the conduction is very much dominating compared to the
mass transfer then only we can have a linear profile; obviously, if there is only conduction.

So, then temperature profile is linear that we know ok.
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1-expl——
* Now differentiating eq. (14): —>=

'T" 1-exp|—4—

NayCpa_|NayCra
—exftofen MaTes
AEE

. :( 1 )dT
Ts=Ty/ dy oo |NayCra
2 1-expl— )

ayCra -
exp Y(Ts=To)NayCpa

ar { D Ts-ToNayC,
O il _ s 0)NayCpa

—.:}—
NayC NayC
24y 1ep[ sl PA&‘ ¥=0  1-exp|-2 PA&

e

Now, differentiating with respect to y so, in the left hand S|de

is you know constant
To

then 2 E — 0 =. And then in the right hand side except this particular term all other terms

are independent of y. So, in the denominator we are keeping as it is numerator when you

are differentiating this term exponential of x is exponential of x on differentiation.

So, you get the same thing minus exponential of same term and then differentiation of

Ay CpA

whatever this factors being multiplied by y. So, that is ——— right. So, now, we wanted

to know —k 2 5. So, — 2 5. So, then what we are doing this Ts — T, we brought to the right

hand side ok and then this whatever this 1/k was there. So, that we have taken to the left

hand side. So, then we have k here.

So, now this we wanted to do at the cold surface at the cold surface because at that point
how much heat transfer is taking place because that is the location at which condensation
is taking place right. So, in this equation if you substitute y = 0. So, the exponential of
something multiplied by 0 is 0. So, exponential of O we take 1. So, remaining terms are

anyway constant. So, they remain as it is.

Now, this is the rate of heat transfer when there is a mass transfer when there is a mass

transfer Nay is there; that means, Nay associated with the mass transfer. So, mass transfer



contribution has also brought into the temperature profile and then subsequent heat

transfer.
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* In the absence of MT: =
=

But if there is no mass transfer, if there is no mass transfer then in the absence of mass

transfer temperature profile is linear that is this one how do you get? So, if there is no mass

transfer ‘;iyy = 0 and then ey would be having only —k Z—; term only we will be having right.

So; that means,gz 0.S0, T=C1y+Cyyougetyouapplyy=0T=Toy=06T=Ts
you apply and then obtain this constant C1 C; and then simplify. So, then you get ;:7;? =
-0

y/5. So, that we have written directly right.
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* In the absence of MT: Ll % X
Ts

Ty
~ dr T5—T0 —k(Ta-To)
d y=0

—=

A TR G YR

NyyC
—k d7)| tl —exp —AkLPAéS]

* i.e., rdte of HT is directly influenced by the simultaneous MT,
whereas the mass flux is not directly affected by HT

So, now in the absence of mass transfer we have this linear temperature profile for this

case also we try to find out the rate of heat transfer. So, for that we get Z—T which is nothing,

but =2 And now we are multiplying by minus k either side and then substituting y = 0

and then this superscript O is indicating in the absence of mass transfer. So, that we can

compare the rate of heat transfers in the absence and then in the presence of mass transfer.

So, that we do this is in the presence of mass transfer how the rate of heat transfer you
know being affected. So, that is one this is in the absence of mass transfer. So, then this
quantity will give the relative contribution of mass transfer and the relative heat transfer
rates by you know including the mass transfer and by without including the mass transfer

right.

So, what we understand here, the heat transfer part is clearly affected by the mass transfer
or mass flux, but the mass transfer part there is no heat transfer effect why? That is because
whatever the dC etcetera are there how are they related to temperature that is not given.
So, that is the reason you know we did not bring this term you know effect of temperature

in mass transfer ok.
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Solution of Part (b):

¢ When both components condensing at wall

Now, we take part b part b is what? Both A and B are diffusing A and B are condensing.
So, there is nothing like non condensable thing here and then this 6x # 61 # 6 we have to

generalize it. But first what we do?

We take only this thing and then we take 6x = 6T = 6 one same constant film thickness is
same whether mass transport or heat transport right; however, unequal film thickness we
later on incorporate ok. So, when both components are condensing at wall so, pictorially

the same thing is shown here right.
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A
: =AY (=8
Solution of Part (b): T=Tyandx,=xy T=Tsandx,=1x,;

¢ When both components condensing at wall
¢ Then by mass balance for component A:

§x N,,y|y—s X 1v,,y|y+Ay =0

dNy,
dy__

* Ny, = constant -(1)

¢ Similarly for component B:
Ny ()~ @)

through other cqndensing

Direction of mojement o
condensable vapor “A>
component “B”




Same horizontal axis is y axis and then condensable vapors are coming in this direction.
And then they are reaching the cold surface upon reaching the cold surface they are
condensing on the cold surface. At cold surface that isaty =0 T is To Xa IS Xao and then
aty =0 T is Ts Xa IS Xas because the film thickness is 6 now both A and B are coming and

condensing on the vapors.

So, so we cannot say that Ngy is O here in this case. So, mass balance for component A if
you wanted to do, but by taking a film in between of thickness & y. So, whatever the flux

Nay at y =y is entering flux and then whatever the flux that is leaving at y + 8 y is Nay at
y+9Yy.

And then both of them are multiplied by the cross section area of the surface through which
the channel of thickness 6 y that is S we have taken. So, we can do balance this way or in
the pathway we have directly taken this species conservation equation %‘* + V.N, = O that

we have taken. So, that way also we can do it ok.

So, now you apply limiting conditions after dividing this equation by S and & y then you
get this equation now this is Nay equals to constant. So, what is that constant we do not
know. So, we are calling it Nao right similarly if you do for component B you get Nagy is

equals to constant and that constant we do not know. So, we are calling it Ngo.
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* Energy equation: %(p (l7 - %vz)) =—(V-e)+pv-g)
M e e

ol ptil = .
0t(p(u+2v))- =t g)
de.
J =>a—y’= 0= e, = constant = e, =£9‘—>(3)
* In equation (1)-(3), subscript “0” indicates quantities are evaluated
aty =0
AT i e
* We have: Ny, = xy (NAy =+ Ngy) = CDABd_y =) *

d
* Nao = x4(Nag + Ngo) — cDyp di;




So, now energy equation simplification of energy equation is exactly the same as we have
done previously right so, but that aaiyy = 0 and then ey = eo at constant we do not know we

are calling it eo. Now, the combined flux equation is given here. So, now, here in place of
Nay You have to write Nao and then in place of Ny you have to write Ngo right. So, when

you write you get this equation.
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* In the first part of problem, we have already simplified “e” as
ve=-kT+ Y H.No-(5)

* For binary systems with variations only in y- direction

0 Jw

M b
te= _k5+ (HANAy +HBNBy)

9 = —
* ey =~k + (Hago + Hyhgn)  (6)

* In the above equation, replace H, by  Cpy(T = Ty)
and Hp by Cpp(T—Tp)

Now, here e up to this point we have simplified in the part a right. So, it is same here also

exactly same right now what we do? This one we write for the binary component then we

oT . = — .
have _k5 + H4Ny4y + HgNpg,, right.

In the previous case we have taken Np,, is 0 and then H, we replaced by Cp4 8T, but now
we cannot do that one this Nay is Nao and this Na Ngy is nothing, but Ngo and then H,, is

Cps8T Hp is T Cpp & T. So, that when you do you get final e expression this one right.
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¢ and since the ref. temperature is Ty = (€g)r=r,= o (i-e, the conductive heat flux at
the wall), eq. (6) will take the following form

/[ oy
‘@_+(NAOCPA+NBUCPB)(T Tp) = qé/ 2 (7)
e e —emn ’ —/

* In equation (4): Ny, = x4(Nyo + Ngo) — CDAB add  —(Ny + Ngo)xyg both sides
/”__\1!‘ —

d
‘. xA +(NAo +NEO)(xA XAo) Nao = x40 (Ngo + Nzo) - (;)

* Now equation (7) and (8) are le the advantage is to solve one equation

to get solution for both equation

. q d
* Integrating equation (8): —cDABdL; = Nao — %40(Ngo + Ngo) — (Ngg + Ngo) (x4 — x40)

So, that is —k Z—; + NyoCpa + NpoCpp multiplied by 8T = eo that eo we are evaluating it T

= To. So, then at that point we have only conductive heat flux at the wall there is no mass

transfer so, that we calling qo ok.

Now, in equation 4; this is the equation 4 that we had. So, we are adding —(N4o + Npgo)
X40 both sides. So, there is a reason we are neither solving this equation number 4 or
equation number 7 directly right. What we are trying to do? We are adding this term with

the equation number 4 both sides.

So, then we have this component in the left hand side and then in the right hand side Ny,
is already there. So, —x4o (N4o + Ngo) right. So, the reason is that now this equation
number 8 and then equation number 7 if you compare they are exactly similar right; only

thing that Kk is replaced by ¢ Dag.

And then T is replaced by xa then Nao Cp,4 is replaced by Nao and then Ny, Cpy, is replaced
by N, T is replaced by xa. And then Ty is replaced by xao and then qo is replaced by this

particular term this particular term in the right side of an equation number 8.

So, that they are quite similar to each other. So, you can solve one equation we can solve
any of these one equation and then analogously you can write the solution for the other
equation right. So, what we do now? We solve this equation number 8. So, for that this



particular term we take to the right hand side, but we do not simplify we do not simplify.

So, then we have this thing and then left hand side we have only - ¢ Das %A.
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d
. —CDAH'dL; = Nyo = %40(Ngo + Npo) = (Ngo + Npo) (x4 — X49)

& -dxy e dy /
Nag=xao(Nao+Npo)-(Nao+Npo) Wa=xa0) ) cDap

-ln(NAo'on(NAo*'NBo)-(NAo+NBo)(xAéon)) _y
¢ e + C1
=(N40+Npo) Dap .
*BC:at y=0,x,=xy

. -1n(NAo‘on(NAo+NBo)-(NAo+NBo)(x4y’{Ao)): y +C,
Dyp

~(No*Npo)

In(Ngo~*40(N 40 +Npo))
. =
G (N 4o+Ngo) i

So, the same is written once again here. So, now, here Cl;i we are taking other side and the
AB
rest other terms dxa by all these Nao No terms we are keeping in the left hand side and

integrating. So, then integration constants C is there right.

So, this one is minus In of whatever this term divided by you know differentiation of the

Xa terms. So, that is —(N4o + Ngo) and the right hand side simply DL we are having plus
cDap

this constant alright.

So, now we apply boundary condition y = 0. So, xa should be xa0. So, that if you substitute
XA = Xao here. So, the second term would be 0 within the logarithmic and then right hand
side this y is 0. So, this term is 0. So, directly you get C; as this one. Now, this C1 we are

going to substitute here and then simplify.
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An(Nao~xa0(Nao+Ngo)-(Nao+Npo) a=xa0)) _("y In(NAD"on(NM*‘NBO))‘l
A(NgotNpo cDap (Nao+Npo)
L ey
In(Nyo = x40(Nao + Nag) = (Nag + Npo) (s — X40))
—In(Nyo = x40(Nag + Npo)) = (Nyo + Nao)ﬁ

' _ (NaotNBo)Xa—X40)\ _ i
i (1 NAo-on(NAo’rNao)) = (o + Nyo) cDap

(Nau o) (Fa-a0) y
o| WaotNpo)(Ka=%p0) _ 4 _ e
Na0=x40(Nao+Npo) 1=w ((NA0+NBO) CDAB) ©®)

So, that C1 we have substituted here now this minus this minus you can cancel out and

then this N4y + Np, You take it to the right hand side and multiply by these two terms.
Then what you have? Left hand side this term and the right hand side (N, + Ngo) =—

CDAB

should be there.

And then second term (N, + Np,) is cancelled out only In Ny — x,40(Nyo + Npo) Would

be there. So, that we brought to the left hand side directly I have written.

So, now this is InA — InB form. So, | can write [n %- So, that | write and then simplify |

(Ngo+Npo)(xa—x40)
Ngo—x40(Nao+Npgo)

get 1 — = (Nyo + Ngo) ﬁ right. So, after you know removing this In

in terms of exponential issue right. So, this is the expression for the concentration profile

Xa as function of y for the second case right.
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* Solution of €q. (8): _CDAB ddi; i (NAO S NBO)(xA = on)

= Nyo = x49(Ngg + Ngo) — (8) is

o MaotNpo)(ka=xa0) _ 4 _ exp <(NA0 +Nay) Zby—) -9
48

N40=%40(N g0+Npo)

* Similarly solution of eq. (7): —k% + (NaoCoa + NygoCop)(T = Ty)

=qo > (7)is

b

; (T _/ <

i (NAOCP“NB:: B ey ((NAOCPA i NBOCPB)Q' - (10)
(®) \

So, now this is for this equation number 8 equation number 9 is the solution right. Now
our equation number 7 is similar as an equation number 8. So, its solution should be similar
to the equation number 9 so, that you have here; N,, has to be replaced by N,,Cp4 and Np,
has to be replaced by NgoCpgand 5x should be replaced by § T and whatever N, —
%40(N4o + Npy) is that should be replaced by go. Right side also on the same thing we are

doing and then ¢ Das should be replaced by k alright.
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* Forother BCs,ie., aty=0,>x,=x;< LMWJ 51‘55}.—8
s and ay=5L-T=I«

* In order to account for variation of film thickness for both MT and
HT, we get similar solution, with only changes

* X, =X,5and y = §, in equation (9)
¢ and T2 T;and y = & in equation (10)
=z

=

v
o (Nao+Npo) (x45—X40) =1-exp ((NAO +NBO);:_}Z) = (11) * gﬂ-
cDpp

N0=%40(Na0+Npo)

—

) —D_(NAOCWNZOC-PB)(T‘_TO) =1-exp ((NAUCPA t NBOCPB)J—,: - (12) * &
0 .

c—




Now, what we do? The limiting conditions of you know unequal film thickness if the film
thickness are unequal then at y = & X Xa = Xas this is for the mass transfer part right. So,

film thickness for the mass transfer part whatever is there 6 x.

So, under such conditions Xa is a xas and then from and for the heat transfer part film
thicknesses is & T. So, theny = 67 T = Ts . After getting the solution of equation number 8
in the form equation number 9 what we have taken? We have taken 6x = 6t = & right, but
in the problem we have unequal film thickness. So, then accordingly we have two different
boundary conditions right.

So, now in equation number 9 wherever Xa is there you replace by xas and wherever 6 is
there wherever y is there you replaced by dx; similarly in equation number 10 which is the
heat transfer solution. So, you replace T by Ts and then y by &t then you have this equation
number 11 and 12 as solutions. So, now, this is concentration profile when film thickness
is 6x for mass transfer and then this is the temperature profile when film thickness is & for

heat transfer right.
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