
Transport Phenomena of Non-Newtonian Fluids 

Prof. Nanda Kishore 

Department of Chemical Engineering 

Indian Institute of Technology, Guwahati 

 

Lecture - 33 

Simultaneous Heat and Mass Transfer 

 

Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of today’s lecture is Simultaneous Heat and Mass Transfer. So, now, in this lecture we will 

be taking a situation where both heat and mass transfer are taking place. So, then how to 

obtain the mass transfer flux and then heat transfer or temperature distribution etcetera 

those things that we are going to see ok. 
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So, consider a hot vapor A is diffusing at steady state through a stagnant film of non-

condensable gas B to a cold surface at y = 0 where A condenses. So, hot vapor A is 

condensing on a cold surface, but when it reaches the cold surface in between there is a 

stagnant film of non-condensable gas B and this A is diffusing into B when it reaches to 

the cold surface and condenses in that process ok. 

So, then under such conditions what is the you know concentration profile of that 

component A and then what is the temperature profile that is what we have to find out. 

Assume ideal gas behavior and uniform pressure assume physical properties to be constant 

evaluated at some mean temperature and composition neglect radiation heat transfer right. 



So, this is the simple base simple you know statement of the problem. So, this problem we 

can divide into two parts. First part as I mentioned you know developing concentration 

profile xA as function of y temperature profile as function of y as shown be figure in the 

next slide as shown in the figure next slide right. 

So, when mole fractions and temperatures at both film boundaries are known at y = 0 at y 

= δ. The thickness of non-condensable gas film is δ it is having two boundaries; one 

boundary location is y = 0 another boundary location is y = δ. At either or at both of these 

locations what we know? We know the temperature and concentration. So, boundary 

conditions are known. 

So, this we are going to do when by taking non condensable gas film B. So, NBz that is 

what we are taking 0 here right and also when both heat transfer and mass transfer was 

taking place. So, then there would be different film thickness in general. So, δx δT, but 

what we are assuming that it is same here whether you know mass transfer or heat transfer 

the film thicknesses is same that is the assumption. 

That for that for those conditions we are obtaining you know xA as function of y and T as 

function of y. The second problem what we are doing we are generalizing the results for 

the situation where both A and B are condensing. Now not only A, B is also condensing 

on cold surface right. So, then that A and B are you know we cannot say that B is non you 

know non condensable and then its flux is 0 that we cannot say now because it is also you 

know condensing on to the cold surface ok. 

And allowing for unequal film thickness for heat and mass transport then we are taking δx 

= δT ≠ δ. So, then what are the solutions that you know what are the concentration profiles 

and then temperature profiles that we are going to find out. 
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So, pictorially we have a cold surface here which is designated as y = 0 and then close to 

this one there is a boundary of stagnant gas film made up of B right. So, now the direction 

of diffusion or you know condensable vapor is coming in this direction and then reaching 

this cold surface and then condensing like this here right fine. 

The coordinate system is taken such a way that the direction in which the change in 

concentration or temperature is occurring that is y film thicknesses is δ. So, at y = 0 T is 

T0 and xA is xA0 at y = δ T is Tδ and then xA is xAδ. So, now, for this case we are going to 

find out this two. 
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This is part a; to determine the desired quantities we must solve the equations for species 

conservation and energy equations for this system. So, then this is the species conservation 

equation in generalized form vectorial notation it is given. If you expand this one for 

species A you have this one 
𝜕𝐶𝐴

𝜕𝑡
+

𝜕𝑁𝐴𝑥

𝜕𝑥
+

𝜕𝑁𝐴𝑦

𝜕𝑦
+

𝜕𝑁𝐴𝑧

𝜕𝑧
 and then reaction there is nothing 

occurring no reaction occurring. So, RA is 0 right. 

And then what we have seen diffusion are the concentration variations and temperature 

variations are only in y direction. So, only NAy would be there and that would be function 

of y whereas, NAx NAz are 0 and then it is a steady state problem. So, this is 
𝜕𝐶𝐴

𝜕𝑡
 is also 0. 

Then we have this one; 
𝜕𝑁𝐴𝑦

𝜕𝑦
= 0. So, now, if you know the NAy you can find out the 

concentration profile very conventional way in that we have been doing ok before getting 

the concentration profile what we do we try to look at the energy equation and its 

simplification as well as per the constraints of the problem. 
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Energy equation we have derived in an equation we have derived in week number 4. So, 

this is what we have got. Whereas this e is there in all 3 direction x y and z direction and 

then each e and it consist of a contribution from the conduction convection work done 

because of the pressure you know viscous dissipation etcetera all those terms are included 

in all three directions right.  

So, whatever the energy because of the gravity is this. So, then that part is in the last it is 

given right net less potential energy etcetera those things are coming from here. So, this 

equation we know ok. So, if you expand this equation only this part we are expanding 

because this e is having all the components like you know all the contributions from the 

conduction convection viscous dissipation work done because of the pressure etcetera all 

those things right, then we simplify it.  

So, this if you expand you get 
𝜕𝑒𝑥

𝜕𝑥
+

𝜕𝑒𝑦

𝜕𝑦
+

𝜕𝑒𝑧

𝜕𝑧
. So, that is written here. So, now we apply 

the constraints of the problems steady state. So, then left hand side all terms are cancelled 

out gravity we are taking you know in the other direction.  

So, in the direction of diffusion or temperature variations whatever are occurring in that 

direction there is no gravity. So, this we can take out 0 right. So, the variations in the 

energy or temperature are occurring only in the y direction and that is function of y. So, 

the remaining ex ez are 0. So, what we get 
𝜕𝑒𝑦

𝜕𝑦
= 0 this is what we get. 



Now, to determine the mole fraction profile we need the molar flux for diffusion of A 

through stagnant B. So, this how do we get? In general we write a combined flux equation. 

So, that is this one now in this equation NBy is 0 for part a of the problem.  

So, if you simplify this equation by taking all NAy terms one side and then remaining terms 

other side you write you get 𝑁𝐴𝑦 = −
𝑐𝐷𝐴𝐵

1−𝑥𝐴

𝜕𝑥𝐴

𝜕𝑦
. So, now this you can substitute in 

𝜕𝑁𝐴𝑦

𝜕𝑦
=

0 and then you get a concentration profile as function of y. 
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So, when you substitute you know this is nothing, but NAy term we substituted 
𝜕𝑁𝐴𝑦

𝜕𝑦
= 0. 

So, NAy is this one now for this situation part a situation the concentration and then 

diffusivity we can take constant. Then we have a ∫
𝑑

𝑑𝑦
(

1

1−𝑥𝐴

𝜕𝑥𝐴

𝜕𝑦
) = 0 dy that is 

(
1

1−𝑥𝐴

𝜕𝑥𝐴

𝜕𝑦
) = 𝐶1then further integrating you get − ln(1 − 𝑥𝐴) = 𝐶1𝑦 + 𝐶2. 

Now, we have our two-boundary condition at y = 0 xA = xA0. So, here if you substitute xA0 

you get − ln(1 − 𝑥𝐴0) = 𝐶2 because y is 0 in this boundary condition. So, C2 you already 

got then other boundary condition at y = δ, xA = xAδ. 

So, in place of xA you write xAδ in place of y you write δ and then C2 you already got it as 

− ln(1 − 𝑥𝐴0). Then you get C1 that is nothing but 
1

𝛿
𝑙𝑛 (

1−𝑥𝐴0

1−𝑥𝐴𝛿
). So, this C1 and then this 

C2 we are substituting in this equation to get the concentration profile. 
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In this term is C1 and then this term is C2 right then if you further simplify in the sense 

what we do we take this − ln(1 − 𝑥𝐴0) to the left-hand side. So, that we can write 

𝑙𝑛 (
1−𝑥𝐴0

1−𝑥𝐴
) =

𝑦

𝛿
 𝑙𝑛 (

1−𝑥𝐴0

1−𝑥𝐴𝛿
). 

So, this is the final concentration profile. Further you can write by taking this 
𝑦

𝛿
 as a power 

of the whatever 𝑙𝑛 (
1−𝑥𝐴𝛿

1−𝑥𝐴0
) then you have this one if you take exponential both sides. You 

get this as a concentration profile right of course, any of these two equations you can use 

as a concentration profile right. 
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Now, what we do? We differentiate this equation with respect to y because we wanted to 

know the flux also, we have to find out the mass flux also for that we need to know 
𝑑𝑥𝐴

𝑑𝑦
. 

So, that is the reason we are differentiating this equation with respect to y. So, so this from 

this term what we have 
1

1−𝑥𝐴
(−

𝜕𝑥𝐴

𝜕𝑦
) this is constant. So, 0 derivative of constant is 0. 

Now, this equation except y everything is constant. So, 
1

𝛿
𝑙𝑛 (

1−𝑥𝐴𝛿

1−𝑥𝐴0
) multiplied by 1 right. 

So, now, flux of component A what we have −
𝑐𝐷𝐴𝐵

1−𝑥𝐴

𝑑𝑥𝐴

𝑑𝑦
 this is what we derived so; that 

means, this equation if you multiplied by 𝑐𝐷𝐴𝐵 you will get flux that is given by this 

equation right. 

Now, what we got? We got an expression for the concentration profile; we got an 

expression for the flux also. So, then what we try to do? We try to write these expressions 

you know concentration profile in a in a very conventional way of writing like what in 

general what we write 
𝑥𝐴−𝑥𝐴𝛿

𝑥𝐴0−𝑥𝐴𝛿
 in this form we try to write. So, that is what we are doing 

in the next slide. 
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So, NAy is equals to this one we have. So, from this equation I can write you know 
𝑁𝐴𝑦

𝑐𝐷𝐴𝐵
δ 

one side and then ln terms other side. Then I am taking exponential here then I am 

multiplying by minus 1 either side and then adding plus 1 either side then in the left hand 

side what I am doing? I am trying to do LCM. So, that I have 
𝑥𝐴𝛿−𝑥𝐴0

1−𝑥𝐴0
 is equals to right 

hand side term as it is right. 

If you wanted to know 
𝑥𝐴−𝑥𝐴0

1−𝑥𝐴0
 expression so, then what you have to do? Simply you have 

to replace this 𝑥𝐴𝛿 by 𝑥𝐴 and then here whatever δ is there that you have to replace by y 

because at y = δ 𝑥𝐴 = 𝑥𝐴𝛿 at y is equals to some unknown y 𝑥𝐴 is equals to some unknown 

𝑥𝐴 right. So, that if you do you get this expression. 

Now, if you divide this equation by the above equation, then you get 
𝑥𝐴−𝑥𝐴0

𝑥𝐴𝛿−𝑥𝐴0
=

1−𝑒𝑥𝑝(
𝑁𝐴𝑦

𝑐𝐷𝐴𝐵
𝑦)

1−𝑒𝑥𝑝(
𝑁𝐴𝑦

𝑐𝐷𝐴𝐵
δ)

 this is what we have right. 
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Now, we try to get the temperature profile. So, what we got by simplifying the energy 

equation we got 
𝜕𝑒𝑦

𝜕𝑦
= 0, but what is the 𝑒𝑦 we have not simplified in that slide. So, that 

we are doing here. So, the e is having the contribution from the conduction convection 

then any work done because of the pressure. And then any molecular stress you know 

energy because of the molecular stresses like you know viscous dissipation etcetera those 

terms are included. 

But now we have to in incorporated term because of the mass transfer also. Remember 

when we are deriving the energy equation, we had incorporated most of the common 

contributions which are you know important from chemical engineering applications 

specific to the transport mass transport problem or heat transport problem like that specific 

to the heat transfer problem only. 

But at the same time what we have mentioned, if any additional contributions are coming 

because of the reaction or mass transfer etcetera. So, those terms should be added up in 

this expression or final energy equation that we have derived either way we have to do that 

is what we have discussed. 

Because in a generalized manner we cannot include each and every terminology like 

nuclear power, energy associated with the electrochemical reaction reactions, energy 



associated because of the you know hydrodynamic magneto hydrodynamics etcetera all 

those things we cannot include because they are specific to the problem. 

So, now specific to this problem we have to incorporate term related to the mass transfer 

how it is affecting this e or the heat transfer problem. So, if you can understand clearly, 

you can simply add you know ∑ 𝑁𝛼 𝐶𝑝̅ δ T that you can do it right. So, but if you are not 

able to understand how it is coming so, then we have to do this one. 

So, before adding we will be adding that mass transfer part here, but also we are doing 

some kind of readjustment. Readjustment in the sense this conduction term we are bringing 

here right and then this whatever the mass transfer because of the mass transfer the 

contribution should come in e that is nothing, but ∑ 𝐻̅𝛼 𝐽𝛼.  

𝐽𝛼 is nothing but a molar flux because of the diffusion and then 𝐻̅𝛼 is nothing but the 

enthalpy of component molar enthalpy of that component α there are N number of 

components right. 

So, now in the next step from this P v and then this ρ v we are combining such a way that 

ρ 𝑈̂ + 𝑃𝑣 and then remaining 
1

2
𝜌𝑣2 V we are writing here [τ.V] is as it is in place of minus 

whatever the −k δ T  is there that we are writing first and then this flux terms we are 

writing as a second one. 

Why are we writing? So, that this 𝑈̂ + 𝑃𝑣 we can write H. So, now, here 𝐻̂ we are using 

tildes so, we are writing for only one component. So, there are N number of components 

would be there. So, then we have to write a summation remaining two terms are as it is ok. 

Now next step what we are doing? This term we are multiplying by the molecular weight 

of that component alpha and then dividing by the same. 

Why are we doing? Because we can write this 
ρ𝛼

m𝛼
 we can write 𝐶𝛼 and then that 𝐶𝛼 V we 

can have a relation for in terms of the flux. So, that is the reason. So, 𝐶𝛼  𝐻̅𝛼 V we are 

having here. 
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But we know that 𝑁𝛼 = 𝐶𝛼𝑉𝛼  and 𝐽𝛼 = 𝐶𝛼(𝑉𝛼 − V)  this we have already seen in the 

beginning in the first lecture of mass transfer part right. Now, this 𝐽𝛼 if I expand 𝐶𝛼𝑉𝛼 −

𝐶𝛼𝑉. 

So, in place of 𝐶𝛼𝑉𝛼I can write 𝑁𝛼 now from here I can write 𝐶𝛼𝑉 is nothing, but 𝑁𝛼 − 𝐽𝛼. 

So, this we are going to use in equation number 4 here what we had 𝐶𝛼𝑉. So, in place of 

𝐶𝛼𝑉 we are writing 𝑁𝛼 − 𝐽𝛼. So, that this 𝐻̅𝛼 𝐽𝛼and then this 𝐻̅𝛼 𝐽𝛼 cancelled out and then 

we have only sigma 𝐻̅𝛼 𝑁𝛼 right. 

Now, this if you write for the binary component, you have 𝐻̅𝛼 you have 𝐻̅𝐴𝑁𝐴𝑦 + 𝐻̅𝐵𝑁𝐵𝑦 

and then conduction is also only in the y direction. So, −𝑘
𝜕𝑇

𝜕𝑦
. Now this 𝐻̅𝐴 and then 𝐻̅𝐵 

we can replace by you know 𝐶𝑃̅𝐴 δ T, but NBy is anyway 0 in this problem.  

So, that NBy 𝐶𝑃̅𝐵δ T we don’t need to write. So, now this equation you can substitute in 

𝜕𝑒𝑦

𝜕𝑦
= 0 and then simplify to get the required temperature profile. 
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So, 
𝜕𝑒𝑦

𝜕𝑦
= 0 this we integrated one. So, this term as it is equals to C3 now next step we are 

keeping −𝑘
𝜕𝑇

𝜕𝑦
 one side all other terms we are taking other side. next step, we are what we 

are trying to do? We are writing 
𝑑𝑇

𝑑𝑦
=

𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘
(𝑇 − 𝑇0) −

𝐶3

𝑘
 . 

So, next step dy term we are keeping one side all other terms we are taking the other side. 

So, dT by and this term you will be having right now what we can do? You can integrate. 

So, when you integrate you get ln of this term divided by the differentiation of you know 

T terms. So, then that is 
𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘
 you will get as a denominator right side you get y and then 

constant C4 right. 
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So, now we have two boundary conditions two constants we can evaluate. So, at y = 0 T 

= T0 so, then here when you substitute T/T0. So, then you get this term is 0 then; that 

means, what you get C4 is nothing but 
𝑙𝑛[−

𝐶3
𝑘

]

𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘

. 

Now, we apply the other boundary conditions y = δ at y = δ T = Tδ. So, then here Tδ we 

are having in place of y we are having δ right. So, now, what we do? We take this term to 

the right hand side. So, that in the right hand side we have this one right. 
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Next step what we are trying to do? We are writing exponential rather writing in you know 

ln terms. So, then this is what we have. Next step what we are trying to do? We are taking 

this 
𝐶3

𝑘
 to the right hand side right.  

Next step, what we are writing in place of 
𝐶3

𝑘
 we will be writing minus exponential of 

𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘
𝐶4 which we just derived in the previous slide by applying the first boundary 

condition this is what we got. So, that you substitute here as this term remaining all terms 

are same right. So, that the same equation is written once again here. 
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So, now what we do? We need to have (𝑇 − 𝑇0) also. So, that in place of Tδ we write T 

and in place of δ we right y right. Because at y = δ T = Tδ and then at y is equals to some 

unknown y T is equals to some unknown T right so, that if you do you get this equation. 

So, now, you do 12 b divided by 12 a equations then you get 
𝑇−𝑇0

𝑇δ−𝑇0
= this one. Next step 

what we do? We take this term common from both numerator and denominator. So, that 

you know that can be cancelled out and then we have this particular term. 
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Now, this is exponential of A by exponential of B form. So, we can write exponential of 

A minus B. So, that you write. So, then this would be cancelled out. So, in the exponential 

we will be having only 1 term both in numerator and denominator terms that we can right 

now 
𝑇−𝑇0

𝑇δ−𝑇0
=

1−𝑒𝑥𝑝[
𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘
𝑦]

1−𝑒𝑥𝑝[
𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘
δ]

. So, this is the temperature profile right. 

Now, we try to find out the rate of heat transfer as well right. So, before going into the 

finding out the rate of heat transfer what we understand from here until and unless 
𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘
 

is tending to 0 this temperature profile is not linear it is non-linear ok it can be linear only 

when this particular term tends to 0 right. 

That is what it means by when the conduction is very much dominating compared to the 

mass transfer then only we can have a linear profile; obviously, if there is only conduction. 

So, then temperature profile is linear that we know ok. 
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Now, differentiating with respect to y so, in the left hand side 
1

𝑇δ−𝑇0
 is you know constant 

then 
𝑑𝑇

𝑑𝑦
− 0 =. And then in the right hand side except this particular term all other terms 

are independent of y. So, in the denominator we are keeping as it is numerator when you 

are differentiating this term exponential of x is exponential of x on differentiation. 

So, you get the same thing minus exponential of same term and then differentiation of 

whatever this factors being multiplied by y. So, that is 
𝑁𝐴𝑦𝐶̅𝑃𝐴

𝑘
 right. So, now, we wanted 

to know −𝑘
𝜕𝑇

𝜕𝑦
. So, −𝑘

𝜕𝑇

𝜕𝑦
. So, then what we are doing this 𝑇δ − 𝑇0 we brought to the right 

hand side ok and then this whatever this 1/k was there. So, that we have taken to the left 

hand side. So, then we have k here. 

So, now this we wanted to do at the cold surface at the cold surface because at that point 

how much heat transfer is taking place because that is the location at which condensation 

is taking place right. So, in this equation if you substitute y = 0. So, the exponential of 

something multiplied by 0 is 0. So, exponential of 0 we take 1. So, remaining terms are 

anyway constant. So, they remain as it is. 

Now, this is the rate of heat transfer when there is a mass transfer when there is a mass 

transfer NAy is there; that means, NAy associated with the mass transfer. So, mass transfer 



contribution has also brought into the temperature profile and then subsequent heat 

transfer. 
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But if there is no mass transfer, if there is no mass transfer then in the absence of mass 

transfer temperature profile is linear that is this one how do you get? So, if there is no mass 

transfer 
𝜕𝑒𝑦

𝜕𝑦
= 0 and then ey would be having only −𝑘

𝜕𝑇

𝜕𝑦
 term only we will be having right. 

So; that means, 
𝜕2𝑇

𝜕𝑦2 = 0. So, T = C1 y + C2 you get you apply y = 0 T = T0 y = δ T = Tδ 

you apply and then obtain this constant C1 C2 and then simplify. So, then you get 
𝑇−𝑇0

𝑇δ−𝑇0
 = 

y/δ. So, that we have written directly right. 
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So, now in the absence of mass transfer we have this linear temperature profile for this 

case also we try to find out the rate of heat transfer. So, for that we get 
𝑑𝑇

𝑑𝑦
 which is nothing, 

but 
𝑇δ−𝑇0

 δ
. And now we are multiplying by minus k either side and then substituting y = 0 

and then this superscript 0 is indicating in the absence of mass transfer. So, that we can 

compare the rate of heat transfers in the absence and then in the presence of mass transfer. 

So, that we do this is in the presence of mass transfer how the rate of heat transfer you 

know being affected. So, that is one this is in the absence of mass transfer. So, then this 

quantity will give the relative contribution of mass transfer and the relative heat transfer 

rates by you know including the mass transfer and by without including the mass transfer 

right. 

So, what we understand here, the heat transfer part is clearly affected by the mass transfer 

or mass flux, but the mass transfer part there is no heat transfer effect why? That is because 

whatever the dC etcetera are there how are they related to temperature that is not given. 

So, that is the reason you know we did not bring this term you know effect of temperature 

in mass transfer ok. 
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Now, we take part b part b is what? Both A and B are diffusing A and B are condensing. 

So, there is nothing like non condensable thing here and then this δx ≠ δT ≠ δ we have to 

generalize it. But first what we do?  

We take only this thing and then we take δx = δT = δ one same constant film thickness is 

same whether mass transport or heat transport right; however, unequal film thickness we 

later on incorporate ok. So, when both components are condensing at wall so, pictorially 

the same thing is shown here right. 
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 Same horizontal axis is y axis and then condensable vapors are coming in this direction. 

And then they are reaching the cold surface upon reaching the cold surface they are 

condensing on the cold surface. At cold surface that is at y = 0 T is T0 xA is xA0 and then 

at y = δ T is Tδ xA is xAδ because the film thickness is δ now both A and B are coming and 

condensing on the vapors. 

So, so we cannot say that NBy is 0 here in this case. So, mass balance for component A if 

you wanted to do, but by taking a film in between of thickness δ y. So, whatever the flux 

NAy at y = y is entering flux and then whatever the flux that is leaving at y + δ y is NAy at 

y + δ y. 

And then both of them are multiplied by the cross section area of the surface through which 

the channel of thickness δ y that is S we have taken. So, we can do balance this way or in 

the pathway we have directly taken this species conservation equation 
𝜕𝐶𝐴

𝜕𝑇
+ ∇. 𝑁𝐴 = 0 that 

we have taken. So, that way also we can do it ok. 

So, now you apply limiting conditions after dividing this equation by S and δ y then you 

get this equation now this is NAy equals to constant. So, what is that constant we do not 

know. So, we are calling it NA0 right similarly if you do for component B you get NBy is 

equals to constant and that constant we do not know. So, we are calling it NB0. 
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So, now energy equation simplification of energy equation is exactly the same as we have 

done previously right so, but that 
𝜕𝑒𝑦

𝜕𝑦
= 0 and then ey = e0 at constant we do not know we 

are calling it e0. Now, the combined flux equation is given here. So, now, here in place of 

NAy you have to write NA0 and then in place of NBy you have to write NB0 right. So, when 

you write you get this equation. 
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Now, here e up to this point we have simplified in the part a right. So, it is same here also 

exactly same right now what we do? This one we write for the binary component then we 

have −𝑘
𝜕𝑇

𝜕𝑦
+ 𝐻̅𝐴𝑁𝐴𝑦 + 𝐻̅𝐵𝑁𝐵𝑦 right. 

In the previous case we have taken 𝑁𝐵𝑦 is 0 and then 𝐻̅𝐴 we replaced by 𝐶𝑃̅𝐴 δT, but now 

we cannot do that one this NAy is NA0 and this NA NBy is nothing, but NB0 and then 𝐻̅𝐴 is 

𝐶𝑃̅𝐴δT 𝐻̅𝐵 is T 𝐶𝑃̅𝐵 δ T. So, that when you do you get final e expression this one right. 
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So, that is −𝑘
𝜕𝑇

𝜕𝑦
+ 𝑁𝐴0𝐶𝑃̅𝐴 + 𝑁𝐵0𝐶𝑃̅𝐵 multiplied by δT = e0 that e0 we are evaluating it T 

= T0. So, then at that point we have only conductive heat flux at the wall there is no mass 

transfer so, that we calling q0 ok. 

Now, in equation 4; this is the equation 4 that we had. So, we are adding −(𝑁𝐴0 + 𝑁𝐵0) 

𝑥𝐴0 both sides. So, there is a reason we are neither solving this equation number 4 or 

equation number 7 directly right. What we are trying to do? We are adding this term with 

the equation number 4 both sides. 

So, then we have this component in the left hand side and then in the right hand side 𝑁𝐴0 

is already there. So, −𝑥𝐴0 (𝑁𝐴0 + 𝑁𝐵0) right. So, the reason is that now this equation 

number 8 and then equation number 7 if you compare they are exactly similar right; only 

thing that k is replaced by c DAB. 

And then T is replaced by xA then NA0 𝐶𝑃̅𝐴 is replaced by NA0 and then 𝑁𝐵0𝐶𝑃̅𝐵 is replaced 

by 𝑁𝐵0 T is replaced by xA. And then T0 is replaced by xA0 and then q0 is replaced by this 

particular term this particular term in the right side of an equation number 8. 

So, that they are quite similar to each other. So, you can solve one equation we can solve 

any of these one equation and then analogously you can write the solution for the other 

equation right. So, what we do now? We solve this equation number 8. So, for that this 



particular term we take to the right hand side, but we do not simplify we do not simplify. 

So, then we have this thing and then left hand side we have only - c DAB 
𝑑𝑥𝐴

𝑑𝑦
. 
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So, the same is written once again here. So, now, here 
𝑑𝑦

𝑐𝐷𝐴𝐵
 we are taking other side and the 

rest other terms dxA by all these NA0 NB0 terms we are keeping in the left hand side and 

integrating. So, then integration constants C1 is there right.  

So, this one is minus ln of whatever this term divided by you know differentiation of the 

xA terms. So, that is −(𝑁𝐴0 + 𝑁𝐵0) and the right hand side simply 
𝑦

𝑐𝐷𝐴𝐵
 we are having plus 

this constant alright. 

So, now we apply boundary condition y = 0. So, xA should be xA0. So, that if you substitute 

xA = xA0 here. So, the second term would be 0 within the logarithmic and then right hand 

side this y is 0. So, this term is 0. So, directly you get C1 as this one. Now, this C1 we are 

going to substitute here and then simplify. 
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So, that C1 we have substituted here now this minus this minus you can cancel out and 

then this 𝑁𝐴0 + 𝑁𝐵0 you take it to the right hand side and multiply by these two terms. 

Then what you have? Left hand side this term and the right hand side (𝑁𝐴0 + 𝑁𝐵0)
𝑦

𝑐𝐷𝐴𝐵
 

should be there.  

And then second term (𝑁𝐴0 + 𝑁𝐵0) is cancelled out only ln 𝑁𝐴0 − 𝑥𝐴0(𝑁𝐴0 + 𝑁𝐵0) would 

be there. So, that we brought to the left hand side directly I have written. 

So, now this is 𝑙𝑛𝐴 − 𝑙𝑛𝐵 form. So, I can write 𝑙𝑛
𝐴

𝐵
. So, that I write and then simplify I 

get 1 −
(𝑁𝐴0+𝑁𝐵0)(𝑥𝐴−𝑥𝐴0)

𝑁𝐴0−𝑥𝐴0(𝑁𝐴0+𝑁𝐵0)
= (𝑁𝐴0 + 𝑁𝐵0)

𝑦

𝑐𝐷𝐴𝐵
 right. So, after you know removing this ln 

in terms of exponential issue right. So, this is the expression for the concentration profile 

xA as function of y for the second case right. 
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So, now this is for this equation number 8 equation number 9 is the solution right. Now 

our equation number 7 is similar as an equation number 8. So, its solution should be similar 

to the equation number 9 so, that you have here; 𝑁𝐴0 has to be replaced by 𝑁𝐴0𝐶𝑃̅𝐴 and 𝑁𝐵0 

has to be replaced by 𝑁𝐵0𝐶𝑃̅𝐵 and δx should be replaced by δ T and whatever 𝑁𝐴0 −

𝑥𝐴0(𝑁𝐴0 + 𝑁𝐵0) is that should be replaced by q0. Right side also on the same thing we are 

doing and then c DAB should be replaced by k alright. 
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Now, what we do? The limiting conditions of you know unequal film thickness if the film 

thickness are unequal then at y = δ x xA = xAδ this is for the mass transfer part right. So, 

film thickness for the mass transfer part whatever is there δ x. 

So, under such conditions xA is a xAδ and then from and for the heat transfer part film 

thicknesses is δ T. So, then y = δT T = Tδ . After getting the solution of equation number 8 

in the form equation number 9 what we have taken? We have taken δx = δT = δ right, but 

in the problem we have unequal film thickness. So, then accordingly we have two different 

boundary conditions right. 

So, now in equation number 9 wherever xA is there you replace by xAδ and wherever δ is 

there wherever y is there you replaced by δx; similarly in equation number 10 which is the 

heat transfer solution. So, you replace T by Tδ and then y by δT then you have this equation 

number 11 and 12 as solutions. So, now, this is concentration profile when film thickness 

is δx for mass transfer and then this is the temperature profile when film thickness is δT for 

heat transfer right. 
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So, the references for this lecture are provided here. 

Thank you. 


