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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian fluids. Today 

we will be discussing two different types of problems; Non-Isothermal Diffusive Mass 

Transfer and then Forced Convective Mass Transfer. So, in the case of non-isothermal 

diffusive mass transfer, we are taking a problem where diffusion through a non-isothermal 

spherical film is taking place, ok. 
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Diffusion through hypothetical spherical stagnant gas film surrounding a droplet of liquid; 

that is the problem you know statement. So, consider this system as shown here in the 

picture. So, we have a droplet which is made up of the component A and then gas film 

component B is there, the radius of droplet is r1, the radius of gas film surrounding this 

droplet is r2, ok. 

The temperature of the droplet surface is T1 temperature at the gas film is function of ratio 

between these two radius power n. So, that is T2 which is given as 𝑇1 (
𝑟2

𝑟1
)

𝑛

 right. So, now 

the component concentration xA is xA1 at r = r1 and then, component A concentration is xA2 

at r = r2. 



Now, if you have to consider the diffusion through non-isothermal situations, what you 

need to have information? You need to have a diffusivity as function of temperature. That 

information you should have, then only you can solve the problem. If that information is 

not available, you cannot solve the problem. You can solve the problem only for isothermal 

conditions. 

So, how the diffusivity is changing? By change in temperature. That information should 

also be provided if you wanted to consider non-isothermal diffusive mass transfer 

problems, ok. So, for that a rough approximation of DAB which varies as 3 by 2 power of 

the temperature; that is  
𝐷𝐴𝐵

𝐷𝐴𝐵,1
= (

𝑇

𝑇1
)

3/2

.  

So, the diffusivity how is it changing with the temperature is given by this expression DAB,1 

is nothing but diffusivity of a droplet A component in gas film B component at temperature 

T1 at fixed temperature T1, right. DAB is nothing but diffusivity at unknown temperature 

T. So, now the temperature is varying from T1 to T2 and then T2 is again function of T1 

and then function of r1 and r2 as well as given this one, ok.  

So, this problem we have to solve here ok. Then further applications if you wanted to know 

here, such kind of applications in general we have a drying of droplets. Where actually 

drying of droplets when it taking place usually the size of the droplet decreases as the sum 

of the components of droplet are evaporating that is in general possible. But in this case 

what we are trying to take, we are taking the droplet radius is fixed. 

Later on, after a week or so we are going to discuss similar kind of problem where 

evaporation of droplet or evaporation of column, liquid, etcetera would take in place. So, 

there we are going to take change in the position; interface position that also we are going 

to take. So, that is in the later course. 

But since we are at the beginning of the mass transfer part, so then what we are taking we 

are taking the droplet radius is fixed even though it is evaporating, right. Applications we 

see drying of droplets; are sometimes you know what we have catalysts fillets are there. 

So, near the catalyst surfaces, there would be some kind of diffusion of the component.  

Let us say on the catalyst surface some reaction is taking place. So, that product whatever 

is forming on the surface of the catalyst that is passing through the gas film surrounding 



the catalyst surface and then reaching the bulk of the fluid. So, that is another kind of 

application. 

So, such kind of application very common in chemical engineering, that is the reason we 

are taking this particular case to study under non-isothermal diffusion mass transfer. 
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So, first what we do the same problem. We solve for the isothermal case first, then we go 

for the non-isothermal case. Because it will be helpful to compare the results how they are 

changing when you are incorporating non-isothermality of diffusive mass transfer, ok. So, 

that is the region. First, we finished case 1 where we are taking isothermal case.  

So, we know that the combined flux 𝑁𝐴𝑟 = 𝑥𝐴(𝑁𝐴𝑟 + 𝑁𝐵𝑟) − 𝑐𝐷𝐴𝐵
𝑑𝑥𝐴

𝑑𝑟
. Now, the mass 

transfer or diffusion is taking place in the radial direction. That is the region the flux are 

you know designated with r and then, a differentiation of concentration we are doing with 

respect to r, ok.  

Now, if you do the steady state mass balance on a spherical shell; let us say if you have a 

droplet here so now you take a spherical shell right. So, whose radius is r and then the 

radius of the outer cell is r + dr, so that the thickness of the cell is dr, ok. And then this gas 

film that is r2 is anyway is there. So, between r1 & r2 values we are taking a spherical thin 

film of thickness dr and for that one we are making the balance.  



So, when we do that one; so mass rate at r = r is nothing but NAr(2πr2) and then, mass rate 

at r + dr is nothing but NAr 2π (r+dr)2 and should be equals to 0 because there is no reaction 

involved here in this case. Now this one you simplify. You take dr tends to 0 and then 

apply the limiting conditions to get the differential form of this equation, then you get 

𝑑

𝑑𝑟
(𝑟2𝑁𝐴𝑟) = 0. 

Now, you can know the concentration profile, if you know the NAr, but NAr you cannot 

know until and unless NBr is known. NAr expression you can find out from equation 1; that 

is fine, but that you can do only when NBr is known. But however in this problem it is 

mentioned that non-diffusing stagnant gas film.  

So, that means B is not diffusing, only A is diffusing. So, that means if B is not diffusing, 

its flux would be 0 that is NBr is 0. So, now this equation 1 would become when you take 

NBr = 0, you get 𝑁𝐴𝑟 = −
𝑐𝐷𝐴𝐵

1−𝑥𝐴

𝑑𝑥𝐴

𝑑𝑟
.  

Now, here this you substitute in equation number 2, then you get 
𝑑

𝑑𝑟
(𝑟2 𝑐𝐷𝐴𝐵

1−𝑥𝐴

𝑑𝑥𝐴

𝑑𝑟
) = 0. 

Now whatever the changes occur in this equation, that comes through this DAB and then c; 

if non-isothermality is there. So that we take as a case 2, but first case we are taking 

isothermal case. 
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So, under isothermal conditions c and DAB both are constant. So, then if you take them as 

constant, then we have 
𝑑

𝑑𝑟
(

𝑟2

1−𝑥𝐴

𝑑𝑥𝐴

𝑑𝑟
) = 0 on integrating once we get 

𝑟2

1−𝑥𝐴

𝑑𝑥𝐴

𝑑𝑟
= 𝐶1. So, 

that is 
𝑑𝑥𝐴

1−𝑥𝐴
=

𝐶1

𝑟2
𝑑𝑟. 

Now, once again if you integrate, you get 𝑙𝑛
1−𝑥𝐴

−1
. So, that is −𝑙𝑛(1 − 𝑥𝐴) = ∫ 𝑟−2 is 

−1

𝑟
. 

So, 
−𝐶1

𝑟
+  another integration constant C2 you get. Now we have two boundary condition 

at r = r1. We have xA = xA1 at r = r2, xA = xA2.  

So, when you apply these two boundary conditions, you get these two expressions. Simply 

replacing r = r1 and then xA = xA1 and r = r2 and then xA = xA2 in the second equation. In 

the first and second equations here respectively. 

Then what you do? Subtract the equation; you subtract the below equation from the above 

equation, then you get 𝑙𝑛
1−𝑥𝐴2

1−𝑥𝐴1
= 𝐶1 (

1

𝑟2
−

1

𝑟1
) or C1 is equals to this one. This C1 you take 

and then substitute here in the first equation, so you get C2 that is 𝐶2 = −𝑙𝑛(1 − 𝑥𝐴1) +

𝐶1

𝑟1
. So, 

1

𝑟1
 and then this is nothing but C1. 

So, now you have both C1 and C2 expressions you are having. So, those you substitute in 

equation number 4 to get the concentration profile. 
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So, here you substituted C1 and this is C2. Then now you what you do, this particular 

component you take to the left-hand side, so that you have −𝑙𝑛
1−𝑥𝐴

1−𝑥𝐴1
 in the left-hand side 

and then right-hand side −𝑙𝑛
1−𝑥𝐴2

1−𝑥𝐴1

1

(
1

𝑟2
−

1

𝑟1
)
 is common if you take common. So, multiplied 

by (
1

𝑟
−

1

𝑟1
)you are having, right. 

So, this expression what we can write? Here numerator also what I do? I write 
1

𝑟1
−

1

𝑟2
 and 

then, this one also I write 
1

𝑟1
−

1

𝑟
, so that I have this expression and then remaining term is 

as it is. So, concentration profile what you have this is the expression you have given by 

equation number 5, right. 
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Now, if you wanted to know the flux what you have to do, you have to obtain the 
𝑑𝑥𝐴

𝑑𝑟
 

because NAr expression we have 
𝑑𝑥𝐴

𝑑𝑟
, right. So, for that what we do? We take a 

concentration profile in this ln form, then differentiate with respect to r both sides. So, first 

left-hand side if you differentiate with r, you get 
1

(
1−𝑥𝐴

1−𝑥𝐴1
)
 multiplied by 

1

1−𝑥𝐴
. 

And then −
𝑑𝑥𝐴

𝑑𝑟
, you are getting; right-hand side this and these are constant. So, that and 

then remaining term if you do the differentiation, you get this is also constants. So, 0 −



(−
1

𝑟2
) as differentiation. So, then you have this 1 +

1

𝑟2
 in the right-hand side and then left-

hand side this is what you are having right. 

So, this 1 − 𝑥𝐴1, this 1 − 𝑥𝐴1 you can cancel out and then this 1 − 𝑥𝐴 you can take it to 

the right-hand side or you keep it here itself. There is no issue right. So, if you take to the 

right-hand side, so this is what you are having number. This 
𝑑𝑥𝐴

𝑑𝑟
 we need at r = r1. Flux, 

we wanted to calculate at r = r1 because from that surface on only; from that position, only 

droplet is evaporating surface.  

You know evaporation is taking place from the droplet surface which is designated as r = 

r1. So, that is the region this flux we have to calculate at r = r1. So, this 
𝑑𝑥𝐴

𝑑𝑟
 also we should 

calculate at r = r1. So, when you do; at r = r1 xA is nothing but xA1 and then r is nothing but 

r1. So, rest of the terms are as it is. 
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So, this is what we get −
𝑑𝑥𝐴

𝑑𝑟
 at r = r1. Now flux NAr at r = r1 is nothing but 

−𝑐𝐷𝐴𝐵

1−𝑥𝐴1

𝑑𝑥𝐴

𝑑𝑟
 at r 

= r1 xA1 because we are calculating this one flux at r = r1. So, that is 
𝑐𝐷𝐴𝐵

1−𝑥𝐴
 and then −

𝑑𝑥𝐴

𝑑𝑟
 

is this one. So, (1 − 𝑥𝐴) (1 − 𝑥𝐴)cancelled out, c𝐷𝐴𝐵ln of this term and then 
1

𝑟1
2 and then 

this term, this is the flux. 



Now, if you wanted to know the rate of mass transfer in terms of moles per time that is 

WA is molar flow of A at the surface of spherical droplet of radius r1. So, what you have 

to do? This flux whatever is there that you have to multiply by surface area through which 

the mass transfer is taking place. Surface area of the droplet that is at r1 location that is 4 

π 𝑟1
2 is the surface area of the droplet.  

So, flux if you multiplied by this multiply by this surface area, you get the mass transfer 

rate in moles per seconds; that expression is given this. So, now 4 π 𝑟1
2. So, this 𝑟1

2, this 

𝑟1
2 is cancelled out. So, the remaining term is this one. So, this is the isothermal case. 
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Now, we take non-isothermal case of the same problem. So, this non-isothermal case up 

to derivation of 𝑁𝐴𝑟 =
−𝑐𝐷𝐴𝐵

1−𝑥𝐴

𝑑𝑥𝐴

𝑑𝑟
 up to that point it is quite same, because till that point 

temperature issue has not come into the equations or any of the balances, ok. 

So, combined flux is this one. So, steady state balance is the same like isothermal case. 

Then by applying the limiting conditions you get the differential form of this equation, this 

balance equation given by equation number 2. But NBr is 0 because stagnant non-

isothermal stagnant gas film. So, gas film is not diffusing; non-diffusing stagnant gas film 

that is the statement is given. So, B is not diffusing; gas film is of component B. So, NBr 

is 0, so that again you substitute in equation number 1, you get NAr is equals to this one. 



So, this one you substitute in equation number 2. So, then this equation you get. So, now 

this equation you have to solve for non-isothermal conditions. Till now the non-

isothermality has not brought into the picture. There is no term which required to take 

consider this non-isothermality here. So, till this point it is solution is same as case 1. So, 

from here it will change. 
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So, now this relation is given 
𝐷𝐴𝐵

𝐷𝐴𝐵,1
 is nothing but (

𝑇

𝑇1
)

3/2

 and then this 
𝑇

𝑇1
 is given by(

𝑟

𝑟1
)

𝑛

. 

So, now what we can write 
𝐷𝐴𝐵

𝐷𝐴𝐵,1
= (

𝑟

𝑟1
)

3𝑛/2

. You may be thinking that in place of 𝐷𝐴𝐵 we 

can why cannot we write 𝐷𝐴𝐵,1 multiplied by (
𝑇

𝑇1
)

3/2

. So, that way we can write and then 

do the differentiation, but T is related to the r; T is related to the r that is given in this 

statement.  

So, the T is also a function of r, so then we have the differentiations and then integration 

subsequent in the calculation. So, until and unless this T function of r if you do not include, 

so the solution will not be reliable; because T function of r that statement is given in the 

problem that should also be incorporated.  



Had that not been given, so then we should have taken only 𝐷𝐴𝐵 = 𝐷𝐴𝐵,1 (
𝑇

𝑇1
)

3/2

. That is 

it. So, but now 
𝑇

𝑇1
 is given by this expression in the problem statement. So, that information 

should also be brought into the picture.  

Further see we can write as 
𝑃

𝑅𝑇
 and then T is nothing but 𝑇1 (

𝑟

𝑟1
)

𝑛

, right. So, now in this 

equation number 3 in place of c in place of D, we have to use these two expressions ok. 

That if you do 
𝑑

𝑑𝑟
𝑟2, c is nothing but 

𝑃

𝑅𝑇1(
𝑟

𝑟1
)

𝑛 (
𝑟

𝑟1
)

3𝑛/2

𝐷𝐴𝐵,1 that is nothing but 𝐷𝐴𝐵 and 

then 
1

𝑥𝐴
 and then 

𝑑𝑥𝐴

𝑑𝑟
= 0. 

So, that you rearrange. Now this 𝑟2 is as it is 
𝑃𝐷𝐴𝐵,1

𝑅𝑇1
 are constant now. 

1

1−𝑥𝐴
 as it is 

𝑑𝑥𝐴

𝑑𝑟
 is 

as it is. So, remaining terms whatever this (
𝑟

𝑟1
)

3𝑛/2

 and then (
𝑟

𝑟1
)

𝑛

, we can write (
𝑟

𝑟1
)

𝑛/2

, 

right. So, that is what this additional thing. 

Now, you can integrate. So, then left-hand side differentiation will go off and then we have  

C1 constant in the right-hand side. So, this one 𝑟2 and then 
𝑟𝑛/2

𝑟1
𝑛/2, we are separating out. So, 

that we can combine this 𝑟𝑛/2 and then 𝑟2 as one term. 

So, that you know it will be useful in integration subsequently. So, that 𝑟
𝑛

2
+2

 that we are 

taking to the right-hand side. Even this dr also we are taking to the right-hand side. So, we 

are getting 
𝑑𝑟

 𝑟
𝑛
2

+2
𝐶1 in the right-hand side, all other terms in the left-hand side. 
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So, in the left-hand side except 
𝑑𝑥𝐴

1−𝑥𝐴
 everything is constant, right. So, the same equation is 

written here. So, what we do for simplicity? We take this expression which is a constant, 

we represent by λ. So that that λ also we take into the right-hand side. So, that we can write 

𝐶1

 λ
 as 1 constant and then remaining terms are as it is, ok. 

Now, if you integrate this equation again, you get left-hand side 𝑙𝑛
1−𝑥𝐴

−1
. So, that is 

−𝑙𝑛(1 − 𝑥𝐴)
𝐶1

 λ
 is constant and then integration of 𝑟−

𝑛

2
−2

 is nothing but this one, + C2 

constant. So, when you simplify, this is what you have this equation right. 

Now, we have two boundary conditions at r = r1 xA = xA1. So, we have this equation in 

place of xA, we are writing xA1 in place of r, we are writing r1. Other boundary condition 

at r = r2, xA = x A2. So, same thing here in place of xA we are writing xA2 in place of r, we 

are writing r2. Rest all other terms are same. 

So, now this equation minus this equation if you do you get an expression for C1 because 

C2 - C2 is 0.  
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So, this is what you get and then from here C1 you get this expression. Now, this C1 if you 

substitute in this equation, you get C2. This is B C 1. That is at r = r1, xA = xA1 whatever 

we have written that equation is this one, right. So, now here 𝐶2 = −𝑙𝑛(1 − 𝑥𝐴1) −
1

 λ
 and 

then, this is of C1 from 7 a equation number 7a.  

So, now we have C1 C2, here C2 what we can do we can simplify slightly this λ, this λ this 

1 + 
𝑛

 2
, this 1 + 

𝑛

 2
 cancel out. So, remaining terms are this and then this term is as it is. So, 

7 b C2, 7 a C1. 
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So, this constant C1 C2 if you substitute in the equation 6; that is −𝑙𝑛(1 − 𝑥𝐴) =

𝐶1

 λ
𝑟

−
𝑛
2

+1

−(
𝑛
2

+1) + 𝐶2, right. So, now C1 C2 you substitute 
1

 λ
 this is 𝐶1, this entire thing is 𝐶2. Now 

what we do? This one this 𝑙𝑛(1 − 𝑥𝐴1) term that we take to the left-hand side, so that we 

can have left-hand side −𝑙𝑛 (
1−𝑥𝐴

1−𝑥𝐴1
). 

And then remaining terms the first term here λ, λ you can cancel out and 1 + 
𝑛

2
, 1 + 

𝑛

2
 also 

you can cancel out. So, the remaining terms; from the remaining two terms you can take 

𝑙𝑛 (
1−𝑥𝐴1

1−𝑥𝐴2
) common, then we have 

𝑟1
−(1+

𝑛
2

)
−𝑟

−(1+
𝑛
2

)

𝑟1
−(1+

𝑛
2

)
−𝑟2

−(1+
𝑛
2

)
. 

So, then all of these r’s are having power minus, so then we can write the reciprocal of 

them. So, when you write. So, then this is what you are having multiplied by 𝑙𝑛 (
1−𝑥𝐴1

1−𝑥𝐴2
). 

So, under the non-isothermal conditions, the concentration profile for this spherical gas 

film problem diffusion of droplet to a spherical gas film is provided by this expression, 

right. 
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Now, if you wanted to know the flux, what you have to do is, you have to find out 
𝑑𝑥𝐴

𝑑𝑟
. So, 

for that what we do this equation whatever is there that we differentiate with respect to r. 



So, left-hand side what we will be having; − [
1

(
1−𝑥𝐴

1−𝑥𝐴1
)
] (

1

1−𝑥𝐴1
) (

−𝑑𝑥𝐴

𝑑𝑟
); you get in the left-

hand side.  

Right-hand side this is constant, this is constant, this is constant, this is constant. So, only 

this one we have to differentiate. So, in the numerator we will be having 

{0 − [− (1 +
𝑛

2
) 𝑟−(1+

𝑛

2
)−1]}. This is what we have. Rest all other terms are constants in 

the right-hand side. So, then we have right-hand side this particular term as written here. 

So, 
1

(
1−𝑥𝐴

1−𝑥𝐴1
)
, I can write 

1−𝑥𝐴1

1−𝑥𝐴
 and then remaining two terms as it is. Right-hand side, we 

have this term is constant and then denominator is constant, numerator differentiation you 

get this expression, right. So, this if you write 
𝑑𝑥𝐴

𝑑𝑟
 one side and then 

1

1−𝑥𝐴1
 side. Rest all 

other terms to the other side if you take. So, here this (1 − 𝑥𝐴1) (1 − 𝑥𝐴1) is cancelled out. 

So, the remaining terms are as it is right-hand side term. This is what we got, ok. 

So, now we need the flux at the droplets surface which is evaporating. So, at r = r1, we 

have to get this expression. So, at r = r1, xA = xA1. So, whatever 
1

1−𝑥𝐴1
 in the left-hand side 

that also be brought to the right-hand side. And then in this expression whatever these 

𝑟−2+
𝑛

2 is there that I am writing 
1

𝑟
2+

𝑛
2

 and then r we are replacing by r1. 

(Refer Slide Time: 25:29) 

 



So, now this flux NAr at r = r1 is nothing but 
−𝑐𝐷𝐴𝐵

1−𝑥𝐴1

𝑑𝑥𝐴

𝑑𝑟
 at r = r1. So, this part is as it is; 

𝑑𝑥𝐴

𝑑𝑟
 

is given by this expression. Just previous slide we got it, ok. So, this 1 − 𝑥𝐴1, this 

1 − 𝑥𝐴1 is cancelled out. And now the c is nothing but 
𝑃

𝑅𝑇
 and then 𝐷𝐴𝐵 is nothing but 

𝐷𝐴𝐵,1 (
𝑟

𝑟1
)

3𝑛/2

. So, those things we are writing. And then T is nothing but 𝑇1 (
𝑟

𝑟1
)

𝑛

, right. 

So now this, we are actually evaluating at r = r1. So, 
𝑟

𝑟1
 is 1. Similarly this also we are 

evaluating at r = r1. So, 
𝑟

𝑟1
 is 1. So, whatever the power does not matter, 1 power anything 

is 1, right. So, now here so this is what we get. So, finally the flux is given by this 

expression 
𝑃𝐷𝐴𝐵,1

𝑅𝑇1
 multiplied by this particular term, right. 
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Now, if you want to know the mass transfer rate in moles per second here, so whatever 

NAr at r = r1 is that we have to multiplied by surface area of the droplet that is 4 π 𝑟1
2. 

Because from the droplet surface, the transfer of the mass is taking place right.  

So, NAr at r = r1 is nothing but this one. So, now this 𝑟1
2 this 𝑟1

2 can be cancelled out. So, 

then we have only rn/2 here. So, that r is also at r = r1, ok. So, remaining r terms are same.  



So, now in this equation if you write 
𝑃

𝑅𝑇1(
𝑟

𝑟
)

𝑛 as c and then 𝐷𝐴𝐵 = 𝐷𝐴𝐵,1 (
𝑟

𝑟1
)

3𝑛/2

 if you 

write and then, you take n = 0, then this expression will reduce to the solution of so called 

isothermal case. You can cross check it is, right.  

So, this is about the non-isothermal diffusive mass transfer. Now, we take another case 

where we are considering forced convective mass transfer, ok. For this situation of forced 

convective mass transfer, we are considering diffusion into a falling liquid film. There is 

a liquid film. So, that is falling with certain velocities. So, there is a velocity distribution, 

that velocity distribution is affecting the diffusive mass transfer. How it is affecting that 

we have to find out, right. 

So, it is also possible that diffusion is taking place into the liquid film. So, then liquid 

composition may change and then viscosity may change; that is also possible. So, can we 

consider can we handle that situation? If not, how we; how to make approximation 

simplification and all those things we have to see. 
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So, this is an example of forced convective mass transfer as explained. Where viscous flow 

and diffusion are under such condition that velocity field can be considered as an affected 

by the diffusion. That is momentum transfer is not affected by the mass transfer, but mass 

transfer is affected by the momentum transfer, ok. 



So, this mass transfer is not affecting the momentum transfer, but momentum transfer is 

affecting the mass transfer. So, this is the situation. This can be possible when diffusion is 

only taking place slightly. If it is taking place only slightly, then what happens? You know 

the composition of liquid composition does not change much. 

So, liquid viscosity does not change. So, then obviously its velocity distribution will not 

be affected, because here it is a thin film; it is a thin film only ok. So, that is considering 

that absorption of gas A in a laminar falling film of liquid B. So, B is liquid component, A 

is the gas film which is diffusing. So, this A gas is diffusing into B liquid. 

Other assumptions material A is only slightly soluble in B. So, that viscosity of liquid is 

unaffected, then only we can say that mass transfer is not affecting the momentum transfer. 

Diffusion takes place so slowly in liquid film that A will not penetrate very far into the 

film. So, into the film you know the transfer is taking place and then that is penetration 

distance is small in comparison with film thickness, ok. 
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So, now pictorially if you see three-dimensional projection is shown here, so the horizontal 

axis is x, vertical axis is z right. So, the height of the column is L, width of this column is 

W through which along which the material is flowing down. So, there is A, this material 

whatever is there that B liquid is there. So, that is falling like a film here right. And now 

into this film the diffusion of component A is gas component A is taking place. 



So, how do you visualise this location? So, what you have to see; this z = 0 is this top 

location of the column z = l is the bottom location of the column. Now left-hand side x = 

0 we are taking, right-hand side x = δ we are taking. If in 2 d diagram, it is shown here if 

visualised in 3d diagram, x = δ is nothing but the your screen on which you are studying 

right. 

Or if you are; if you are discussing this problem on a board, x = δ is a board location and 

then from the top of the board the material is falling, right. x = 0 is location is the outermost 

layer of the liquid which is exposed to the gas; surrounding gas. So, x = 0 is the surrounding 

gas. 

The same thing if you visualise like this. So, this is the surface let us say this form is a 

surface. Now from the top the liquid is flowing down like a film, right. The from the top 

liquid is flowing down like this. So, x = δ location is the palm surface; let us say x = 0 is 

the film is film thickness is δ. So, that is coming here. So, the tip of the pen whatever is 

there, so that is x = 0, right. 

So, now this pen entire thing whatever is the that is the gas film and then that area let us 

as you can say. So, x = 0. Here the gas is coming and then diffusing into the liquid film 

like this, right. So, that is what the problem. So, when this gas film molecules are diffusing 

into the liquid film how the concentration profile of this gas film whatever the gas 

component A is there, so that we have to find out. 

So, when these molecules of gas A are diffusing into the liquid film B, so how the 

concentration of this gas A is changing in the thickness of this film; that is from x = 0 to x 

= δ that you have to find out, right. So, that is one thing. Other thing is that it is mentioned 

in the problem that this is penetrating only to a smaller distance. 

So, only that let us say from this is x = 0, it is penetrating only to small distance only. After 

that it is not able to penetrate completely to reach the wall surface; that is the limitation is 

given. So, why that limitation is given when it is only slightly soluble or penetrate to small 

penetration thickness? You can say that viscosity of this film liquid film is not affected. 

So, velocity the film thickness velocity distribution within the film will not be affected.  

So, this understanding is important, once you have this understanding. Problem solving is 

very simple. So, now we see the boundary conditions also here, this all these details are 



given in the subsequent slides also, but from picture if you understand it will be easy. So, 

z = 0 is the location at the top where the pure liquid is there, pure liquid is there and then 

that is falling as a film. 

So, concentration of A should be 0 because pure liquid B is there; if the liquid B is pure. 

So, then there is no A that that is what it mean by and then at other location z = L. What is 

CA? That is not given to us. So, let us not worry about it. We will think of it. And then x = 

0. What we have; that is the free surface that is of the liquid film; free surface of the liquid 

film which is exposed to the gas. That is the very first layer of the liquid film at which gas 

is coming and then interacting and then further into penetrating into the film. 

So, that should be its initial concentration CA0 which is usually taken as the solubility of 

that particular component A and B. So, we are taking CA0 and x = δ. What we have it has 

been mentioned that this is this component is penetrating to only smaller distance only, A 

is able to penetrate into the smaller distance only. That is the reason its concentration is 

varying. Variations in concentration is shown in pictorially only for small distance. After 

that it is almost remaining same. That means we can see 
𝜕𝑐𝐴

𝜕𝑥
 is 0, right. 

So, now from the you know this penetration distance, this penetration distance let us say 

if I call it you know some α let us say. So, penetration distance α is very very smaller than 

the film thickness δ. So, whatever the molecules at the surface are there at the free surface, 

they can never reach to the this wall of the plane which is at x = δ. 

So, when the penetration distance α is very very small compared to the δ, what we can say 

from the molecules of the gas film viewpoint, this δ location is far away from their 

positions. So, they cannot go there. It is so far away that we it can say; it can say that x is 

equals to infinity from the molecules gas molecules from your point of view.  

So, at x is equals to infinity, the molecules are not able to come up to this location. They 

are penetrating only at the smaller distance. So, after that you know a presence of CA is 0, 

it is not there. So, CA should be 0. So, the conversion of this boundary condition like this 

is very essential in solving this problem, otherwise we were not able to solve this problem.  

It is similar like you know previous heat transfer case where the flow through; a non-

isothermal flow through cylindrical pipe were taking place, where T was taken as function 



of both r and z. So, similar kind of situation here also here concentration is function of 

both x and z. 

We cannot say CA is function of only x, it is function of z also. So, we need to know two 

boundary conditions in the z direction, two boundary condition in the x direction. So, in 

the two; in the z direction we have only one boundary condition we can specify other 

boundary condition at the bottom we cannot specify, we cannot even say 
𝜕𝑐𝐴

𝜕𝑧
 also 0; we 

cannot say that one physically. 

Other two boundary condition in these directions. So, these are the things, but this 

boundary condition has been simplified like this. From the molecules of gas, gas molecules 

A viewpoint we can say that x is equals to infinity, CA = 0 which is same as x is at x = δ 

𝜕𝑐𝐴 at x = δ 
𝜕𝑐𝐴

𝜕𝑥
 is 0 because the penetration distance or penetration depth whatever is there 

that is very very small compared to the film thickness. 

Actually film itself is very very thin. It is a few mm thickness film usually most of the 

polymer industries we have this kind of problems. Remember in one of the course 

momentum transfer, we have seen that you know; we have a inclined plate and then the 

fluid is flowing down. So, then we found the velocity profile etcetera. 

So, now here the same situation is there, but only thing that we have taken the vertical 

plate. And then in addition to the momentum transfer, there is a mass transfer is also 

occurring. So, it is a combined mass transfer and momentum transfer that is what we are 

calling forced convective mass transfer, because the flow whatever the velocity 

distribution is there that is affecting the mass transfer also. 

Now, this velocity distribution here we see; at x = 0 is the outermost layer of the fluid 

which is having the maximum velocity. And x = δ is nothing but the surface of the plane 

on which the material is flowing. So, because of the no slip condition, the velocity would 

be 0, vz would be 0 here and then vz would be maximum here at x = 0. And then, between 

these two locations the velocity profile changes like this which is function of x. So, that 

also we have to find out, ok. 



So, this understanding is very much essential. So, after that everything is mathematical 

only. Since here the velocity also needed to be find out. So, first what we do, we simplify 

the conservation of mass and momentum in order to get the velocity profile. 
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So, continuity equation in Cartesian coordinates is given here. Only vz is there and then it 

is not function of z, it is function of x only. So, this is 0 v by vx are anyway 0, so then 

continuity is satisfied; x component of equation of motion is given here. So, here vx steady 

state. So, this term is 0, vx is 0, vy is 0, vx is 0, right vx is 0, so all these three terms are 0. 

And gravity we are taking only in the z direction as per the schematic, so gx is 0. So, 
𝜕𝑝

𝜕𝑥
 is 

0. 

Similarly, y component of equation of motion is given here steady state, this term is 0, vx 

is 0, vy is 0, vy is 0, vy is 0. So, all these three terms are 0. Gravity is only in this z direction 

so this term is also 0. So, we have 
𝜕𝑝

𝜕𝑦
= 0. 
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Then z component of equation of motion is given here steady state. This term is 0, vx is 0, 

vy is 0, vz is existing it is function of x but it is not function of z. It is function of x only it 

is not function of z, so this term is also 0. And then the film whatever the film that is 

falling, it is falling because of the gravity only or compared to the gravity pressure forces 

are 0 here, because the film is falling because of the gravity in the z direction, right. 

So, vz is function of x. So, this term would be there, but vz is not function of y and z. So, 

these two terms are these are 0. So, then we get 𝜇
𝜕2𝑣𝑧

𝜕𝑥2 = −𝜌𝑔𝑧 and gz is nothing but g. So, 

you take the μ also to the right-hand side, then integrate first time. 

So, −
𝜌𝑔

𝜇
𝑥 + 𝐶1 left-hand side 

𝜕𝑣𝑧

𝜕𝑥
. If you integrate again, vz = −

𝜌𝑔

𝜇

𝑥2

2
+ 𝐶1𝑥 + 𝐶2. Then 

BCs at x = 0, vz is maximum, so 
𝜕𝑣𝑧

𝜕𝑥
 is 0. If 

𝜕𝑣𝑧

𝜕𝑥
 is 0 at x = 0 from this part of the equation, 

we get C1 = 0, right. And then at x = δ vz = 0. 

So, then vz is if vz; from this part of the equation, you get v0 = −
𝜌𝑔

𝜇

𝛿2

2
+ 𝐶1𝛿 + 𝐶2. C1 is 

0. So, C2 = 
𝜌𝑔

𝜇

𝛿2

2
 you get. So, this C2 you substitute here in this equation C1 is anyway 0, 

so this term is gone. So, then you have this thing and then out of these two, if you take 

𝜌𝑔

𝜇

𝛿2

2
 common, you get 1 −

𝑥2

𝛿2
. 



And then maximum velocity where are we having it x =0, vz is maximum. So, vz = vz max 

= 
𝜌𝑔

𝜇

𝛿2

2
 because x is 0 here. So, this is m equation we can write vz = vz max multiplied by 

1 −
𝑥2

𝛿2 we can write. 
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So, that is given here. Now a velocity distribution you got it. Now what we have to do? 

You have to find out the concentration profile for (Refer Time: 43:54). The species transfer 

equation is this one like heat transfer equation we have like momentum transfer equation, 

we have the species transfer equation is provided by this one. We can find out any books, 

we can derive this one also. 

So, the steady state this term is 0, vx is not existing, vy is not existing, vz is existing and 

then C is concentration of which is function of z and then x also. So, this you can you 

cannot cancel out. Now DAB this CA is function of x. So, this term should be there, but it 

is not function of y, so it is 0. C is function of z also, but what we have the convection in 

z direction is much higher compared to the diffusion in z direction. 

So, pictorially what we have the diffusion is taking place in the x direction. So, diffusion 

is dominating in the x direction convection, the flow is taking place in the z direction. So, 

convection terms are dominating in the z direction, diffusive terms are dominating in the 

x direction. So, diffusive terms whatever in the z direction is there, so that would be small 

compared to either of these two terms that is diffusion in x direction and then convection 



in z direction. So, accordingly this term can be cancelled out. There is no reaction finally. 

So, what we have is, we have 𝑣𝑧
𝜕𝐶𝐴

𝜕𝑧
= 𝐷𝐴𝐵

𝜕2𝐶𝐴

𝜕𝑥2 . 

This vz is what; vz max (1 − (
𝑥

𝛿
)

2

)
𝜕𝐶𝐴

𝜕𝑧
= 𝐷𝐴𝐵

𝜕2𝐶𝐴

𝜕𝑥2
, fine. 
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Now, boundary conditions we have already seen. At z = 0 at the top of the column pure 

liquid B is there. So, gas A concentration is 0. It indicates that the film consists of pure B 

at tau that is z = 0 location. And x = 0, that is the free surface indicates that the liquid gas 

interface and then, concentration of A is determined by the solubility of A in B.  

That is CA0 maximum concentration of A, that is possible at the interface that is CA0 right. 

And then at x = δ 
𝜕𝐶𝐴

𝜕𝑥
= 0. This is also we have seen. That indicates that A cannot diffuse 

through the solid wall. 
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Now, this whatever the equation we had 1 − (
𝑥

𝛿
)

2

, of course 𝑣𝑧 𝑚𝑎𝑥
𝜕𝐶𝐴

𝜕𝑧
= 𝐷𝐴𝐵

𝜕2𝐶𝐴

𝜕𝑥2 . So, 

this equation if you wanted to solve, you have to have certain limitations. Like in a heat 

transfer case, non-isothermal flow in pipe.  

What we have taken? We have taken asymptotic approximation. So, like that you know 

some kind of limitations is required. So, then in this case one can get only a limiting 

expression for CA valid for short contact time. That is when 
𝐿

𝑣𝑧 𝑚𝑎𝑥
 is very small, then only 

one can get the solution easily, right. 

So, why short contact time? Because within that small time only CA; the A is able to 

penetrate to smaller distance into the liquid film. Only a smaller distance that is the reason. 

So, accordingly substance A has penetrated only a short distance into the film. So, this is 

the given statements, both of them are now interconnected right. 

So, A has impression that film is moving throughout with A constant velocity equal to vz. 

Now, here also 𝑣𝑧 𝑚𝑎𝑥 because that you know it is only able to penetrate. Now this is the 

entire film, but the gas molecules are here. So, the molecules are penetrating only to small 

distance into the liquid film; that gas molecules are in an impression that the film is moving 

with a constant velocity of maximum velocity that is possible at the gas liquid interface, 

because it is the penetrating only to a smaller distance A. 



It is this gas molecules are not aware of the surface of the wall which they assume that 

they are the surface of the wall it is at infinite distance from their location of x = 0. This is 

with respect to the gas molecules viewpoint especially they are penetrating to a small 

distance. 

So, A does not penetrate very far that it does not sense presence of solid wall at x = δ. 

Therefore, a film were of infinite thickness moving with velocity 𝑣𝑧 𝑚𝑎𝑥, then the diffusing 

material would not sense the difference in the velocity. And then this physical argument 

suggests that one can get a very approximate result. If the equation 3, this whatever and 

then boundary condition whatever you mentioned as approximated like this. 
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So, this equation now x; 
𝑥

𝛿
 is almost like 0, 

𝑥

𝛿
 x is the distance from the view molecules 

point. From the gas molecules point of view, x = 0 to certain x value is there that is the 

penetration depth right from x = 0 to some x location which is these differences, it is the α 

penetration depth we are calling. 

So, this α is very very small compared to the δ. So, 
𝑥

𝛿
 is almost like you know 0. So, then 

this we can take off. So, that left-hand side we have 𝑣𝑧 𝑚𝑎𝑥
𝜕𝐶𝐴

𝜕𝑧
= 𝐷𝐴𝐵

𝜕2𝐶𝐴

𝜕𝑥2 . This is about 

the governing; simplified governing equations after couple of assumptions which are 

physically reliable of course. 



Then boundary conditions at z = 0, CA = 0 that will be as it is. At x = 0, CA = CA0 that 

would also be as it is. But at x = δ location is almost like infinite location very far for the 

gas molecules, because they are penetrating only smaller distance into the film and they 

are not able to sense the presence of wall. 

So, they are thinking that those molecules are; thinking that x = δ is virtually x is equals to 

infinity and they cannot go up to that location. If they cannot go up to that location that 

their concentration at that location is 0, CA = 0. So, this also pictorially we have explained. 

So, now here still the problem is you know very difficult to solve because now CA is 

function of both z and x, right. So, we cannot say that one side is independent of the other 

side like we say like we did in order to get the you know shear stress expressions etcetera 

here. So, that is not possible. So, for that what we do? 
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We do combined variable approach. For that, we are taking dimensionless parameters 
𝐶𝐴

𝐶𝐴0
 

as 𝐶𝐴
′  and then, this one what do you can write from here? So, this dimensionless parameter 

which is you know having the both x and z together, that as a combined variable we can 

call this 𝜂; we can call combined variable now, ok. 

So, how you get this expression particularly? Let us say from this equation what we can 

write 
𝑣𝑧 𝑚𝑎𝑥

𝑧
=

𝐷𝐴𝐵

𝑥2
. So, if I write this one 𝑥2 =

𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥
. So, if I take square root of both sides, 



so 
𝑥

√
𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥

, this kind of form we can have. This four we are getting because of the 

experience of solving the problem, we can have this constant. So, this we are writing as 𝜂. 

This is how we can decide how this you know combined variable should be defined this is 

how we can do it, ok.  

So, now this equation 𝑣𝑧 𝑚𝑎𝑥. In place of 
𝜕𝐶𝐴

𝜕𝑧
, I can write CA0 

𝜕𝐶𝐴
′

𝜕𝑧
. And then right-hand side 

in place of 
𝜕2𝐶𝐴

𝜕𝑥2 , I can write CA0 
𝜕2𝐶𝐴

′

𝜕𝑥2 . So, the CA0 CA0 is cancelled out and then this is what 

we are having. 
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Now, this equation we; this equation now here it is function of z and then x both. So, now 

we convert this as a function of one combined variable 𝜂 using this definition of a 

dimensionless parameter. So, how we do? So, let us say 
𝜕𝐶𝐴

′

𝜕𝑧
=

𝜕𝐶𝐴
′

𝜕𝜂
 multiplied by 

𝜕𝜂

𝜕𝑧
. Since 

now the 𝐶𝐴
′  we are writing as a function of only one variable in place of 𝜕, I am writing d 

directly ok. 

So, now this expression from here what you get 
𝑑𝜂

𝑑𝑧
 is nothing but 

𝑥

√
4 𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥

 and then 
𝑑

𝑑𝑧
𝑧−1/2. 

So, that is −1/2 𝑧−3/2. So, 𝑧−3/2. What I am writing −1/2 and then, 
1

𝑧√𝑧
 I am writing and 



then √𝑧 I am combining with these remaining terms. So, that I can write 
4 𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥
 and then 

−1

2𝑧
 as it is. This 

𝜕𝐶𝐴
′

𝜕𝜂
 as it is. 

So, now this again what is this? This is nothing but our 𝜂 as per the definition of combined 

variables. So, this is what we are having. Similarly, 
𝜕𝐶𝐴

′

𝜕𝑥
 if you do that is 

𝜕𝐶𝐴
′

𝜕𝜂

𝑑𝜂

𝑑𝑥
.

𝑑𝜂

𝑑𝑥
 is 

nothing but 
1

√
4 𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥

, right. 

So, now when you are doing the differentiation of 𝜂 with respect to x z has to be treated 

as constant. Similarly, when you are doing the differentiation of 𝜂 with respect to z x has 

to be treated as constant; like in partial derivatives, then this is we have. So, once again if 

you differentiate with respect to x, this equation you get this form. 

So, now we have 
𝜕𝐶𝐴

′

𝜕𝑧
 and then, 

𝜕2𝐶𝐴
′

𝜕𝑥2  from equation number 12 and 14, this we substitute 

here in this equation. 
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So, that is 
𝜕𝐶𝐴

′

𝜕𝑧
 and 

𝜕2𝐶𝐴
′

𝜕𝑥2 . We are substituting in this equation. Then what we have; vz max, 

we can do this one.  



𝜕𝐶𝐴
′

𝜕𝑧
 is −

𝜂

2𝑧

𝜕𝐶𝐴
′

𝜕𝜂
= 𝐷𝐴𝐵 and then this part is 

1
4 𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥
 

𝑑2𝐶𝐴
′

𝑑𝜂2
. So, now this 𝐷𝐴𝐵, this 𝐷𝐴𝐵 is 

cancelled out left-hand side 
1

𝑧
, right-hand side 

1

𝑧
 cancelled out left-hand side 𝑣𝑧 𝑚𝑎𝑥 right-

hand side 𝑣𝑧 𝑚𝑎𝑥 cancelled out. 

So, what we have? We have −
𝜂

2

𝑑𝐶𝐴
′

𝑑𝜂
 and then these two also we can take because 2 times 

one is 2; 2 times 2. So, we have  1/2
𝑑2𝐶𝐴

′

𝑑𝜂2 . So, that is these two you take to the left-hand 

side and then you add them together by taking 
𝑑2𝐶𝐴

′

𝑑𝜂2 + 2𝜂
𝑑𝐶𝐴

′

𝑑𝜂
= 0. So, now this equation 

which is function of both x and z has been converted into the function of one single variable 

𝜂, right. So, this is what we have.  

So, coming to the boundary conditions. At x = 0, what we have CA = CA0. If x = 0, that 

means from this definition of combined variable 𝜂 is 0 and then 𝜂 is 0 that means, 
𝐶𝐴

𝐶𝐴0
= 1 

𝐶𝐴

𝐶𝐴0
 is nothing but 𝐶𝐴

′ . So, that is equals to 1. 

And then other equation at x is equals to infinity that is CA = 0 that we understand. So, if 

x is equals to infinity, that means 𝜂 is equals to infinity and then if CA is 0, 𝐶𝐴
′  is also 0 

because 𝐶𝐴
′  is nothing but 

𝐶𝐴

𝐶𝐴0
. So, these are the two boundary condition in terms of 𝜂 which 

are getting from these two expressions. 

So, now this equation number 15 we have to solve using to this boundary condition given 

the equation number 16 and 17. 
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So, let us say you take 
𝜕𝐶𝐴

′

𝜕𝜂
= ψ, then we have

𝑑ψ

𝑑𝜂
+ 2𝜂ψ = 0, right. 
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So, the same equation you have written like this by taking this to the right-hand side, then 

you are taking 𝜂 terms ψ terms separately, two different sets. So, then integrating, so you 

get this one. Now, after removing the logarithmic you get this one. Now ψ is nothing but 

𝜕𝐶𝐴
′

𝜕𝜂
 that is 𝐶1𝑒𝑥𝑝(−𝜂2). So, 𝑑𝐶𝐴

′ = 𝐶1𝑒𝑥𝑝(−𝜂2)𝑑𝜂 that is 𝐶𝐴
′ = 𝐶1 ∫ 𝑒𝑥𝑝(−𝜂̅2)𝑑𝜂̅ + 𝐶2

𝜂

0
. 

We are writing in a in terms of dummy variable same like that and then integration from 0 



to 𝜂, right. So, this is what we have. We are not evaluating these constants directly, but we 

apply and then see what we get. 
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So, in the first bon this is the equation. First boundary condition is that 𝜂 = 0 𝐶𝐴
′ = 1. So, 

1 = 𝐶1 ∫ 𝑒𝑥𝑝(−𝜂̅2)𝑑𝜂̅ + 𝐶2
0

0
 is there. Whatever the integration when you substitute, both 

limits are same so then that will be 0. So, then 𝐶2 = 1, right 

Other one is at 𝜂 is equals to infinity 𝐶𝐴
′ = 0. So, that is 𝐶1 ∫ 𝑒𝑥𝑝(−𝜂̅2)𝑑𝜂̅ + 𝐶2

∞

0
. 𝐶2 is 

nothing but 1, it is given. So, 𝐶1 you can get −𝐶2 by this one and then 𝐶2 is nothing but 1. 

So, this is 𝐶1 this is 𝐶2 if you substitute these two in this equation, you get the expression 

for 𝐶𝐴
′  as this one. 
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This we can write 𝐶𝐴
′ = 1 − of; 1 minus of this one and this is nothing but defined as error 

function of 𝜂. This is by the definition of error functions which is given by this expression, 

ok. Then the 𝐶𝐴
′  is nothing but 

𝐶𝐴

𝐶𝐴0
= 1 −

2

√𝜋
∫ 𝑒𝑥𝑝(−𝜂̅2)𝑑𝜂̅

𝜂

0
= 1 − 𝑒𝑟𝑓𝜂.  

So, this whatever is there, so this entire thing we can write this error function of 𝜂. That is 

1 − 𝑒𝑟𝑓 (
𝑥

√
4 𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥

) 1 minus error function of x is nothing but complimentary error function 

of x. So, that is given as 𝑒𝑟𝑓𝑐
𝑥

√
4 𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥

, ok. 
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So, that is the concentration profile. If you wanted to know the flux, you have to find out 

the 
𝜕𝐶𝐴

𝜕𝑥
. So, 

𝐶𝐴

𝐶𝐴0
 is this one. So, 

𝜕𝐶𝐴

𝜕0
 is nothing but this one. And then from the definitions 

𝑑

𝑑𝑥
 of error function of u is equals to this one, that if you apply, you get for our case this 

one, ok. 

Now, here you substitute whatever 
𝑑𝜂

𝑑𝑥
 is nothing but 

1

√
4 𝐷𝐴𝐵𝑧

𝑣𝑧 𝑚𝑎𝑥

, right. So, 
𝑑𝐶𝐴

𝑑𝑥
 at x = 0. That 

means, here if you substitute x = 0, what happens? 𝜂 is 0 if x = 0 that means 𝜂 is 0. So, 

exponential of 0 is 1. So, the these remaining terms would be there. The √4 is nothing but 

2. So, that is cancelled out right and then, this π also we are taking into the square root of 

term. So, −𝐶𝐴0√
𝑣𝑧 𝑚𝑎𝑥

𝜋𝐷𝐴𝐵𝑧
 that is what we get. 

So, this NAx that x = 0 is nothing but −𝐷𝐴𝐵
𝜕𝐶𝐴

𝜕𝑥
 at x = 0. So, that 

𝜕𝐶𝐴

𝜕𝑥
 at x = 0 is nothing but 

minus of this one. So, + of this one we are having. And then multiplied by 𝐷𝐴𝐵 was there. 

So, 
𝐷𝐴𝐵

√𝐷𝐴𝐵
, we have √𝐷𝐴𝐵. So, that is √

𝐷𝐴𝐵𝑣𝑧 𝑚𝑎𝑥

𝜋𝑧
 we are having. 
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Now, mass rate if you wanted to find out you have to multiply, you have to get 𝑊𝐴 =

∫ ∫ (𝑁𝐴𝑥)𝑥=0𝑑𝑧𝑑𝑦
𝐿

0

𝑊

0
. So, that is 𝑊𝐶𝐴0√

𝐷𝐴𝐵𝑣𝑧 𝑚𝑎𝑥

𝜋𝑧
∫

1

√𝑧
𝑑𝑧

𝐿

0
 because NAx at x = 0 is nothing 

but this one. 

Now, integration of 
1

√𝑧
𝑑𝑧 if you do you get simplified expression, this one here after 

substituting limits here. So, now what we understand? 𝑊𝐴 is proportional to the square 

root of diffusivity and then 𝑊𝐴 is inversely proportional to the 
1

√𝐿/𝑣𝑧 𝑚𝑎𝑥
. 𝐿/𝑣𝑧 𝑚𝑎𝑥 is 

nothing but the time contact time; inversely proportional to the contact time, but directly 

proportional to the diffusivity. So, this is how we have to solve the convective mass 

transfer problems. 
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The references for this lectures are provided here. 

Thank you. 


