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Lecture - 32
Non-Isothermal Diffusive MT and Forced Convective MT
Welcome to the MOOCs course Transport Phenomena of Non-Newtonian fluids. Today
we will be discussing two different types of problems; Non-lIsothermal Diffusive Mass
Transfer and then Forced Convective Mass Transfer. So, in the case of non-isothermal
diffusive mass transfer, we are taking a problem where diffusion through a non-isothermal

spherical film is taking place, ok.
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Diffusion through a non-isothermal spherical film

Diffusion through hypothetical spherical stagnant T=Tish o
gas film surrounding a droplet of liquid 2= Iifr/ry

Consider a system as shown in below Figure

Assume a rough approximation as D, varies as 3/2
power of the temperature as:

Y.
Dy (T\"
hase(r) 7
where Dy, is diffusivity at/T:T,.
Applications:

¢ drying of droplets and

¢ diffusion through gas films near catalyst pellets

Diffusion through hypothetical spherical stagnant gas film surrounding a droplet of liquid;
that is the problem you know statement. So, consider this system as shown here in the
picture. So, we have a droplet which is made up of the component A and then gas film
component B is there, the radius of droplet is ri, the radius of gas film surrounding this

droplet is rz, ok.
The temperature of the droplet surface is T1 temperature at the gas film is function of ratio

n
between these two radius power n. So, that is T> which is given as T; (:—2) right. So, now
1

the component concentration Xa is Xai at r = ry and then, component A concentration is xaz

atr=ro.



Now, if you have to consider the diffusion through non-isothermal situations, what you
need to have information? You need to have a diffusivity as function of temperature. That
information you should have, then only you can solve the problem. If that information is
not available, you cannot solve the problem. You can solve the problem only for isothermal

conditions.

So, how the diffusivity is changing? By change in temperature. That information should
also be provided if you wanted to consider non-isothermal diffusive mass transfer
problems, ok. So, for that a rough approximation of Dag Which varies as 3 by 2 power of

] 3/2
the temperature; that is —4&- = (l) :
Dapa L5

So, the diffusivity how is it changing with the temperature is given by this expression Dag,1
is nothing but diffusivity of a droplet A component in gas film B component at temperature
T at fixed temperature Ty, right. Dag is nothing but diffusivity at unknown temperature
T. So, now the temperature is varying from T1 to T» and then T is again function of Ty

and then function of ry and r2 as well as given this one, ok.

So, this problem we have to solve here ok. Then further applications if you wanted to know
here, such kind of applications in general we have a drying of droplets. Where actually
drying of droplets when it taking place usually the size of the droplet decreases as the sum
of the components of droplet are evaporating that is in general possible. But in this case

what we are trying to take, we are taking the droplet radius is fixed.

Later on, after a week or so we are going to discuss similar kind of problem where
evaporation of droplet or evaporation of column, liquid, etcetera would take in place. So,
there we are going to take change in the position; interface position that also we are going

to take. So, that is in the later course.

But since we are at the beginning of the mass transfer part, so then what we are taking we
are taking the droplet radius is fixed even though it is evaporating, right. Applications we
see drying of droplets; are sometimes you know what we have catalysts fillets are there.

So, near the catalyst surfaces, there would be some kind of diffusion of the component.

Let us say on the catalyst surface some reaction is taking place. So, that product whatever

is forming on the surface of the catalyst that is passing through the gas film surrounding



the catalyst surface and then reaching the bulk of the fluid. So, that is another kind of

application.

So, such kind of application very common in chemical engineering, that is the reason we
are taking this particular case to study under non-isothermal diffusion mass transfer.

(Refer Slide Time: 04:55)

* Solution: Case 1- Isothermal case
* we know that NAT = xA(NAT + NBT) = CDAB dxA/dT

* steady state mass balance on a spherical shell leads to

* Ny(2mr?)| - Ny(2n(r +dr)?)| =0

T+
d
o (Ny) =0 @
* But N, = 0, s0 Eq. (1) becomes

_ dIA _ CDAB dXA
* Nar =24 (Nar) = Dpp 5= Nor = =750
3
Z)CDAH 'ﬂ) =0

* Substitute this eq. in eq. (2):%(r T
X

So, first what we do the same problem. We solve for the isothermal case first, then we go
for the non-isothermal case. Because it will be helpful to compare the results how they are
changing when you are incorporating non-isothermality of diffusive mass transfer, ok. So,
that is the region. First, we finished case 1 where we are taking isothermal case.

So, we know that the combined flux N, = x4 (N4, + Ng,.) — cDyp '%“‘. Now, the mass
transfer or diffusion is taking place in the radial direction. That is the region the flux are
you know designated with r and then, a differentiation of concentration we are doing with

respect to r, ok.

Now, if you do the steady state mass balance on a spherical shell; let us say if you have a
droplet here so now you take a spherical shell right. So, whose radius is r and then the
radius of the outer cell is r + dr, so that the thickness of the cell is dr, ok. And then this gas
film that is r2 is anyway is there. So, between r1 & r»> values we are taking a spherical thin
film of thickness dr and for that one we are making the balance.



So, when we do that one; so mass rate at r = r is nothing but Nar(2xr?) and then, mass rate
at r + dr is nothing but Nar 27 (r+dr)? and should be equals to 0 because there is no reaction
involved here in this case. Now this one you simplify. You take dr tends to O and then
apply the limiting conditions to get the differential form of this equation, then you get

d
E (TZNA-r) == 0

Now, you can know the concentration profile, if you know the Nar, but Nar you cannot
know until and unless Ngr is known. Nar expression you can find out from equation 1; that
is fine, but that you can do only when Ng: is known. But however in this problem it is
mentioned that non-diffusing stagnant gas film.

So, that means B is not diffusing, only A is diffusing. So, that means if B is not diffusing,

its flux would be 0 that is Ng, is 0. So, now this equation 1 would become when you take

cDpg dxyp

Ner=0, you get Ny, = —

1-x4 dr’
. . . . d 2CDap dxy
Now, here this you substitute in equation number 2, then you get —(r ——) =0.
dr 1-x4 dr
Now whatever the changes occur in this equation, that comes through this Dag and then c;
if non-isothermality is there. So that we take as a case 2, but first case we are taking

isothermal case.
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* For constant temperature, cI),; can be constant
Fleel e
s =W% +0
s R
* Applying boundary conditions: T =Ty = Xy =Xy = —In(1-x4) = —f_—;+ C,

C;
T=Ty o X=X =>—ln(l—:r,,z)z—,_—:H.‘2 i

1-xp9'

>0 (H‘Z) = (i & l) =C)= ]H(H“)

1-xg1 n o on 1 (i_i

i

1 ]“(Eﬂ)
* and we get C; = —In(1-xyy) i v
G
SRR




So, under isothermal conditions ¢ and Dag both are constant. So, then if you take them as

2 dxy

d 2 4a . .
constant, then we have —( r ﬂ) =0on mtegratlng once we get —_— = Cl. SO,
dr \1-x4 dr 1-x4 dr
. d C
that is —2- = 2 dr.
1-x4 r

1-x

Now, once again if you integrate, you get In —

4. So, thatis —In(1 — x,) = [r~2 s _71
So, _Tcl + another integration constant C, you get. Now we have two boundary condition

atr =r1. We have Xa = Xa1 at r = rz, Xa = Xa2.

So, when you apply these two boundary conditions, you get these two expressions. Simply
replacing r = ry and then xa = Xatr and r = r2 and then xa = Xaz in the second equation. In

the first and second equations here respectively.

Then what you do? Subtract the equation; you subtract the below equation from the above

equation, then you get In—42 = ¢, (

1-x41

1

2

ri) or Cy is equals to this one. This C1 you take
1

and then substitute here in the first equation, so you get C, that is C, = —In(1 — x4,) +

%. So, rland then this is nothing but C;.

So, now you have both C; and C» expressions you are having. So, those you substitute in

equation number 4 to get the concentration profile.
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* Substitute these constants in eq. (4): = —In(1 - x4) = —% +C,

1-x 1-x
ln( AZ) ln( 42
: =1 \xy) 1 -z
. ..—ln(l—xA)—_r (l_l) _+1‘1 (l_l)
r2 T r2 T

T 1-x,
ln( AZ)
= 1-241




So, here you substituted C; and this is C>. Then now you what you do, this particular

1-x4

component you take to the left-hand side, so that you have —In in the left-hand side

l—xAl

—XA1

and then right-hand side —ln%ﬁ iIs common if you take common. So, multiplied

T2 T

by (% - rl)you are having, right.

. . . . 1 1
So, this expression what we can write? Here numerator also what | do? | write ——= and
1 2

then, this one also | write Tl - % so that I have this expression and then remaining term is
1
as it is. So, concentration profile what you have this is the expression you have given by

equation number 5, right.
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. dx,
* For flux calculations, we need d_A

* Wehave In [ll_x" = ;)ln (l_m)

=XA1 el
L)

=2 b
=)= a- () ()

A
1 T2

- 5 1-x1p2\ 1 1
Je ST 2uli (1-‘“)@@_1)

L)

1-141
—

Now, if you wanted to know the flux what you have to do, you have to obtain the %

because Nar expression we have dd%, right. So, for that what we do? We take a

concentration profile in this In form, then differentiate with respect to r both sides. So, first

left-hand side if you differentiate with r, you get ﬁ multiplied by %
XA

XA
1-xX41

And then —dd%, you are getting; right-hand side this and these are constant. So, that and

then remaining term if you do the differentiation, you get this is also constants. So, 0 —



(— riz) as differentiation. So, then you have this 1 + rlz in the right-hand side and then left-

hand side this is what you are having right.

So, this 1 — x4, this 1 — x4, You can cancel out and then this 1 — x, you can take it to

the right-hand side or you keep it here itself. There is no issue right. So, if you take to the
right-hand side, so this is what you are having number. This %‘4 we need at r = r1. Flux,

we wanted to calculate at r = r; because from that surface on only; from that position, only

droplet is evaporating surface.

You know evaporation is taking place from the droplet surface which is designated as r =
ri. So, that is the region this flux we have to calculate at r = r1. So, this % also we should

calculate at r = r1. So, when you do; at r = r1 Xa is nothing but xa1 and then r is nothing but

ri. So, rest of the terms are as it is.
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5 :_ﬂ -(1 “".u)l“(1 m)%(ﬁ) /

drly.
T2

€D gp dxy

lx,uir,»l

- eDap . [1-xp\1 1 1-x45\1 1
l/x (1/‘/‘) (1 —x >r2(1 1)“”“""(1 —%q )r2(1 1)

* - NArlr:r, =

rn n

—

S i)

/
* W, is molar flow of A at the surface of spherical droplet of radius 1y

1- 1 1
© S W= 4Ny, = 4 cDA,,ln( ’“)/3(, ‘)
g T2

_ [4mcDygp = 1= 1-%y

So, this is what we get ——= at r = r.. Now flux Nar at r = ry is nothing but 242 L4 at r

1-x41 dr

is this one. So, (1 — x,) (1 — x,4)cancelled out, cD,gzIn of this term and then % and then

this term, this is the flux.



Now, if you wanted to know the rate of mass transfer in terms of moles per time that is
Wa is molar flow of A at the surface of spherical droplet of radius ri. So, what you have
to do? This flux whatever is there that you have to multiply by surface area through which
the mass transfer is taking place. Surface area of the droplet that is at r1 location that is 4

n r{ is the surface area of the droplet.

So, flux if you multiplied by this multiply by this surface area, you get the mass transfer
rate in moles per seconds; that expression is given this. So, now 4 & r. So, this rZ, this

rZ is cancelled out. So, the remaining term is this one. So, this is the isothermal case.
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* Case 2: Non-isothermal spherical gas film
——
* Ny =x4(Ngr + Np,) - cDypdxy/dr )

* steady state mass balance on a spherical shell leads to
¢ Ny (2mr?)| — Ny (2n(r+dr)?)| ,, =0
d
* (PN =0 ©
* But Np, = 0, so equation (1) reduces to

dIA cDyp d}.‘A
* Ny = x4(Nap) = Dpp— > Nyp = = =0

. i, d d
* Substitute this in eq. (2): | -~ rz%ﬁ) =
|

Now, we take non-isothermal case of the same problem. So, this non-isothermal case up

—cDap dxy

to derivation of Ny, = P
XA

up to that point it is quite same, because till that point

temperature issue has not come into the equations or any of the balances, ok.

So, combined flux is this one. So, steady state balance is the same like isothermal case.
Then by applying the limiting conditions you get the differential form of this equation, this
balance equation given by equation number 2. But Ngr is O because stagnant non-
isothermal stagnant gas film. So, gas film is not diffusing; non-diffusing stagnant gas film
that is the statement is given. So, B is not diffusing; gas film is of component B. So, Ng:

is 0, so that again you substitute in equation number 1, you get Nar is equals to this one.



So, this one you substitute in equation number 2. So, then this equation you get. So, now
this equation you have to solve for non-isothermal conditions. Till now the non-
isothermality has not brought into the picture. There is no term which required to take
consider this non-isothermality here. So, till this point it is solution is same as case 1. So,

from here it will change.
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T

Dap1  \ry

- =

; ineq. 3 L (72 Pan dxa) _
Now substitute egs. 4 and 5 in eq. 3: = (r = dr) =0=>(3)

e e TR T
af v (L)Sn/wmld_xi —gst PD‘"-‘L(L)"/ZQ =
dr RT (_r_)" r 1-x4 dr |~ dr RT; 1-x4\rq dr)
1y i — =, ==

1

2PDapy (1)"/2 w, 1 dy

=L
RT¢ l—XA@
=
PDypq (1 "h dxy dr
.

Ry \r) @x) gt

. L. . . 3/2 T .. n
So, now this relation is given =42 is nothing but (1) and then this — is given by(i) :
Dap1 T Ty (o)

1

. D
So, now what we can write Di = (1

AB,1 1

3n/2
) . You may be thinking that in place of D,z we

. - 3/2 .
can why cannot we write D, ; multiplied by (Tl) . So, that way we can write and then
1
do the differentiation, but T is related to the r; T is related to the r that is given in this

statement.

So, the T is also a function of r, so then we have the differentiations and then integration
subsequent in the calculation. So, until and unless this T function of r if you do not include,
so the solution will not be reliable; because T function of r that statement is given in the

problem that should also be incorporated.



. 3/2 .
Had that not been given, so then we should have taken only Dsp = Dyp 4 (TL) . That is
1

it. So, but nowTZ is given by this expression in the problem statement. So, that information
1

should also be brought into the picture.

n
Further see we can write as I:;T and then T is nothing but T; (ri) , right. So, now in this
1

equation number 3 in place of ¢ in place of D, we have to use these two expressions ok.

. d . . P r 3n/2 . .
That if you do —2, ¢ is nothing but ﬁ(—) D4p 1 that is nothing but D45 and
dr RTl(H) 1 ’

then - and then &4 = 0.
XA ar

ABl

So, that you rearrange. Now this 72 is as it js 22481

1

" . r n/2
—) , We can write (r_) ,
1

1

. - . (r\3M/2
as it is. So, remaining terms whatever this (r—) and then (
1

right. So, that is what this additional thing.

Now, you can integrate. So, then left-hand side differentiation will go off and then we have

C1 constant in the right-hand side. So, this one 2 and then we are separating out. So,

/2’

that we can combine this /2 and then 2 as one term.

So, that you know it will be useful in integration subsequently. So, that rz"2 that we are

taking to the right-hand side. Even this dr also we are taking to the right-hand side. So, we

are gettlng C1 in the right-hand side, all other terms in the left-hand side.

T2
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pnm( )/z dyy  dr dxg €y dr CO:PDM“( )/z
RN > =
{RTI rq (l—z‘) +2C1 (1-xp) A +Z where(d RTy \ry

=

arl)
*s-ln(l1-x,)= +C S-ln(l-x4)==—7—=
(-2 =35+ G2 -t -x) =3 5

* Applying boundary condmons

+C; (6)

)
v aAT=T1 X=X ﬂ’ln(l—x‘u)=71m+(:2 v
2

//

iy P

tat T=Tp X=X - ln(l Xa2
e

So, in the left-hand side except everythlng Is constant, right. So, the same equation is

written here. So, what we do for S|mpI|C|ty? We take this expression which is a constant,

we represent by A. So that that A also we take into the right-hand side. So, that we can write

C .. .y
71 as 1 constant and then remaining terms are as it is, ok.

—In(1 - xA)% is constant and then integration of r"Tz is nothing but this one, + C;

constant. So, when you simplify, this is what you have this equation right.

Now, we have two boundary conditions at r = r1 Xa = Xa1. So, we have this equation in
place of xa, we are writing Xa1 in place of r, we are writing r1. Other boundary condition
at r = rz, Xa = X a2. So, same thing here in place of xa we are writing xa2 in place of r, we

are writing r.. Rest all other terms are same.

So, now this equation minus this equation if you do you get an expression for C1 because
C2-Czis0.
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5 - : r
* Substitute this constantin = —In(1 - x4;) = ]1-—1,,—1-
-5+

C =>Cz-—ln(1 x,ﬂ)—}

r
. =>Cz=—ln(1—xA1)+ =

So, this is what you get and then from here C; you get this expression. Now, this C; if you

substitute in this equation, you get C,. This is B C 1. That is at r = r1, Xa = Xa1 whatever
we have written that equation is this one, right. So, now here C, = —In(1 — x,,) — %\ and

then, this is of C1 from 7 a equation number 7a.

So, now we have C; Ca, here C, what we can do we can simplify slightly this A, this A this
1+ 32 this 1 + % cancel out. So, remaining terms are this and then this term is as it is. So,

7bCy 7aCu.
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)
* Now substitute equation (7a) and (7b) in Eq. (6): = — In(1 - x,) = ( D+ C

/_‘L
¢ s5-ln(l-xy)=- I}(;;,‘[]

* 5- ln(1 ") ln(ﬂ 1

1-x41 1-x42 i
1




So, this constant C1 C; if you substitute in the equation 6; that is —In(1 —x,) =

n
—E+1

C—;r‘@“) + C,, right. So, now C1 C» you substitute % this is Cy, this entire thing is C,. Now

what we do? This one this In(1 — x,,) term that we take to the left-hand side, so that we

can have left-hand side —In (ll_xA )

—XA1

And then remaining terms the first term here A, A you can cancel out and 1 + g 1+ g also

you can cancel out. So, the remaining terms; from the remaining two terms you can take

(D) (143)

T1 _(1+g) —rz_(1+%) .

1_
In (ﬁ) common, then we have
1—XA2

So, then all of these r’s are having power minus, so then we can write the reciprocal of
them. So, when you write. So, then this is what you are having multiplied by In G_—;‘Al)
—XA2

So, under the non-isothermal conditions, the concentration profile for this spherical gas
film problem diffusion of droplet to a spherical gas film is provided by this expression,
right.
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()
. (1 - xﬂ\ 1

1-1p) (l)(“;)_(

T

Now, if you wanted to know the flux, what you have to do is, you have to find out ‘%‘“. So,

for that what we do this equation whatever is there that we differentiate with respect to r.



ﬂ l—xAl

So, left-hand side what we will be having; — [( : )] ( : )( dxA) you get in the left-

1-X41

hand side.
Right-hand side this is constant, this is constant, this is constant, this is constant. So, only
this one we have to differentiate. So, in the numerator we will be having

{0 — [— (1 + g) r"(”g)"l]}. This is what we have. Rest all other terms are constants in

the right-hand side. So, then we have right-hand side this particular term as written here.

it is. Right-hand side, we

So, | can writ
(=2) "A)

1-X41

have this term is constant and then denominator is constant, numerator differentiation you

side. Rest all

get this expression, right. So, this if you write %‘4 one side and then —
—XA1

other terms to the other side if you take. So, here this (1 — x,4,) (1 — x,,) is cancelled out.

So, the remaining terms are as it is right-hand side term. This is what we got, ok.

So, now we need the flux at the droplets surface which is evaporating. So, at r = ry, we

have to get this expression. So, at r = r1, Xa = Xa1. S0, whatever - L in the left-hand side

—XA1

that also be brought to the right-hand side. And then in this expression whatever these

r-*z |s there that I am writing +n and then r we are replacing by r1.
2

r
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* Where Nyrlr—r, =
—CDAngA -cDgp 1-x41
(a 7«;1)ln

1-x41 dr lp=y, /'\'n

G e

*N Arlr—rl

i T




—cDyp dxA

So, now this flux Nar at r = r1 is nothing but atr =rz. So, this partis as it is; —=

XA1

is given by this expression. Just previous slide we got it, ok. So, this 1 — x4,, this

1 — x4, is cancelled out. And now the c is nothing but }% and then D,z is nothing but

r\31/2 . .. . . r\" .
Dup1 (r—) . So, those things we are writing. And then T is nothing but T; (T—) , right.
1 1

So now this, we are actually evaluating at r = r1. So, rL is 1. Similarly this also we are
1

evaluating at r = r1. So, TL is 1. So, whatever the power does not matter, 1 power anything
1

is 1, right. So, now here so this is what we get. So, finally the flux is given by this

expressmn 21 multiplied by this particular term, right.
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volly= 4nr§1v,,,|

41@ PDyp;1 1*‘
RT4 [ i

Tl

PD4p1/RT1(143) l
(4"

* For n = 0 this result simplifies to solution of case I,ﬂhey;l( z)

Diffusivity is independent of temperature variations @
N (it !

Now, if you want to know the mass transfer rate in moles per second here, so whatever

L WA= i

Narat r = r1 is that we have to multiplied by surface area of the droplet that is 4 © r?.

Because from the droplet surface, the transfer of the mass is taking place right.

So, Nar at r = r1 is nothing but this one. So, now this 72 this rZ can be cancelled out. So,

then we have only r"'2 here. So, that r is also at r = r1, ok. So, remaining r terms are same.



. . . . . P T 3n/2 .

So, now in this equation if you writt ——= as ¢ and then Dyp = Dyp 4 (—) if you
RT3 () B

write and then, you take n = 0, then this expression will reduce to the solution of so called

isothermal case. You can cross check it is, right.

So, this is about the non-isothermal diffusive mass transfer. Now, we take another case
where we are considering forced convective mass transfer, ok. For this situation of forced
convective mass transfer, we are considering diffusion into a falling liquid film. There is
a liquid film. So, that is falling with certain velocities. So, there is a velocity distribution,
that velocity distribution is affecting the diffusive mass transfer. How it is affecting that

we have to find out, right.

So, it is also possible that diffusion is taking place into the liquid film. So, then liquid
composition may change and then viscosity may change; that is also possible. So, can we
consider can we handle that situation? If not, how we; how to make approximation

simplification and all those things we have to see.
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Diffusion into a falling liquid film

* Example of forced convection MT

* Viscous flow and diffusion are under such conditions that velocity field
can be considered as unaffected by diffusion

* Considering that absorption of gas A in a laminar falling film of liquid B
/ =

* Other assumptions

* Material A is only slightly soluble in B so that viscosity of liquid is
unaffected

* Diffusion takes place so slowly in liquid film that “A” will not penetrate
very far into the film,

* i.e., penetration distance is small in comparison with film thickness

So, this is an example of forced convective mass transfer as explained. Where viscous flow
and diffusion are under such condition that velocity field can be considered as an affected
by the diffusion. That is momentum transfer is not affected by the mass transfer, but mass

transfer is affected by the momentum transfer, ok.



So, this mass transfer is not affecting the momentum transfer, but momentum transfer is
affecting the mass transfer. So, this is the situation. This can be possible when diffusion is
only taking place slightly. If it is taking place only slightly, then what happens? You know
the composition of liquid composition does not change much.

So, liquid viscosity does not change. So, then obviously its velocity distribution will not
be affected, because here it is a thin film; it is a thin film only ok. So, that is considering
that absorption of gas A in a laminar falling film of liquid B. So, B is liquid component, A
is the gas film which is diffusing. So, this A gas is diffusing into B liquid.

Other assumptions material A is only slightly soluble in B. So, that viscosity of liquid is
unaffected, then only we can say that mass transfer is not affecting the momentum transfer.
Diffusion takes place so slowly in liquid film that A will not penetrate very far into the
film. So, into the film you know the transfer is taking place and then that is penetration

distance is small in comparison with film thickness, ok.

(Refer Slide Time: 30:41)

So, now pictorially if you see three-dimensional projection is shown here, so the horizontal
axis is x, vertical axis is z right. So, the height of the column is L, width of this column is
W through which along which the material is flowing down. So, there is A, this material
whatever is there that B liquid is there. So, that is falling like a film here right. And now

into this film the diffusion of component A is gas component A is taking place.



So, how do you visualise this location? So, what you have to see; this z = 0 is this top
location of the column z =1 is the bottom location of the column. Now left-hand side x =
0 we are taking, right-hand side x = & we are taking. If in 2 d diagram, it is shown here if
visualised in 3d diagram, x = & is nothing but the your screen on which you are studying

right.

Or if you are; if you are discussing this problem on a board, x = & is a board location and
then from the top of the board the material is falling, right. x = 0 is location is the outermost
layer of the liquid which is exposed to the gas; surrounding gas. So, x = 0 is the surrounding

gas.

The same thing if you visualise like this. So, this is the surface let us say this form is a
surface. Now from the top the liquid is flowing down like a film, right. The from the top
liquid is flowing down like this. So, x = ¢ location is the palm surface; let us say x = 0 is
the film is film thickness is 8. So, that is coming here. So, the tip of the pen whatever is

there, so that is x = 0, right.

So, now this pen entire thing whatever is the that is the gas film and then that area let us
as you can say. So, X = 0. Here the gas is coming and then diffusing into the liquid film
like this, right. So, that is what the problem. So, when this gas film molecules are diffusing
into the liquid film how the concentration profile of this gas film whatever the gas

component A is there, so that we have to find out.

So, when these molecules of gas A are diffusing into the liquid film B, so how the
concentration of this gas A is changing in the thickness of this film; that is from x = 0 to x
= ¢ that you have to find out, right. So, that is one thing. Other thing is that it is mentioned
in the problem that this is penetrating only to a smaller distance.

So, only that let us say from this is x = 0, it is penetrating only to small distance only. After
that it is not able to penetrate completely to reach the wall surface; that is the limitation is
given. So, why that limitation is given when it is only slightly soluble or penetrate to small
penetration thickness? You can say that viscosity of this film liquid film is not affected.
So, velocity the film thickness velocity distribution within the film will not be affected.

So, this understanding is important, once you have this understanding. Problem solving is

very simple. So, now we see the boundary conditions also here, this all these details are



given in the subsequent slides also, but from picture if you understand it will be easy. So,
z = 0 is the location at the top where the pure liquid is there, pure liquid is there and then

that is falling as a film.

So, concentration of A should be 0 because pure liquid B is there; if the liquid B is pure.
So, then there is no A that that is what it mean by and then at other location z = L. What is
Ca? That is not given to us. So, let us not worry about it. We will think of it. And then x =
0. What we have; that is the free surface that is of the liquid film; free surface of the liquid
film which is exposed to the gas. That is the very first layer of the liquid film at which gas

is coming and then interacting and then further into penetrating into the film.

So, that should be its initial concentration Cao Which is usually taken as the solubility of
that particular component A and B. So, we are taking Cao and x = 6. What we have it has
been mentioned that this is this component is penetrating to only smaller distance only, A
is able to penetrate into the smaller distance only. That is the reason its concentration is

varying. Variations in concentration is shown in pictorially only for small distance. After

that it is almost remaining same. That means we can see %“ is 0, right.

So, now from the you know this penetration distance, this penetration distance let us say
if I call it you know some «a let us say. So, penetration distance o is very very smaller than
the film thickness 6. So, whatever the molecules at the surface are there at the free surface,

they can never reach to the this wall of the plane which is at x = 6.

So, when the penetration distance a is very very small compared to the 6, what we can say
from the molecules of the gas film viewpoint, this 6 location is far away from their
positions. So, they cannot go there. It is so far away that we it can say; it can say that x is

equals to infinity from the molecules gas molecules from your point of view.

So, at x is equals to infinity, the molecules are not able to come up to this location. They
are penetrating only at the smaller distance. So, after that you know a presence of Ca is 0,
it is not there. So, Ca should be 0. So, the conversion of this boundary condition like this

is very essential in solving this problem, otherwise we were not able to solve this problem.

It is similar like you know previous heat transfer case where the flow through; a non-

isothermal flow through cylindrical pipe were taking place, where T was taken as function



of both r and z. So, similar kind of situation here also here concentration is function of

both x and z.

We cannot say Ca is function of only x, it is function of z also. So, we need to know two
boundary conditions in the z direction, two boundary condition in the x direction. So, in

the two; in the z direction we have only one boundary condition we can specify other
boundary condition at the bottom we cannot specify, we cannot even say aa% also 0; we

cannot say that one physically.

Other two boundary condition in these directions. So, these are the things, but this
boundary condition has been simplified like this. From the molecules of gas, gas molecules
A viewpoint we can say that x is equals to infinity, Ca = 0 which is same as X isat X = &
dcy atx=2a %‘ is 0 because the penetration distance or penetration depth whatever is there

that is very very small compared to the film thickness.

Actually film itself is very very thin. It is a few mm thickness film usually most of the
polymer industries we have this kind of problems. Remember in one of the course
momentum transfer, we have seen that you know; we have a inclined plate and then the

fluid is flowing down. So, then we found the velocity profile etcetera.

So, now here the same situation is there, but only thing that we have taken the vertical
plate. And then in addition to the momentum transfer, there is a mass transfer is also
occurring. So, it is a combined mass transfer and momentum transfer that is what we are
calling forced convective mass transfer, because the flow whatever the velocity

distribution is there that is affecting the mass transfer also.

Now, this velocity distribution here we see; at x = 0 is the outermost layer of the fluid
which is having the maximum velocity. And x = ¢ is nothing but the surface of the plane
on which the material is flowing. So, because of the no slip condition, the velocity would
be 0, vz would be 0 here and then v; would be maximum here at x = 0. And then, between
these two locations the velocity profile changes like this which is function of x. So, that

also we have to find out, ok.



So, this understanding is very much essential. So, after that everything is mathematical
only. Since here the velocity also needed to be find out. So, first what we do, we simplify

the conservation of mass and momentum in order to get the velocity profile.

(Refer Slide Time: 40:14)
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So, continuity equation in Cartesian coordinates is given here. Only v; is there and then it
is not function of z, it is function of x only. So, this is 0 v by vx are anyway 0, so then
continuity is satisfied; x component of equation of motion is given here. So, here vy steady
state. So, this term is 0, vx is 0, vy is 0, vx is O, right vx is 0, so all these three terms are 0.

And gravity we are taking only in the z direction as per the schematic, so gx is 0. So, Z—z IS

0.

Similarly, y component of equation of motion is given here steady state, this term is 0, vx

is0, vyis0, vyis 0, vyis 0. So, all these three terms are 0. Gravity is only in this z direction

so this term is also 0. So, we have g—z = 0.
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Then z component of equation of motion is given here steady state. This term is 0, vx is O,

—l

vy is 0, v, is existing it is function of x but it is not function of z. It is function of x only it
is not function of z, so this term is also 0. And then the film whatever the film that is
falling, it is falling because of the gravity only or compared to the gravity pressure forces

are 0 here, because the film is falling because of the gravity in the z direction, right.

So, v; is function of x. So, this term would be there, but v; is not function of y and z. So,

2
these two terms are these are 0. So, then we get u% = —pg, and g; is nothing but g. So,

you take the p also to the right-hand side, then integrate first time.

2
So, —ﬂx + C, left-hand side %. If you integrate again, v; = —%% + Cyx + C,. Then

BCs at x = 0, v, is maximum, so —= |s 0. If |s 0 at x = 0 from this part of the equation,

we get C1 =0, right. And thenatx =6 v, =0.

So, then v; is if v;; from this part of the equation, you get vo = —7— +C,6+C,.Clis

0. So, C> = 7— you get. So, this C> you substitute here in this equation C; is anyway 0,

so this term is gone. So, then you have this thing and then out of these two, if you take

x2

52
£9.= common, you get 1 —



And then maximum velocity where are we having it x =0, v; is maximum. So, Vz = Vz max

82 : . _ _ o
= %7 because x is O here. So, this is m equation we can write vz = Vz max multiplied by

x2 .
1-— 57 We can write.
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So, that is given here. Now a velocity distribution you got it. Now what we have to do?
You have to find out the concentration profile for (Refer Time: 43:54). The species transfer
equation is this one like heat transfer equation we have like momentum transfer equation,
we have the species transfer equation is provided by this one. We can find out any books,

we can derive this one also.

So, the steady state this term is 0, vy is not existing, vy is not existing, v is existing and
then C is concentration of which is function of z and then x also. So, this you can you
cannot cancel out. Now Dag this Ca is function of x. So, this term should be there, but it
is not function of y, so it is 0. C is function of z also, but what we have the convection in

z direction is much higher compared to the diffusion in z direction.

So, pictorially what we have the diffusion is taking place in the x direction. So, diffusion
is dominating in the x direction convection, the flow is taking place in the z direction. So,
convection terms are dominating in the z direction, diffusive terms are dominating in the
x direction. So, diffusive terms whatever in the z direction is there, so that would be small

compared to either of these two terms that is diffusion in x direction and then convection



in z direction. So, accordingly this term can be cancelled out. There is no reaction finally.

ach
ox2’

. ac
So, what we have is, we have v, a_zA = Dyp

2 2
This v; is what; V2 max (1 - (g) )aa%“ = Dyp %, fine.
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aC,
0x

*BCE:  atx=06=>

=0 ©)
* It indicates that A cannot diffuse through the solid wall

Now, boundary conditions we have already seen. At z = 0 at the top of the column pure
liquid B is there. So, gas A concentration is 0. It indicates that the film consists of pure B
at tau that is z = 0 location. And x = 0, that is the free surface indicates that the liquid gas

interface and then, concentration of A is determined by the solubility of A in B.

That is Cao maximum concentration of A, that is possible at the interface that is Cao right.
And then at x =& aa% = (. This is also we have seen. That indicates that A cannot diffuse

through the solid wall.
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* One can get only a limiting expression for C, valid for “short contact time”, i.c., for
small value of

* According to problem, sub A has penetrated only a short distance into the film

A has impression that film is moving throughout with constant velocity equal to

Vzmax

A does not penetrate very far, i.c., it does not sense presence of solid wall at x =

)

* Therefore, if film were of infinite thickness moving with velocity v, then the
diffusing material would not sense the difference in velocity

* this physical argument suggests that one can get a very approximate result if the
equation (3) and its boundary conditions approximated as below:

aZCA

ac
4= D, =2 S0,

2
Now, this whatever the equation we had 1 — (%) , of course v, max .
this equation if you wanted to solve, you have to have certain limitations. Like in a heat

transfer case, non-isothermal flow in pipe.

What we have taken? We have taken asymptotic approximation. So, like that you know

some kind of limitations is required. So, then in this case one can get only a limiting

L

expression for Ca valid for short contact time. That is when is very small, then only

Vz max

one can get the solution easily, right.

So, why short contact time? Because within that small time only Ca; the A is able to
penetrate to smaller distance into the liquid film. Only a smaller distance that is the reason.
So, accordingly substance A has penetrated only a short distance into the film. So, this is

the given statements, both of them are now interconnected right.

So, A has impression that film is moving throughout with A constant velocity equal to v-.
Now, here also v, .4, because that you know it is only able to penetrate. Now this is the
entire film, but the gas molecules are here. So, the molecules are penetrating only to small
distance into the liquid film; that gas molecules are in an impression that the film is moving
with a constant velocity of maximum velocity that is possible at the gas liquid interface,

because it is the penetrating only to a smaller distance A.



It is this gas molecules are not aware of the surface of the wall which they assume that
they are the surface of the wall it is at infinite distance from their location of x = 0. This is
with respect to the gas molecules viewpoint especially they are penetrating to a small
distance.

So, A does not penetrate very far that it does not sense presence of solid wall at x = &.
Therefore, a film were of infinite thickness moving with velocity v, ,,,4, then the diffusing
material would not sense the difference in the velocity. And then this physical argument
suggests that one can get a very approximate result. If the equation 3, this whatever and
then boundary condition whatever you mentioned as approximated like this.
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A=
* Eq. (7) along with BCs. (8) - (10) can be solved using
method of combination of variables

So, this equation now X; %is almost like 0, %x is the distance from the view molecules

point. From the gas molecules point of view, x = 0 to certain x value is there that is the
penetration depth right from x = 0 to some x location which is these differences, it is the a

penetration depth we are calling.

So, this a is very very small compared to the 3. So, % is almost like you know 0. So, then

2
this we can take off. So, that left-hand side we have v, maxaa% = Dy %. This is about

the governing; simplified governing equations after couple of assumptions which are

physically reliable of course.



Then boundary conditions at z = 0, Ca = 0 that will be as it is. At x = 0, Ca = Cao that
would also be as it is. But at x = & location is almost like infinite location very far for the
gas molecules, because they are penetrating only smaller distance into the film and they
are not able to sense the presence of wall.

So, they are thinking that those molecules are; thinking that x = & is virtually X is equals to
infinity and they cannot go up to that location. If they cannot go up to that location that

their concentration at that location is 0, Ca = 0. So, this also pictorially we have explained.

So, now here still the problem is you know very difficult to solve because now Ca is
function of both z and x, right. So, we cannot say that one side is independent of the other
side like we say like we did in order to get the you know shear stress expressions etcetera

here. So, that is not possible. So, for that what we do?

(Refer Slide Time: 51:18)
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_Ca
—= and
CAo @
ac} 2 CA
* Vrmax >, 2 DAB - (7a)

* Now convert the denvauves of eq. (7a) into derivatives
with respect to the “combined variable 7 as follows:

Vzmax

We do combined variable approach. For that, we are taking dimensionless parameters CC—A
A0

as C, and then, this one what do you can write from here? So, this dimensionless parameter
which is you know having the both x and z together, that as a combined variable we can

call this n; we can call combined variable now, ok.

So, how you get this expression particularly? Let us say from this equation what we can

Uz max ABZ

write 21 = Dx%. So, if I write this one x? = . So, if | take square root of both sides,

Vz max



o) this kind of form we can have. This four we are getting because of the

)
DaB
Yz max

experience of solving the problem, we can have this constant. So, this we are writing as .
This is how we can decide how this you know combined variable should be defined this is

how we can do it, ok.

So, now this equation v, ,;,qx- aCA, i aCA. And then right-hand side

| can write CAo A . S0, the Cao Cao is cancelled out and then this is what

in place of & ™ 4

we are having.
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Now, this equation we; this equation now here it is function of z and then x both. So, now

we convert this as a function of one combined variable n using this definition of a
dimensionless parameter. So, how we do? So, let us say% = % multiplied by Z—Z. Since

now the C, we are writing as a function of only one variable in place of 9, | am writing d

directly ok.

So, now this expression from here what you get — |s nothing but and then —z‘1/2.

17z max

So, that is —1/2 z=3/2. So, z=3/2. What | am writing —1/2 and then, — | am writing and

\/_



then v/z | am combining with these remaining terms. So, that | can write 2248% and then

Vz max

— as itis. ThIS as itis.

So, now this again what is this? This is nothing but our n as per the definition of combined

variables. So, this is what we are having. Slmllarly, on ax dx

\J Vz max

So, now when you are doing the differentiation of n with respect to x z has to be treated

nothing but -——, right.

as constant. Similarly, when you are doing the differentiation of n with respect to z x has
to be treated as constant; like in partial derivatives, then this is we have. So, once again if

you differentiate with respect to X, this equation you get this form.

So, now we have —4 and then A from equation number 12 and 14, this we substitute

here in this equatlon.
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and ——=.

So, that is —2 We are substituting in this equation. Then what we have; vz max,

we can do this one.



%a jg _1.9Ch _ D,p and then this part is L2 So, now this D,g, this Dg is
0z 2z oy AB P iDABZ dn2’ ’ AB)> 'AB
zZmax

cancelled out left-hand side § right-hand side i cancelled out left-hand side v, 4, right-

hand side v, ,,4, Cancelled out.

So, what we have? We have — %% and then these two also we can take because 2 times

d?cy
dan?

one is 2; 2 times 2. So, we have 1/2 . S0, that is these two you take to the left-hand

d? dcy
d dan

Cl
4421

side and then you add them together by taking -

= 0. So, now this equation

which is function of both x and z has been converted into the function of one single variable

n, right. So, this is what we have.

So, coming to the boundary conditions. At x = 0, what we have Ca = Cag. If x = 0, that

means from this definition of combined variable 7 is 0 and then 7 is 0 that means, CC—A =1
A0

CC—A is nothing but Cj. So, that is equals to 1.
Ao

And then other equation at x is equals to infinity that is Ca = 0 that we understand. So, if

X is equals to infinity, that means n is equals to infinity and then if Ca is 0, C, is also 0

because C, is nothing but CC—A So, these are the two boundary condition in terms of n which
A0

are getting from these two expressions.

So, now this equation number 15 we have to solve using to this boundary condition given

the equation number 16 and 17.
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P

Now let % = y and substitute in Eq. (15) 9 % +2mp=0- (18)

e e

So, let us say you take % = s, then we have% + 2ny = 0, right.
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So, the same equation you have written like this by taking this to the right-hand side, then
you are taking n terms s terms separately, two different sets. So, then integrating, so you

get this one. Now, after removing the logarithmic you get this one. Now s is nothing but
aCA that is C;exp(—n?). So, dC; = Ciexp(—n?)dn thatis C; = le exp(—72)dn + C,.

We are writing in a in terms of dummy variable same like that and then integration from 0



to n, right. So, this is what we have. We are not evaluating these constants directly, but we

apply and then see what we get.
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So, in the first bon this is the equation. First boundary condition is thatn = 0 C, = 1. So,

1=¢ fOO exp(—n2)di + C, is there. Whatever the integration when you substitute, both

limits are same so then that will be 0. So, then C, = 1, right

Other one is at n is equals to infinity C, = 0. So, that is C; fooo exp(—72)dfi + C,. Cy is
nothing but 1, it is given. So, C; you can get —C, by this one and then C, is nothing but 1.
So, this is C; this is C, if you substitute these two in this equation, you get the expression

for C, as this one.
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This we can write C; = 1 — of; 1 minus of this one and this is nothing but defined as error

function of n. This is by the definition of error functions which is given by this expression,

. . c 2 _ _
ok. Then the C} is nothing but C—:) =1- ﬁfon exp(—n2)diq =1 —erfn.
So, this whatever is there, so this entire thing we can write this error function of n. That is

1—erf 1 minus error function of x is nothing but complimentary error function

X
4-DABZ
\j"zmax

of x. So, that is given as erfc

ok.

X
4DABZ,
\]Vzmax
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So, that is the concentration profile. If you wanted to know the flux, you have to find out

aCy

the o

So, CC—A is this one. So, aaLoA is nothing but this one. And then from the definitions
A0

:—X of error function of u is equals to this one, that if you apply, you get for our case this

one, ok.

ch

Now, here you substitute Whatever — |s nothing but ——, right. So, at x = 0. That

ABZ
means, here if you substitute x = 0, what happens? n is 0 if x = 0 that means n is 0. So,
exponential of 0 is 1. So, the these remaining terms would be there. The /4 is nothing but

2. So, that is cancelled out right and then, this & also we are taking into the square root of

term. So, —Cy, /”; 2 that is what we get.
ABZ

S0, this Nax that x = 0 is nothing but —D, —= ac“‘

aCA

at x = 0. So, that —= at x = 0 is nothing but

minus of this one. So, + of this one we are havmg. And then multlplled by D, Was there.

. D .
f% we are having.

DAB.

Dap
1 DAB 1
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* Total molar flow of A across the surface at x = 0 (i.e., being
absorbed by a liquid film of length L and width W) is

w
L
*Wp= f [y (Ny)z=odzdy
0

L
D ABVzmax 1 : D gBVzmax
*wy=WCy [—= | —=dz since Ny|y=g = Cyp |[———
A A0 T s vz AXIX—O A0 nz

*wy = WLC, DapPmax _, (73) wp o [om v
0 nL /“ﬁ*’\__

SRR SRR >
 pwsr

—

Now, mass rate if you wanted to find out you have to multiply, you have to get W, =
W L . DABYz max (L 1 A .
Jo Jo (Nax)x=odzdy. So, that is WCyg %fo =dz because Nax at X = 0 is nothing

but this one.

Now, integration of \/—gdz if you do you get simplified expression, this one here after
substituting limits here. So, now what we understand? W, is proportional to the square

root of diffusivity and then W, is inversely proportional to the

— L/ is
VL/vz max. Vz max

nothing but the time contact time; inversely proportional to the contact time, but directly
proportional to the diffusivity. So, this is how we have to solve the convective mass

transfer problems.
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Thank you.



