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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of today’s lecture is Heat Transfer Combined with Chemical Reactions. Till now we have 

seen an individual movement on transfer problems, we have seen individual heat transfer 

problems, today we will see a few heat transfer problems followed by heat transfer 

combined with chemical reactions ok.  

In today’s lecture what we are going to see? We are going to discuss three different 

problems. All of them are based on a spherical geometry like even the reaction whatever 

we are going to take. So, that is also on a spherical catalyst pellet surface ok spherical 

catalysts we have. So, then there is a reaction is taking place and then because of that 

reaction you know the heat transfer I mean heat transfer is being affected ok.  

So, then how the temperature distribution is going to change with the heat generation 

because of the reaction that is what we are going to see. Since we are taking you know 

spherical geometry spherical particles we are taking. So, what we do? Before going into 

the problem where the reaction is also involved, we take a spherical geometry and then see 

how the temperature distribution is a taking place. 

Let us say if the same spherical particle is surrounded in an infinite fluid medium right. 

The infinite fluid medium is there so, but that fluid medium is a stagnant that is motionless 

and then in that fluid medium there is a heated sphere is there. So, now, that heated sphere 

from that sphere surface to the surrounding stagnant fluid the heat transfer is taking place. 

And then heat transfer is taking place only because of the conduction because the fluid is 

stagnant right. 

So, then under such conditions we know the correlation for the Nusselt number is Nu = 2. 

So, that derivation also we see first and then we go into a porous spherical particle then 

we go into catalytic spherical particle where the reaction is also taking place in a step by 

step manner. 
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So, heat transfer from a sphere to a stagnant fluid. So, the purpose is to study the heat 

conduction in fluid surrounding a sphere in absence of convection because we are taking 

infinitely bounded stagnant Newtonian fluid. Since it is stagnant there will not be any 

convection. So, consider a heated sphere of radius R suspended in a large motionless body 

of fluid right. Temperatures at the surface of sphere and far away from the sphere are TR 

and T∞ respectively. 

Consider the fluid is incompressible Newtonian liquid. And then assume that thermo-

physical properties that is Cp, ρ, μ etcetera are independent of are independent of the 

temperature difference. So, they are not being affected by the difference TR − T∞. And 

there is no chemical reaction and gravity is not considered in this problem ok. 
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So, schematically if you see what we have? We have a spherical particle non-porous 

spherical particle is there and then it is bonded in infinite amount of fluid, that is there or 

no wall effects that is the purpose taking infinitely bounded large volume of the fluid ok. 

So, this spherical particle is suspended in this large volume of the fluid right. So, the 

surface temperature is TR radius of the sphere is R and then far away temperature is T∞ 

right. 

So, now in this case the TR is higher than the T∞. So, then heat transfer is taking place and 

then surrounding fluid whatever is there so, heat transfer may be taking place in the in this 

manner because of the conduction right. So, because why conduction only? This fluid is 

stagnant motionless. So, stagnant in the sense v is 0. If v is 0 all the convection terms in 

the left hand side whatever are there in energy equation they will be negligible ok. 

So, for this case what is the T? Right. How it is changing? And then here the conduction 

would be dominated in the radial direction only because there is no rotation. So, in θ 

direction there will not be anything any transfer of the momentum or there will not be any 

transfer of energy in θ direction because there is no rotation of the sphere right.  

And then similarly in π direction also there is nothing is happening. So, whatever the 

transfer is there radially it is transferring to the surrounding fluid that is the region 

temperature is a function of r only. What is that function of r that is what we are going to 

find out now, ok. And then once we have the temperature profile. So, then you can find 



out what is the Nusselt number. So, this you might have studied it is equals to 2. So, that 

also we do the derivation. 
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So, fluid is stagnant that is given in the problem statement. So, there is no need to solve 

the equation of motion because when we solve the energy equation in the left hand side 

velocity terms are there. So, then in general before getting into the energy equation we 

have to get the velocity of the fluid or velocity distribution of the fluid we must get it. So, 

however, in this case that is not required because the fluid is motionless it is stagnant. So, 

v is 0. So, then left hand side terms of energy equation we do not need to worry. 

And then all these problems we are doing for the steady state condition. So, 
𝜕𝑇

𝜕𝑇
 will also 

be 0 because of the steady state ok. So, the energy equations we are we need to solve and 

then in energy equation also consider only conduction as specified in the problem because 

the fluid is stagnant. So, we will be taking only conduction terms. 

However, we as a normal practice you know we will be simplifying the energy equation 

to get that expression for the conduction in the radial direction in spherical coordinates ok. 

So, that way we can do or you can do, what you can do? You can do simple heat balance 

because heat balanced because of the conduction. 

You know then in heat balance that is heat transfer taking place because of the conduction 

in r direction. So, that heat balance you can do and then get the required energy equation 



required simplified energy equation for the temperature distribution. But what we follow 

our normal you know convention whatever we have been following in this course, that is 

we simplify the energy equation. 

So, energy equation in spherical coordinates is given here. So, steady state problems we 

are solving so, this term is 0, fluid is stagnant so, then all it all velocity terms should be 0 

right. And then conduction is taking place in only in the r direction and then thus 

temperature is function of r. So, then this term would be there right. So, next is temperature 

is not function of θ, it is not function of v also because only conduction in the radial 

direction that is what we are taking. 

So, what we get from here? So, this is the equation. This equation we can integrate to get 

the required temperature distribution right. This same equation we may also get in a 

conventional may conventional way of a conventional way of a you know obtaining the 

governing equations, conservation equation that you take a spherical particle of radius R 

right.  

And then this particle is suspended in infinite volume of a stagnant fluid. So, that also 

geometry also you what you take, you take R∞ or R = ∞ also you can take. So, in general 

we write R∞ or R = ∞ also you can take that is far away that. What does it mean by R = 

∞? It is not ∞, but compared to the R, R∞ value is very large very very large that you can 

take ∞ ok. 

So, now here the surface temperature is TR, here the surface temperature is T∞ right. So, 

now, what you can do? You can take a volume element like in between these two limits 

like this right. So, this is the volume element in the spherical geometry. So, whose 

thickness is dr whose thickness is dr. 

So, let us say radius of this element inner radius of this element is small r and then radius 

of a outer element is r plus dr. So, that the thickness of this element is dr. So, now, what is 

the rate of heat entering in r direction because of the conduction minus what is the rate of 

heat leaving in the r direction at r + dr because of the conduction that you can write down, 

right.  

And then you take the balance is equals to 0 because we are not taking any accumulation 

term here steady state. So, then you get this equation that way also you can do it ok. So, 



now, on integration what we get? 𝑟2 𝜕𝑇

𝜕𝑟
= 𝐶1. So, the same thing we can write 

𝜕𝑇

𝜕𝑟
=

𝐶1

𝑟2
. So, 

this is also going to be useful for our further calculations.  

So, now, once again if you do the integration what you get? You get 𝑇 = −
𝐶1

𝑟
+ 𝐶2. So, 

now we need two boundary condition to get to these 2 constants, C1, C2. One condition is 

at r = R T = TR at r = ∞, T = T∞ this is what we know ok. 

(Refer Slide Time: 10:33) 

 

So, this is the temperature profile that we got. Now, we will obtain these constant C1, C2. 

At r = R T = TR. So, −
𝐶1

𝑅
+ 𝐶2 = 𝑇𝑅. And then at r = ∞, T = T∞ that is −

𝐶1

∞
 that is 0 +

𝐶2 so; that means, C2 = T∞ we get. 

Now, from this boundary condition if you substitute C2 = T∞, −
𝐶1

𝑅
= 𝑇𝑅 − 𝐶2 that is T∞. 

So, 𝐶1 would be (𝑇∞ − 𝑇𝑅)𝑅 alright. So, now, these two constants C1 and C2 if you 

substitute here you get the final temperature distribution like 𝑇 = −(𝑇∞ − 𝑇𝑅) (
𝑅

𝑟
) + 𝑇∞.  

The same thing we can write (
𝑇−𝑇∞

𝑇𝑅−𝑇∞
) =

𝑅

𝑟
. So, this is the temperature distribution that we 

get for this case of heat conduction from a sphere to a stagnant Newtonian fluid ok. 
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So, now, we try to find out the Nusselt number expression for this case. So, rate of heat 

transfer at sphere surface due to conduction is nothing but 𝑞𝑟|𝑟=𝑅 = −𝑘
𝜕𝑇

𝜕𝑟
|𝑟=𝑅. So, 

𝜕𝑇

𝜕𝑟
 we 

have seen is 
𝐶1

𝑟2 right at r = R. So, −
𝑘

𝑅2 and then C1 is nothing but R (𝑇∞ − 𝑇𝑅). So, that is 

𝑘

𝑅
(𝑇𝑅 − 𝑇∞)is nothing but the rate of heat transfer at a sphere surface due to the conduction. 

Similarly, if at all there is some convection little convection whatever is there. So, that rate 

of heat transfer at sphere surface due to the convection is h (𝑇𝑅 − 𝑇∞), h may be very very 

small in this case so, which can be negligible ok. So, equating these two modes of heat 

transfer that is 
𝑘

𝑅
(𝑇𝑅 − 𝑇∞) = ℎ(𝑇𝑅 − 𝑇∞). So, (𝑇𝑅 − 𝑇∞) both sides cancel out. 

So, then we have 
ℎ𝑅

𝑘
= 1. So, both sides if you multiply by 2, then you have 

ℎ2𝑅

𝑘
= 2 that 

is nothing but 
ℎ𝑑

𝑘
 is Nusselt number. So, Nusselt number for the case of heat conduction 

from sphere to Newtonian fluid is 2. This you might have studied in your heat transfer 

courses right you may be remembering. So, this is how you get the derivation for this 

problem right. 

Now, we take next problem heat conduction in spherical shell. So, now, what we have 

taken till now? We have taken a geometry spherical particle right and then from there the 

surrounding fluid the heat conduction is taking place. Now we take a spherical shell alright 



and then in that shell you know some kind of holes have been made and then remaining 

portion of the shell is insulated. 

Then how to get the temperature profile? So, here also in this case also only heat 

conduction is taking place because there is no fluid involvement at all. At least in the 

previous case there was a fluid, but that was stagnant, but in this problem there is no fluid 

at all ok. 
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So, consider a spherical shell with inner and outer radii R1 R2. Make a hole in the shell at 

North Pole by cutting out conical segment in the region between θ = 0 to θ = θ1. Pictorially 

if you see here inner radius of the shell is R1 outer radius of shell is R2 right. And now, 

what we are having? Here this solid is insulated surface whatever the solid surface is this 

insulated. So, now, we have θ = 0 location this one and θ = π location is this one. 

So, now, between θ = 0 to θ = θ1, what you do? Make a hole that hole should be conical 

segment like this right. So, the angle of this conical segment is θ1 that is what we 

understand. Now, similarly make a hole at South Pole by cutting out conical segment in 

the region θ = π - θ1 to π1.  

So, now, this is this location is nothing but θ = π - θ1. So, from θ = π2, θ = π - θ1 whatever 

the angle it is making from that angle you make another hole at the South Pole like this 

right. And then remaining surfaces insulated here. 



The temperature at θ = θ1 is T1 at θ = π - θ1 temperature is T2 right. Since now this the 

spherical shell this holes have been made. So, the remaining portion though it is insulated 

the heat conduction is taking place right. And then heat conduction is taking place in the θ 

direction; obviously, here, so, that temperature as function of θ direction that we have to 

find out now, ok. What is the temperature profile in the shell? 
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In this case there is no involvement of fluid, hence, only conduction is the mode of heat 

transfer. Conduction would also be there only in θ direction, it will not be there in r and ϕ 

direction according to schematic given. And then energy equation in spherical coordinates 

we have to simplify since steady state. 

So, this term is 0 there are no velocity terms at all since there is no fluid involvement. So, 

left hand side all terms are 0. Temperature is function of θ only it is not function of r and 

phi. So, these two terms are gone. So, then what we get? We get 
1

𝑠𝑖𝑛𝜃

𝜕

𝜕θ
(sin θ

𝜕𝑇

𝜕θ
) = 0 

right. 

So, that means, (sin θ
𝜕𝑇

𝜕θ
) = 𝐶1,

𝜕𝑇

𝜕θ
=

𝐶1

𝑠𝑖𝑛𝜃
. This further if you integrate say you get 𝑇 =

𝐶1ln (tan 
θ

2
) + 𝐶2, but now here the range of θ is between 0 to π only. So, then whatever 

the tan value should be there of that part θ region. So, you will be getting only positive 



values. So, then because of that one you can remove this modulus. So, that is 𝑇 =

𝐶1ln (tan 
θ

2
) + 𝐶2. 
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Now this even C2 we have to find out using the boundary conditions that we are having. 

The same temperature, expression is written again here. At θ = θ1, T = T1 that is given. So, 

𝑇1 = 𝐶1ln (tan 
θ1

2
) + 𝐶2 right. At θ = π - θ1 T = T2 that is also given.  

So, that should be equal to 𝐶1ln (tan 
π−θ1

2
) + 𝐶2. So, 𝑇1 − 𝑇2 that is this equation minus 

this equation if you do, you get 𝐶1ln (tan 
θ1

2
) − 𝑙𝑛 (tan 

π−θ1

2
), that is 𝐶1ln {

tan 
θ1
2

𝑡𝑎𝑛
π−θ1

2

} you 

can get. 

So, now this expression you can substitute either in this here this equation or you substitute 

here in this equation and then you can find out C2 right. Then you will get some kind of 

expression because from here you can get you are getting 𝐶1 =
𝑇1−𝑇2

𝑙𝑛{
tan 

θ1
2

𝑡𝑎𝑛
π−θ1

2

}

 this is what you 

are getting, but not necessary to do that one again it becomes lengthier calculations. 

Because in this of type of heat conduction problem the temperature distribution we are 

getting in the form of a ratio between differences two temperature differences this is one 



temperature difference. Similarly other temperature difference expression if you get for 

𝑇 − 𝑇2 then you can have an expression 
𝑇−𝑇2

𝑇1−𝑇2
 function of θ. 

Because this 𝑇 − 𝑇2will also be having some constant we will not evaluate and then see 

how we can get rid of this constant by taking these two ratios. 
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So, this 𝑇1 − 𝑇2 is written once again here. Now, similarly if you wanted to write 𝑇 − 𝑇2, 

what you have to do? Θ1 you have to replace by θ right. T is nothing but temperature at 

unknown θ T1 is nothing but temperature at some known θ1 right, T2 is nothing but 

temperature at some known π - θ1 angle fine. 

So, now, similarly if you wanted to know unknown temperature at some unknown θ value 

you can write you can replace the θ1/θ by writing 𝑇 − 𝑇2 = 𝐶1ln {𝑙𝑛 (tan 
θ

2
) −

𝑙𝑛 (𝑡𝑎𝑛
π−θ1

2
)} that is this one 𝐶1𝑙𝑛 {

tan 
θ

2

𝑡𝑎𝑛
π−θ1

2

}. So, now you can do this divided by this 

expression so, then C1 C1 would be cancelled out. 

So, that will simplify our life not requiring to calculate the C1 C2 separately ok. So, that is 

𝑇−𝑇2

𝑇1−𝑇2
 if you write you get 

𝑙𝑛(tan 
θ

2
)−𝑙𝑛(𝑡𝑎𝑛

π−θ1
2

)

𝑙𝑛(tan 
θ1
2

)−𝑙𝑛(𝑡𝑎𝑛
π−θ1

2
)
. So, this at this unknown θ value what is 

unknown temperature that you can find out using this expression right. 
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So, now, combined heat conduction and reaction energy in spherical catalyst pellet. So, 

that is the last problem that we are taking in this class ok. So, let us say this statement. 

Consider a spherical catalyst pellet of size R. Thermal conductivity of the pellet is k. Inside 

the pellet chemical reaction is occurring due to which the rate of heat regeneration is SC.  

Then heat is lost to outer surface of pellet and then to a gas stream by convective heat 

transfer so; that means, you have a spherical catalyst pellet some pores may be connected 

or broken or whatever. So, like this you have a catalyst particle. So, now, inside this one a 

reaction taking reaction is taking place in this inside this you know catalyst pellet.  

So, because of the reaction the heat is being generated and then that is SC. So, then 

obviously, the temperature distribution would be there here in this case we will not have 

isothermal conditions. So, at this surface you know, what is the temperature? We do not 

know. 

Because now the reaction is taking place inside the catalyst surface so, then depending on 

that Sc whatever heat generation is there, so, this temperature on the surface let us say you 

designate is TR. So, the TR is not a constant, it is a function of whatever that heat generation 

because of the chemical reaction ok. 

So, now, whatever the heat is this since the reaction is taking place inside the catalyst 

porous catalyst pellet the temperature would be maximum at the centre right at centre yeah 



maximum temperature ok because reaction is taking place inside the catalyst pellet. So, 

now, whatever the heat is there, so, at the centre maximum that is being transferred towards 

the outer surfaces outer layers of the catalyst pellets right.  

So, it reaches the surface or the catalyst surface then it moves to the surrounding gases 

stream because they convictive heat transfer. So, there is some amount of loss of 

temperature is there. So, that temperature of gas stream is Tg that is known. So, because 

usually these catalytic reactions you know heterogeneous reactions and then one of the 

phase is either gas or liquid in general mostly gases reaction. So, that there is a gas stream 

flowing around this catalyst surface.  

So, that it is forming a kind a film layer. So, that temperature of that gas stream is Tg that 

is known ok. So, now, gas stream at temperature Tg that is known. Convective heat transfer 

coefficient is h that is also known, thermal conductivity of the pellet k that is also known. 

Assume rate of heat generation is constant throughout, this is very important right. 

Develop steady state expression for the temperature profile and obtain expression for the 

maximum temperature in the system. So, this is what we are going to have. 

So, now, some temperature now here, what we understand? The temperature is function 

of r that is what only you are taking, so, this you to find out ok. So, the conduction equation 

you to use here also because mostly it is conduction dominated within the because the the 

changes in the temperature are there within the catalyst pellet are only there that is what 

we are taking place. 

Whatever the Tg temperature is the surrounding gas stream temperature, but that is farming 

as a film only very thin film only ok. 
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So, assumptions constraints, steady state problem we are taking, negligible flow inside 

porous sphere so, that we can take only conduction in general. Because inside the porous 

structure whatever the catalyst pellet you take inside the porous structure in general these 

reactants whether the gases or liquid reactants whatever are there they move they are 

moved from one location to the other location primarily because of the diffusion. 

Primarily because of the diffusion and then under such conditions the bulk motion is very 

very small negligible so, that we can take only conduction heat transfer here. So, only 

conduction mode of heat transfer inside the pellet, conduction is only in the r direction. 

So, T is function of r that is what we have to find out right. 
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Now, energy equation in spherical coordinates is given here, ρ𝐶̂𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑇

𝜕𝜃
+

𝑣𝜙

𝑟𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝜙
) = 𝑘 [

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑇

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2𝑇

𝜕𝜙2] + 𝑆𝐶this is nothing but 

heat generation because of the chemical reaction inside the catalyst pellet. 

So, steady state this term is 0 and then there is no fluid moment at all or conduction only 

we are taking. So, velocity components are 0 temperature is function of r only it is not a 

function of θ or phi. So, these two terms are 0 and then this heat generation because of the 

you know chemical reaction should be there. How much it is we do not know actually, it 

is given let us assume it is given ok. 

But it in general changes during the progress of the reaction, but however, in our problem 

it has been mentioned, it is being maintained throughout the reaction, constant Sc has been 

maintained throughout the reaction. So, finally, we have 
𝑘

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑇

𝜕𝑟
) + 𝑆𝐶 = 0 right. 

Now, this equation we can rewrite 
𝜕

𝜕𝑟
(𝑟2 𝜕𝑇

𝜕𝑟
) = −𝑆𝐶

𝑟2

𝑘
. Now, when you integrate 

(𝑟2 𝜕𝑇

𝜕𝑟
) = −𝑆𝐶

𝑟3

𝑘
+ 𝐶1, now you take that 𝑟2 to the right hand side. So, 

𝜕𝑇

𝜕𝑟
= −𝑆𝐶

𝑟

𝑘(3)
+

𝐶1

𝑟2. 

Now, once again if you integrate 𝑇 = −𝑆𝐶
𝑟2

𝑘(6)
−

𝐶1

𝑟
+ 𝐶2. So, now, you have to find out 

this C1, C2 right then only you can find out the temperature. So, it is not a straightforward 



because only Tg one temperature is known right. Boundary conditions you how to apply 

such a way that its known value is there if you use certain kind of boundary condition 

which is again dependent on some other variable or parameter it is of no use 

For example, here TR is the temperature at the surface, but it is function of this Sc. So, this 

is not known as of now, this is not known, so, we have to find out. Then we can get this 

constant and then get this final temperature directly we cannot assume TR is constant, 

though Sc is constant you know we do not know what that is Sc, but TR. Once Sc is known 

TR can be found out what is that constant TR can be found ok. So, that first we have to do 

ok. 
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So, the same equation is written here again. So, the  C must be 0 in this case because this 

temperature cannot be infinite for any value of r. And then if you substitute r = 0 that is at 

the centre you this equation is going to produce the infinite value that is not acceptable. 

So, C1 must be 0. So, the final simplified temperature is this one right. 

So, now this C2 we have to find out right. So, you may be thinking again here we have 

only one Tg value. So, we can find out. We can find out this C2 that you may be thinking 

right, but that is also not possible here. Why is not possible? Tg is known, but at what r 

value this Tg is there that we do not know then only we can apply these boundary 

conditions. 



In the case of a TR we know the location at r = R, but this TR is function of Sc. So, then 

even though location we know TR exact value of TR we do not know every early. So, we 

cannot use this boundary condition also. Whereas, the other value of temperature the other 

large other side wise you know the reverse way is true. Tg is known, but at what location 

that Tg is existing that we do not know. 

What is the film thickness that we do not know, film of gas stream that is surrounding 

catalyst pellet in which the heat loss is taking place because of the convection that 

thickness of the film is not known? So, either of the boundary conditions directly we 

cannot use. So, what we have to do? We have to do a few simplifications now that we are 

going to do now. 
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So, heat losses to surroundings would provide required boundary condition to obtain C2. 

So, what are the heat losses that we have to find out? At the surface of sphere rate of heat 

transfer due to conduction and convection must be equal in order to find out the new 

boundary condition to get this C2. So, we have to find out rate of conduction at the surface 

as well as the rate of convection at the surface to get a final boundary condition. 

So, rate of conduction at surface that is −𝑘
𝜕𝑇

𝜕𝑟
|𝑟=𝑅 should be equals to the rate of 

convection at the surface is  ℎ(𝑇𝑅 − 𝑇𝑔) right. So, where TR is temperature on surface of 



spherical catalyst pellet that is function of Sc, it is not one constant value. TR is also 

constant, but it is not a priorly known ok. Why TR is constant?  

Because Sc is constant throughout the reaction that log in that way it is constant, we know 

that what is that constant we do not know. So, then that is the reason we cannot use directly 

that one as a boundary condition. 
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So, from equation number 3 we are finding out 
𝜕𝑇

𝜕𝑟
 because we have to find out −𝑘

𝜕𝑇

𝜕𝑟
. So, 

𝜕𝑇

𝜕𝑟
 from equation number 3 is −

𝑆𝐶

𝑘

2𝑟

6
 and then this 

𝜕𝑇

𝜕𝑟
 we are finding out at r = R that is at 

this surface. So, you substitute r = R then you get −
𝑆𝐶𝑅

3𝑘
. 

So, now, −𝑘
𝜕𝑇

𝜕𝑟
= ℎ(𝑇𝑅 − 𝑇𝑔) that is what we know. So, now, here in place of 

𝜕𝑇

𝜕𝑟
|𝑟=𝑅 we 

substitute −
𝑆𝐶𝑅

3𝑘
. So, −𝑘 (−

𝑆𝐶𝑅

3𝑘
) = ℎ(𝑇𝑅 − 𝑇𝑔). So, that is we get 

𝑆𝐶𝑅

3
= ℎ(𝑇𝑅 − 𝑇𝑔). 

Now, from equation number 3 that equation number 3 is 𝑇 = −
𝑆𝐶

𝑘

𝑅2

6
+ 𝐶2. Now, here you 

what you can do you need to know this TR. So, what you do? At r = R, T = TR you substitute 

here. So, then you get 𝑇𝑅 = −
𝑆𝐶𝑅

6𝑘
+ 𝐶2 right. So, now, this you can use here in this 

expression equation number 5. 
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Now substitute 𝑇𝑅 = −
𝑆𝐶𝑅

6𝑘
+ 𝐶2 in equation number 5, equation number 5 is this one. 

𝑆𝐶𝑅

3
= ℎ(𝑇𝑅 − 𝑇𝑔). So, now, in place of TR we are writing this one. So, now, we can write 

𝑆𝐶𝑅

3ℎ
=

𝑆𝐶

𝑘

𝑅2

6
+ 𝐶2 − 𝑇𝑔 that is 𝐶2 =

𝑆𝐶

𝑘

𝑅2

6
+

𝑆𝐶𝑅

3ℎ
+ 𝑇𝑔 this is what we get. So, this is the C2, 

C2 is strongly dependent on Sc and then Tg as well in addition to h and k values right. 
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 So, now, this C2 you can substitute in equation number 3, which is the final temperature 

distribution 𝑇 = −
𝑆𝐶

𝑘

𝑟2

6
+ 𝐶2, in place of C2 we can write 

𝑆𝐶

𝑘

𝑅2

6
+

𝑆𝐶𝑅

3ℎ
+ 𝑇𝑔. So,𝑇 − 𝑇𝑔 =



𝑆𝐶

𝑘

𝑅2

6
(1 −

𝑟2

𝑅2) +
𝑆𝐶𝑅

3ℎ
. This is the final temperature distribution right. So, now, we have to 

find out the maximum temperature which is nothing but at r = 0.  

So, in this equation if you substitute r = 0 you get 𝑇𝑚𝑎𝑥 − 𝑇𝑔 =
𝑆𝐶

𝑘

𝑅2

6
+

𝑆𝐶𝑅

3ℎ
. So, if you take 

𝑆𝐶

𝑘

𝑅2

6
 common you will get multiplied by 1 +

2𝑘

ℎ𝑅
, this is in the form of you know reverse 

of Nusselt numbers. So, that way if you write you can write 
4𝑘

2𝑅
. So, this is nothing but 

reverse of the r inverse of Nusselt number. So, this is the maximum temperature at the 

centre of the catalyst surface ok. 
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The references for this lecture are provided here. Primarily the all 3 problems you can find 

out in this book Bird, Stewart and Lightfoot, Transport Phenomena. In this book Transport 

Phenomena by Birds, Stewart and Lightfoot you can find out all these problems. 

Thank you. 


