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Welcome to the MOOCs course, Transport Phenomena of Non-Newtonian Fluids. The 

title of today’s lecture is Temperature distribution for a Fully Developed Flow of 

Newtonian fluids in tubes. 
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So, the major constraint of this problem is the flow is fully developed. So, whatever the 

temperature profile that we are going to obtain for the case of Newtonian fluids flowing in 

tube under non-isothermal conditions, this temperature profile is applied only for that 

region of the tube, where the flow is fully developed. Actually this problem we have taken 

previously under isothermal conditions.  

So, where we tried to obtain the velocity profiles for the power law fluids right and then, 

we substitute n = 1 and then, got the velocity profile. So, that we know actually. So, this 

that we have to revisit here. Actually since we are finding out the temperature profile and 

then, energy equation there is a velocity term. So, then, we must know the velocity profile 

as well for that given profile, for that given geometry ok.  



So, for fully developed flow conditions especially for circular tubes, what you have taken? 

L/D is very very large; in general more than 150 or something like that or 100 to 150 

something like that we have taken right. That also depends on the nature of the fluid; 

sometimes even 100 L/D of 100 is sufficient, sometimes even L/D of 200 may also not be 

may not be sufficient, if it is a viscoelastic fluids. So, that is a different issue right.  

So, what we see under such conditions? The flow is fully developed. We take only that 

region of the pipe in which the flow is fully developed. Fully developed in the sense, in 

the flow direction, let us say in the z direction flow is taking place; 
𝜕

𝜕𝑧
 of any you know 

velocity or vector components etcetera are going to be 0. That is what we have seen right.  

So, now the same, we are revisiting again the same problem; but only thing that now we 

are taking non isothermal conditions right and then, that non-isothermal conditions are also 

such a way that the ∆T or temperature difference whatever is there, it is not affecting the 

Cp, ρ, μ etcetera, these kinds of physical properties. These things are not being affected by 

the temperature right. 

So, that means, velocity profile is not function of temperature; but the temperature is 

function of velocity as well right. So, that is the reason for this case, we have to find out 

the velocity profile and then that velocity profile, we have to incorporate in solving the 

energy equation ok. So, now, here the coordinate system stand, the same problem in the 

flow direction, we are taking z; other direction, we are taking r right.  

If it is fully developed flow, when we simplified the momentum equations etcetera what 

we understand? 𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑟

2
  that is what we have we obtain. So, that means, you know 

the shear stress is linear. So, that is what shown here and then, velocity profile, we have 

seen like in depends on the value of n because we have done it for power law fluids and 

then, being on plastic fluid separately. Individually for Newtonian fluids, we have not 

done.  

So, but that velocity profile, if you substitute n = 1, you get the parabolic velocity profile 

that is given here right. So, now, we are bringing in this non-isothermality in this problem 

so that to find out the temperature profile also, but only when the only for the fully 

developed region of the geometry, not for the entire entry to exit.  



Because when we are saying the fully developed flow, end effects that is entry effect and 

then, exit effects are negligible right. So, the whatever the solution whether the velocity 

distribution that we already got or the temperature distribution that we are going to get 

today, it is not valid; region close to the entry, region close to the exit, in between only it 

is valid and then, especially L/D has to be very large ok.  

So, now, we give the conditions like you know what are the velocity conditions, boundary 

conditions are required? So, at wall, no slip condition. So, velocity is 0, we know at centre 

velocity is maximum. So, vz = vz max that we know. This is that is sufficient for in order to 

get the velocity profile, this parabolic profile that we can get that is vz = vz max (1 −
𝑟2

𝑅2) 

that we can get using these boundary conditions.  

But temperature profile, you have to wanted to find out you have to have the conditions 

with respect to the temperature also. So, let us say at the inlet the temperature is T1 and 

then, this wall whatever the pipe walls are there, they are maintained at constant heat flux 

q0 right and the temperature at the centre, what it is? We do not know; whether it is 

maximum or minimum or whatever we do not know. 

So, what we are saying that temperature is finite at the centre; T is finite at the centre that 

is at r = 0, it is finite that is what we are saying fine. So, now, three boundary three 

conditions are there for temperature, so we have to find out. Another thing that most 

important thing for the velocity profile in this fully developed region, we found that it is 

function of r only right.  

And then, accordingly, we got you know velocity distribution and then, that is true also if 

you have a one dimensional laminar flow. So, definitely stands well. But under such 

conditions, even though velocity is function of r only, you cannot say the temperature is 

function of r only, it may also be function of z.  

Especially because the temperature condition at the inlet is different from the wall 

conditions, you know centre temperature conditions. So, now here more than one variable 

is coming into the picture, so whose effects should also be taken into the consideration.  

So, now, even though here in this problem, the velocity is function of only r; but 

temperature is function of both r and z. So, now, the problem becomes more complicated 

so to solve mathematically. So, however, there are certain approaches certain you know 



you know certain types of solutions are available approximate solutions which are you 

know almost close to the reality.  

So, those things we are one of such kind of solution, we are going to discuss now. So, what 

we have to do here? First we have to list out the constraints of the problem, then solve the 

simplify the momentum equations, then get the velocity profile, then after that you know 

simplify the energy equation in that energy equation if the velocity terms are there, so then 

substitute the velocity distribution, then simplify the simplified energy equation to get the 

final temperature distribution. So, those are the steps ok. 
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So, first constraints are assumptions of the problem, Newtonian fluid with constant 

physical properties; ρ, μ etcetera are not changing even though non-isothermal conditions 

are there. Then, steady, laminar, incompressible, non-isothermal flow; previously, what 

we have taken you know when we are taking only momentum transfer, we have taken 

isothermal flow.  

But it is non-isothermal flow in this case. So, temperature profile one has to find out. Flow 

is fully developed, no gravity, no reaction, no viscous dissipation, no reaction kind of 

things standard and then, only z component of velocity is existing that is function of r; 

whereas, vθ, vr are 0.  



But temperature is function of both r and z that is T is function of both r and z. Then, 

boundary conditions for the temperature, we are writing because for the fluid we already 

know, very simple ones. At the centre, at r = 0, we do not know whether it is maximum 

minimum or negative, positive, we do not know anything right.  

So, then, what we are saying, that it is a finite value; just finite and then, walls are 

maintained at constant heat flux ok. At the inlet that is z = 0, T = T1. Since T is function 

of z also, we need to have a boundary condition as function of z also, for different values 

of z also.  

So, for the time being, it is given only at the inlet that is at z = 0, only the temperature 

condition is given that is T = T1 right. Now, we solve the problem. First we write the 

continuity equation in cylindrical coordinates. 
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Then, we have this one. Steady state, so this term is 0, vr is not existing, vθ is not existing 

and then, fully developed flow, so 
∂ 

∂ z
 of anything is 0. So, continuity is satisfied. r-

component of equation of motion is given here; vr is not existing and then, steady state 

term, so it is 0; vr is not existing, vθ is not existing; vz it is there, but vr is not there, vθ is 

not there.  



Pressure in general, we do not know; vr is not existing. So, all these three terms are not 

there; vθ is also not existing. The gravity, we are not taking; horizontal pipes, we are taking. 

So, pressure is not function of r. 
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Then, θ component of equation of motion is given here. So, steady state this term is 0, vr 

is not there, vθ is not there; vz is there, but vθ is not there, vr vθ both are not there. So, left 

hand side all terms are canceled out. The pressure 
∂p 

∂θ
 1 by the pressure term, we do not 

know in general. 

So, we just keep it as it is. vθ is not there, so this term is 0, this term is also 0, this is also 

0; vr is not there, so this is also 0; gravity, we are not taking. So, what we understand 

pressure is not function of θ. So, pressure should be function of z only because in the z 

direction, flow is taking place and then that flow is taking place because of the pressure 

gradient. It is a same problem we are revisiting for a Newtonian case.  

This exactly the same problem, we have done for the power law and being in plastic fluids 

previously. So, z component of equation of motion is given here. So, steady state, this is 

0; vr is not there, vθ is not there, vz is not function of z or fully developed flow, this is 0.  

The pressure in general, 
∂p 

∂z
 now we do not know, so let us keep it as it is. vz is there and it 

is function also and it is function of r, so this term would be there. vz is not function of θ 



and z, so these two terms are 0, there is no gravity. So, 
∂p 

∂z
=

μ

𝑟

∂ 

∂r
(𝑟

∂𝑣𝑧 

∂r
), this is what we 

are getting.  

So, this equation if you solve, then you get vz as function of r. But now, already we 

understand that pressure is not function of r and θ. So, when we integrate this equation, 

left hand side is only z pressure and then, z terms are there. So, velocity is not you know 

function of z. So, when you integrate this one, you can take the left hand side term as a 

constant, when you integrate the right hand side term.  

Similarly, right hand side only function of r is there ok; but pressure is not function of r. 

So, when you integrate the left hand side term, what you can do? You can take a right hand 

side as a constant and then, integrate it ok. Since pressure is not function of r and θ, but it 

is function of z only and then, 
∂p 

∂z
 whatever is there, that you can treat it as a constant. 
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And then, when you integrate, you get the pressure p = c1 z + c0. At z = 0, p = P0. So, c0 = 

P0. At z = L, p = PL, so that means, PL = c1 L + c0 and then, c0 is nothing but P0. So, that 

means, 𝑐1 =
𝑃𝐿−𝑃0

𝐿
; that means, 𝑃 =

−∆𝑃

𝐿
𝑧 + 𝑃0  that is what we can write or 

∂p 

∂z
= 𝑐1 and 

then that 𝑐1 =
−∆𝑃

𝐿
. 
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So, now this equation in place of  
∂p 

∂z
, this is the equation that you know when we simplifies 

when we simplified the z component of an equation of motion, this is what we get in the 

previous slide, one of the previously slide. Now, 
∂p 

∂z
 in the previous slide, we got it as a 

constant; that constant is 
−∆𝑃

𝐿
.  

So, 
−∆𝑃

𝐿
=

μ

𝑟

∂ 

∂r
(𝑟

∂𝑣𝑧 

∂r
) so that we can write (

−∆𝑃

𝐿
)

𝑟

μ
=

∂ 

∂r
(𝑟

∂𝑣𝑧 

∂r
) and then, when you 

integrate (
−∆𝑃

𝐿
) (

𝑟2

2μ
) + 𝐶1 = 𝑟

∂𝑣𝑧 

∂r
. 

This r you take to the left hand side, so (
−∆𝑃

𝐿
)

𝑟

2μ
+

𝐶1

𝑟
=

∂𝑣𝑧 

∂r
 and then, once again if you 

integrate, 𝑣𝑧 = (
−∆𝑃

𝐿
) (

𝑟2

4μ
) + 𝐶1𝑙𝑛𝑟 + 𝐶2. Now, when you apply the boundary condition 

at r = 0, vz has to be maximum; but ln of 0 you cannot define.  

So, then, this C1 constant has to be 0 and then, at r = R, vz = 0, then C2, you will be getting 

− (
−∆𝑃

𝐿
) (

𝑅2

4μ
) and then this C2, you substitute here, C1 is 0 anyway, then (

−∆𝑃

𝐿
) (

𝑅2

4μ
), if you 

take common, you get 1 −
𝑟2

𝑅2 that is the velocity profile that we have the parabolic nature 

for Newtonian fluid right.  



This (
−∆𝑃

𝐿
) (

𝑅2

4μ
), you can write it as vz max because in this equation if you substitute r = 0, 

it will be you know vz max because at r = 0 that is at the centre of the pipe velocity is 

maximum. So, at r = 0, vz = vz max. So, and the in this equation, if you substitute r = 0, you 

will be having only (
−∆𝑃

𝐿
) (

𝑅2

4μ
) that I am writing vz max. 
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So, this is what we have. Now, equation of energy, we are going to simplify ok. In 

cylindrical coordinates, equation of energy is given here. A steady state, this term is 0; vr 

is 0; vθ is 0; vz is not 0 and then, temperature is also function of z in addition to function 

of r. So, this term should be there. Temperature is function of r, so this term would be 

there, but it is not function of θ.  

So, it this term is canceled out. This term is there because temperature is function of z. 

What function it is? We do not know that we are going to obtain now right and then, we 

are not taking any viscous dissipation in this problem. So, what we have ρ𝐶̂𝑝𝑣𝑧
𝜕𝑇

𝜕𝑧
=

𝑘 {
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕2𝑇

𝜕𝑧2
}.  

Now, can we further simplify this equation that is what we see. So, this term indicates the 

conduction in the radial direction; this term indicates the conduction in the z direction; this 

term indicates the convection in the z direction. So, flow is taking place in the z direction. 

So, in that direction, convection is going to be dominating compared to the conduction. 



So, what we can do? We can cancel out these term 
𝜕2𝑇

𝜕𝑧2 with that comparison to ρ𝐶̂𝑝𝑣𝑧
𝜕𝑇

𝜕𝑧
 

or otherwise, also if you take only conduction terms, conduction is going to be dominating 

in the direction normal to the flow that is in the r direction. So, in compare to so conduction 

is going to be more in the r direction than in the z direction.  

So, by that analysis as well, 
𝜕2𝑇

𝜕𝑧2, we can cancel out. So, by either of the region, when you 

cancel out 
𝜕2𝑇

𝜕𝑧2, you will be having ρ𝐶̂𝑝𝑣𝑧
𝜕𝑇

𝜕𝑧
=

𝑘

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
). 
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So, now here in place of vz, what we write? We write vz = vz max {1 −
𝑟2

𝑅2}. So, then this is 

what we are having. This equation, we have to solve. So, obviously, from this equation 

what we understand? We need two boundary condition for r with respect to the r and then, 

we need one boundary condition with respect to z right. So, boundary condition, what we 

have? At the centre, temperature is finite, we do not know how much it is. We are saying 

finite ok. 

Obviously, it cannot be 0; it can be maximum and cannot be maximum that also we cannot 

say. So, but we are saying finite ok and then at wall, we are maintaining the constant heat 

flux that is 𝑞0 = 𝑘
𝜕𝑇

𝜕𝑟
 right and then, at z = 0, at the inlet, we know the fixed temperature 

T = T1; constant inlet temperature right. So, now equation 1, using the boundary conditions 

given in equations 2, 3 and 4, we have to solve. 
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So, equation number 1, now what we do rather solving in this form, we make it non-

dimensionalized right. So, now here, scaling parameters are given here. So, θ is nothing 

but dimensionless temperature right. In the previous problem, you may be thinking that 

∆T is non-dimensionalized using the (𝑇1 − 𝑇λ); (𝑇λ − 𝑇1)whatever. But now here, why 

are we taking 𝑞0
𝑟

𝑘
 to non-dimensionalize the temperature difference?  

Because we know only one fixed temperature; only T = T1 at z = 0 that much only we 

know. We need at least two temperatures, if you wanted to non-dimensionalized the 

temperature difference using the temperature quantities. So, that is not possible here 

because we are we know only one temperature quantity T1. So, that is not possible.  

So, that is the region q0, we are using that is constant heat flux right. So, θ is the 

dimensionless temperature which is (𝑇 − 𝑇1)𝑞0
𝑅

𝑘
 and then, dimensionless radial 

coordinate dimensionless radial coordinate whatever is there 
𝑟

𝑅
, we call it ξ right.  

Now, this z dimensionless z coordinate also we have to define; how to define? Let us say 

this equation number 1, if I write 
{1−

𝑟2

𝑅2}
𝜕𝑇

𝜕𝑧
1

ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥

 this k also I am bringing it here to the left hand 

side. 



So, 
{1−

𝑟2

𝑅2}
𝜕𝑇

𝜕𝑧

𝑘

ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥

 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) right. So, now, whatever this things you know being you know 

multiplied by this z that we are taking as a kind of you know scaling parameter to non-

dimensionalize z. So, dz whatever z things is there that is multiplied by 
𝑟2ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥

𝑘
 from 

this equation.  

So, that is the reason dimensionless z that is ζ =
𝑧

ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥
𝑟2

𝑘

  we are taking. Sometimes you 

know this comes with the experience also. So, that is what we are doing now here ok. So, 

otherwise, you may be confusing because non-dimensionalizing the radial coordinate, you 

are simply dividing that one with the radius of the tube ok. 

Temperature difference, you are simply taking the constant heat flux terms and then, doing 

it; but in this case of z it is not so simple because there is no another L coordinate kind, L 

kind of thing in this equation; otherwise z/L, we could have taken as ζ right. So, that is the 

reason, we have written like this.  

How to select? Now, you can that that you know you have to rearrange this way and then, 

whatever the terms you know being multiplied by this z terms whatever are there. So, that 

you take as a kind of you know scaling parameter to non-dimensionalize the z coordinate 

fine. 
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So, now, these scaling parameters, we are going to use to non-dimensionalize this equation 

number 1. So, in the equation number 1, we are having dr, dz, dT terms are there. So, now, 

from this θ, what we can understand? 𝑑𝑇 = 𝑞0
𝑅

𝑘
dθ right. From this definition dr is nothing 

but R dξ and then, from this ζ information, dz is nothing but ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥
𝑅2

𝑘
dζ. So, now, we 

apply these things in this equation number 1.  

So, what we will have? ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥 {1 −
𝑟2

𝑅2} is nothing but 𝜉2, ∆T is nothing but 𝑞0
𝑅

𝑘

𝑑θ

𝑑𝑧
 is 

nothing but ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥
𝑅2

𝑘
dζ = 𝑘, r is nothing but 𝜉R; r is nothing but 𝜉R, 

𝑑

𝑑𝑟
 is nothing but 

R d𝜉 of r is nothing but 𝜉R and then, dθ is nothing but 𝑞0
𝑅

𝑘

𝑑θ

𝑑𝑟
 is nothing but R d𝜉.  

So, now, this is the equation ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥 {1 −
𝑟2

𝑅2}
(𝑞0

𝑅

𝑘
)𝑑θ

ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥
𝑅2

𝑘
dζ

=
𝑘

𝜉𝑅

𝜕

𝑅𝜕𝜉
(𝜉𝑅

(𝑞0
𝑅

𝑘
)𝑑θ

𝑅𝜕𝜉
). So, 

this ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥 this ρ𝐶̂𝑝𝑣𝑧 𝑚𝑎𝑥 cancelled out right. So, this 𝑞0
𝑅

𝑘
 and this 𝑞0

𝑅

𝑘
 is cancelled 

out; this R, this R is cancelled out right. So, now, here ask R and R, 𝑅2 is this. So, this 𝑅2, 

this 𝑅2 is cancelled out and then, this k, this k cancelled out. So, what do you get from this 

equation? {1 − 𝜉2}
𝑑θ

𝑑ζ
=

1

𝜉

𝜕

𝜕𝜉
(𝜉

𝜕θ

𝜕𝜉
). This is what you get.  
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So, the same equation simplified final equation is written as an equation number 5 here 

right. So, now, boundary conditions also we have to define in non-dimensionalized 



quantities right. At r = 0, T is equals to finite that is the boundary condition. If r = 0; that 

means, ξ is also 0 and then, if T is T is finite, so θ that is 
𝑇−𝑇1

𝑞0
𝑅

𝑘

 is this, so that should also be 

finite.  

We do not know how it how much it is, we just write it as. Then, at r = R; that means, ξ = 

1 and then what is the boundary condition? The constant heat flux that is q0 = k
𝜕T

𝜕𝑟
 right. 

So, at r = R, constant heat flux q0 is maintain that is nothing but k
𝜕T

𝜕𝑟
; forget about the minus 

+ and all, that is not required ok. So, now q0 = k, ∆T is nothing but 𝑞0
𝑅

𝑘
 dθ.  

This entire divided by dr is nothing but R dξ. So, this q0, q0; this k, this k; this r, this r is 

cancelled out. So, 
𝑑θ

𝑑𝜉
= 1. So, that is what is this one and then, at z = 0, T = T1. If z = 0; 

that means, ζ = 0 ,right and then, if T = T1, so θ is going to be 
𝑇1−𝑇1

𝑞0
𝑅

𝑘

. So, this is going to be 

0 anyway. So, that is this one ok.  

So, now, we are going to solve this equation number 5 using the boundary conditions given 

in equation 6, 7, 8. So obviously, it is not possible without many without making certain 

kind of approximations ok. Because now, temperature is function of r and z, so θ is also 

function of ζ and ξ here ok. So, what are the approximations we do in general, that we see. 
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We are taking asymptotic solution. First one is it is possible for large values of z or ζ 

because it has been mentioned that you know temperature profile for a fully developed 

flow region. So, that is true only for large values of z ok. Then, after fluid is sufficiently 

far downstream from beginning of heated section, one expects that constant heat flux 

through wall will result in a rise of fluid temperature which is linear in z direction of ζ.  

So, let us say this is the pipe ok. So, now, we are far away from the inlet and outlet, so 

where the velocity profile is fully developed alright? And then, we are having some 

parabolic profile like this. So, in this region, what happens? So, whatever the variation in 

the velocity is not there. So, variation in the fully in the fully developed region only, in the 

fully developed region only, variation in the velocity in the flow direction are 0; isn’t it?  

So, that means, you know the with respect to the wall, the fluid relative motion between 

wall and then fluid regions is going to be same. So, then obviously, that velocity is not 

going to affect much the temperature profile here in the fully developed region and then, 

that also in which direction, it will not affect? It will not affect much in the z direction.  

The convection whatever is there that is not going to affect you know; the velocity profile 

is not going to affect the heat transfer because of the convection much. So, only whatever 

the variations are there in the z direction, they are expected to be linear ok.  

So, temperature profile whatever is there, T function of z are T function of ζ is there that 

is a linear that is what we are saying because velocity profile is not changing in the flow 

direction that is in the z direction. Then, also expect that the shape of temperature profile 

as function of ζ will ultimately not undergo further change with increasing ζ or z value. 

So, whatever the variation in the temperature profile is there, so T as function of r is there, 

so that is not affected by the temperature variations in the z direction for the further longer 

you know you know increasing ζ values. So, basically, what we are trying to say?  

What we are trying to do here now from these you know two assumptions? From these 

two assumptions, we are saying that whatever the T function of r and z is there, so that we 

are trying to write T is separate function of r and then, T is separate function of z and then, 

we are taking you know their affects as an additive and then, that is quite possible, if the 

flow is fully developed. 



So, then we have this temperature, temperature non-dimensionalized temperature would 

be having this form. This is the form of the solution now. This is not the problem equation. 

This is solution equation right. So, what we understand from these two assumptions?  

The temperature is a linear function of ζ, so C0 ζ and then whatever the temperature as 

function of r, or you know θ as function of ψ is there that is not affected by the you know 

temperature variations in the z direction. So, in this part, it is only function of ξ; it is not 

function of ζ ok that is what we are trying to do.  

So, now, if you find out what is the C0 constant and then, what is this ψ function of ξ 

whatever is there that you find out you got the solution ok and then, this solution should 

also obey the boundary conditions that we have you know three boundary conditions 

equation 6, 7 and 8. Then only, we can say that whatever the assumed the form of the 

solution, this is assumed form of the solution ok.  

So, then we can say that is approvable or otherwise, do we need to make any amendments 

that we have to see. So, we are will check; equation first boundary condition is you know 

at ξ = 0, θ is finite. So, so if let us say this second term psi function of ξ whatever is there, 

if it is having all the terms ξ term.  

So, if you substitute ξ, so the second term is going to be 0. But despite of that one, this 

term is going to have some value. So, then θ is equals to finite is possible, even when ξ = 

0. Then, when ξ = 1, 
∂θ 

∂ξ
= 1; is it possible or not?  

When you do the 
∂θ 

∂ξ
, you will get 

∂ψ 

∂ξ
 right. So, this is function of ξ. So, then you know we 

substitute ξ = 1 here, so then it is possible that you may get 1 right. So, it is possible that 

kind of you know ψ function, you can find out right.  

So, now this; so second boundary condition is also satisfied. So, the solution 9 is satisfying 

boundary condition 6 and 7. Then boundary condition 8, is it satisfying or not that we have 

to check. When ζ = 0, then θ = 0. So, let us say if ζ = 0, then θ is 0; that means, you know 

these all that is possible when altogether this function is 0.  

But that is not possible. So, that means, this boundary condition is not being satisfied by 

this form. So, then what we do? We have to obtain one conditions for the z direction or so. 

So, that we try to do it. How we try to do? 
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Let us say this is the pipe. So, at certain locations z. So, from the inlet, z = 0 to certain 

location z = z whatever is there. So, heat is coming in because of the constant heat flux. 

So, whatever the 2 π R vz q0 is there, so that should be you know balanced by the whatever 

the ρ 𝐶̂𝑝 now here ρ 𝐶̂𝑝 T vz r dr dθ integration whatever the quantity is this, so that is at z 

= z.  

The same quantity at z = 0 is nothing but ρ 𝐶̂𝑝 T1 because at z = 0, T = T1 vz r dr dθ, this 

also you integrate whatever the quantity is there. So, that is the rate of heat in at z = 0. So, 

rate of heat out at z = z minus rate of heat in at z = 0 that should be balanced by the 

whatever the heat being supplied through the wall from z = 0 to z = L.  

So, that balance when you do, you get these things that that is 2πRz𝑞0 =

∫ ∫  ρ 𝐶̂𝑝(𝑇 − 𝑇1)
𝑅

0

2𝜋

0
𝑣𝑧𝑟𝑑𝑟𝑑𝜃. Now, the temperature is not function of θ. So, you can 

write 2 π ∫  ρ 𝐶̂𝑝(𝑇 − 𝑇1)𝑣𝑧𝑟𝑑𝑟
𝑅

0
, that is it. Then, 2 π 2 π will be cancelled out. Now, here 

also you apply this same scaling parameter exactly, then, you get this boundary condition. 

How? Later you can check it is.  

Let us say 2πR z left hand side is same, q0 is same, right hand side 2 π integral R = 0 

means ξ = 0, R = R means ξ = 1. Then ρ  𝐶̂𝑝 T, what we are using (𝑇 − 𝑇1) is nothing but 

θ multiplied by 𝑞0
𝑅

𝑘
 multiplied by vz; vz we are writing vz max {1 −

𝑟2

𝑅2} is 𝜉2and then dr is 



nothing but R dξ, r is nothing but r ξ ok and then, left hand side in place of this vz, what 

we have to write?  

You know ζ ρ Cp vz max 
𝑅2

𝑘
 in place of z. So, this 2 π, this 2 π is canceled out; this q0, this 

q0 is canceled out. So, here one R and then another R here is canceled out; this ρ Cp, ρ Cp 

here it is canceled out; vz max, vz max is canceled out. So, this 𝑅2 would be getting from here 

only one R is there; so, then from this one R, then square of this R is gone. So, then this 

R, this R is gone. So, then what we have?  

Left hand side, we have only ζ = ∫ 𝛩(ξ, ζ)(1 − 𝜉2)ξ dξ
1

0
; this is what you get. You can 

simply do it. Practice it and then, you can get to this equation. So, this is the third boundary 

condition that we got. Now, the solution whatever is there, after this part very 

mathematical. So, this is your solution this is your governing equation. 
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So, now, this equation you can substitute here. So, this equation should be satisfied. So, 

let us say from this equation 
∂θ 

∂ζ 
 is nothing but C1. So, I can substitute here in place of this 

one is C1. So, (1 − 𝜉2) C1 = 
1 

𝜉 

∂ 

∂𝜉
(𝜉

∂ψ 

∂𝜉
) I get. Because 

∂θ 

∂𝜉
 is nothing but 

∂ψ 

∂𝜉
; is not it?  



So, that when you do (1 − 𝜉2) in place of this one is C1; in place of 
∂θ 

∂𝜉
, I have to write 

∂ψ 

∂𝜉
 

right. So, this is what we are having when you expand left hand side, this also you take to 

the left hand side. So, then you have (𝜉 − 𝜉3) C0 and then this one right. 

So, next what do you do? Integrate it; so, (
𝜉2

2
−

𝜉4

4
) C0 + C1. So, this ψ you bring it to the 

right hand side again. So, then this is what you are having. Once again if you integrate, 

you get (
𝜉2

4
−

𝜉4

16
)C0 + C1 ln 𝜉 + C2. So, this ψ function whatever is this, so is this one. So, 

this you this unknown function, you got it now by given 30 number equation number 13.  

So, now, over all final solution, we can have 𝛩(ξ, ζ) = 𝐶0 ζ + 𝐶0 (
𝜉2

4
−

𝜉4

16
) + 𝐶1𝑙𝑛𝜉 + 𝐶2. 

This is the final solution; only thing that what is this C1? What is the C0, C1, C2 that you 

have to find out. So, that we can find out simply by using boundary conditions. So, this is 

the solution.  
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First boundary condition is at ξ = 0, θ is equals to finite, that means, if you substitute 0 

here, ln 0 is not possible, so C1 has to be 0. Then, second boundary condition at ξ = 1, 

∂θ 

∂𝜉
= 1. So, from this equation, 

∂θ 

∂𝜉
 is nothing but 𝐶0 {

𝜉

2
−

𝜉3

4
} +

𝐶1

𝜉
; C1 is any way 0 from 

boundary condition 1 after applying the boundary condition 1.  



Then, ξ if you substitute 1 here, {
1

2
−

1

4
} is 

1

4
. So, that means, C0 = 4. Then, third boundary 

condition is this one right ζ ∫ 𝜃(1 − 𝜉2)𝜉𝑑𝜉
1

0
. So, (𝜉 − 𝜉3 )𝑑𝜉, you can write; θ you can 

substitute, θ is this one. So, all the terms are being multiplied by (𝜉 − 𝜉3 ).  

Now, you looks like lengthier, but simple you integrate this equation and then, substitute 

C0, C1 and then, get C2. Then, C2 you get −
7

24
. So, all the constants C0, C1, C2 you got it. 
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So, then final solution you got it. So, that is θ is equals to in this form that a final solution 

C0, you substitute 4; C0 its 4, C1 is 0. So, then this term is anyway 0. Then after substituting, 

you get this final solution for the θ; θ as function of ζ and ξ you got it ok. But finally, what 

you have? What you need to have? You need to have temperature in dimensional form.  

So, dimensional form T = T1 + 𝑞0
𝑅

𝑘
 θ. This is coming from your θ scaling parameter 

definition that is 
𝑇−𝑇1

𝑞0
𝑅

𝑘

. So, now, here in this equation, in case of θ, you substitute equation 

number 15. So, then you have this final solution for the temperature distribution of a 

Newtonian fluid under fully developed flow conditions alright.  

So, this temperature distribution for a Newtonian fluid flowing through pipe; but the flow 

is under fully developed flow conditions, temperature profile is also valid for only fully 

developed region.  
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Not valid for entry and then exit regions; valid for only fully developed flow region only. 

If you have to include the entry exit regions also, then you have to do using the numerical 

solution; otherwise, it is not possible to get approximate solutions like this. 
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This problem is taken from this reference book. Other useful references are provided here. 

Thank you. 


