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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids, the 

title of today’s lecture is Temperature distribution in fluids confined between coaxial 

cylinders. 
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So, in the previous lecture we have taken a similar problem there also we have taken 

a coaxial-cylinders and then fluid is confined between them. So, we got the velocity 

profile and then temperature distribution. 

But what we have done the case in the previous lecture what we have taken is you 

know the cylinders are very close to each other, the confinement gap whatever is there 

very very small almost like both the cylinders inner and outer cylinders are you know 

touching to each other, right. 

So, under such conditions what we had taken, since the gap between these two 

cylinders is very very very very smaller compared to the radius of outer cylinder the 

curvature effect we have neglected and obtain the velocity profile. And then under 



such conditions we have seen that velocity profile is linear whether the fluid is  

Newtonian or power law or power law fluids that also we have taken we have seen 

right. 

So, that is one thing right and then accordingly according to that velocity profile we 

have found the temperature distribution and then we got a Brinkman number for 

Newtonian fluid as well as the non-Newtonian power law fluid case as well, ok.  

So, that Brinkman number we have defined for both Newtonian case as well as the 

power law fluids case right, but now the geometry is similar here in today’s lecture, 

but difference major difference is that gap is not very small, the cylinders are not 

touching to each other almost it is not the case. 

And then also the gap is not very large that the inner cylinder radius is very very small 

compared to the radius of outer cylinder that is also not the case the gap is moderate 

the gap is small, but not very small that you know you can avoid the viscous 

dissipation. It is small, but still viscous dissipation is there it is small, but you cannot, 

but you cannot avoid the curvature effects. 

Under such kind of I mean geometry is same, but the confinement is in such a way. 

So, then; obviously, the velocity profile is going to be different if it is linear or non-

linear that is also, we cannot say and then even if it is linear, you know we are going 

to get a, we supposed to get a different velocity compared to the previous case. 

Because now the curvature effects are coming into the picture, we are going to see 

that in this case the velocity profile itself is going to be non-linear and then; obviously, 

the subsequent temperature distribution is also going to be very different from what 

we have seen. 

So, that is one difference further from the problem-solving point of view also there 

are certain differences that are what are those things that we are going to see it. So, 

before getting into the solution of this problem of coaxial cylinder fluid confined 

between coaxial cylinders, but the gap is small, but not very small. So, before solving 

that problem we have to see the schematic right, schematic if you see the radius of 

inner cylinder, you are taking λ R and then radius of outer cylinder you are taking R 

right, the gap between these two is there whatever is there. 



Let us say for the time being we calling b, but it is not very very small compared to 

the R as in the previous case we have seen right, if it is like this case is this. So, then 

curvature effect we can avoid and then we can do the problem in a Cartesian 

coordinate and then velocity profile you are going to get linear.  

But in this case the gap is not such small; it is small, but it is not such small that you 

can avoid the curvature effects, ok. So, that is one thing so; obviously, the gap between 

these two cylinders is not very small. 

So, then the velocity profile whatever is there between these I mean velocity profile 

of the fluid that is confined between these two fluids is going to be different compared 

to the previous case ok. So, now, coming to the other details of the geometry the inner 

cylinder is stationary. 
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And then it is maintained at temperature Tλ, outer cylinder is rotating with the 

rotational velocity Ω0 and then temperature is maintained at T1, right. So, now this 

outer cylinder is rotating in angular direction so; obviously, we are going to have a 

component velocity component in angular direction is going to be dominating that is 

vϴ component is going to be dominating compared to the v r and vz components of the 

velocity right. 



And then further the variation since the inner cylinder is stationary and then outer 

cylinder is rotating so; obviously, the variations in the velocity are going to be you 

know more significant in the radial direction that is from R = λ R to R = R. 

So, Vϴ is predominating component of the velocity and it is function of r , right. For 

the temperature distribution in general we cannot say whether it is function of r only 

or function of ϴ also, but for the time being we take it is function of r only, ok.  

So, if you take function of ϴ also problem will become more complicated, but anyway 

such kind of problem we are taking in the next lecture right and then pressure is also 

function of not only function of r, but function of z also because we are taking vertical 

cylinder. So, hydrostatic pressure will also come into the picture ok. 

So, these two coaxial cylinders are arranged in a vertical configuration and then 

whatever the fluid between these you know two cylinders is there is rotating in a ϴ 

direction because outer cylinder is rotating in ϴ direction at the angular velocity Ω0. 

So, obviously, this velocity profile vϴ as function of r is going to be non-linear in this 

case that we are going to find out how what exact form and then temperature profile 

anyway when you include the velocity also in the temperature distribution. So, then 

definitely the final temperature profile is going to be non-linear. 

Because in the temperature distribution whatever the non-linearity is coming to the 

picture that is coming through the convection terms and then convection terms in 

general velocity components would also be there right indeed and in convection terms 

velocity components would be there. So, they will be bringing the more non-linearity 

in the temperature distribution that finally, we are going to get, right. 

So, this is the basic about the problem statement right. Now, we see all these things 

written here consider an incompressible liquid confined between two coaxial 

cylinders, nature of the fluid is not given. So, for the time being we take a Newtonian 

fluid if it is power law fluid also then exactly similar way we have to do.  

Outer cylinder is rotating a steady angular velocity Ω0, the ratio between radii is a λ 

it is fairly small it is not very very small that the curvature effect can be avoided it is 

not such small it is small, but fairly small not very small, right. 



So, the curvature effect must be taken into the account while obtaining the velocity 

profile then inner and outer surfaces of angular region are maintained at Tλ and T1 

respectively and both of them are not equal to each other then only we are going to 

have a temperature distribution right. Assume steady laminar flow and neglect the 

temperature dependence of the physical property. So, then ρ, μ, Cp etcetera are 

independent of the temperature. 

If ρ, μ are independent of the temperature; that means, the velocity profile is not going 

to be affected by the temperature difference right; however, the temperature difference 

is going to be affected by the velocity distribution. Obtain temperature distribution in 

confined liquid for this case. So, now what we do in general? We first you know list 

out the assumptions and then constraints of the problem. 
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So, Newtonian incompressible fluid steady and laminar flow, constant physical 

properties, no reactions and then from schematic, vϴ is only existing it is function of 

r temperature is function of r only and then pressure is function of both r and z because 

we are taking vertical cylinders. 

Now, first we have to get the velocity profile before getting the temperature 

distribution, without knowing the velocity profile you cannot simplify or solve you 

know convection part of an energy equation. So, that is the reason you know we have 

to first get the velocity profile, right. 



So, how do we, how do we get the velocity profile? As we have, as we have seen in 

previous lectures you know first we have to simplify the you know continuity and then 

momentum equation and then one of the momentum equations one component of 

momentum equation would be giving a relation for the shear stress and in that we have 

to solve to get the velocity profile, right. 

However, now we are doing the case for a Newtonian fluid. So, momentum equations 

also we are going to write for the Newtonian fluids directly that is Navier-Stokes 

equations and cylindrical coordinates that we are going to use. So, now, what we do?  

We simplify the continuity equation, before simplifying the continuity equation vϴ is 

function of r that we know, but we do not know whether the flow is fully developed 

or the flow is like you know symmetric those things we do not know, but some kind 

of information we can get by simplifying the continuity equation also. 
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So, continuity equation in cylindrical coordinates is given here. So, steady state term. 

So, this term is 0 vr is not existing vϴ is existing, but it is not function of ϴ that is 

given. So, vϴ is function of r only it is not function of ϴ. So, then all together we can 

cancel out this term vz is not existing. 

So, this term is 0. So, altogether 
𝜕

𝜕𝜃
(ρ𝑣𝜃) is 0 because vϴ is function of r. So, that way 

you can cancel out and then say the continuity is satisfied otherwise from the 



schematic if you are not sure whether vϴ is function of r only or is it function of ϴ 

also. So, that information you can get it from here. 

Let us say; let us say you are confused whether the vϴ is function of r only or is it 

function of both r and ϴ if you are not sure from this schematic. So, then you know 

from this continuity equation that information you can get right. So, now, from here 

what we get? 
𝜕

𝜕𝜃
(𝑣𝜃) = 0. 

Because incompressible fluid we are taking; that means, vϴ is not function of ϴ, right. 

So, vϴ is only function of r. So, that conformation also we can get, if you are not sure 

whether it is function of ϴ or not then we have to obtain the final conclusion like this. 

So, now equation of motion r, ϴ, z components we simplify and see what we get. So, 

r component of equation of motion is given here. So, we apply the constraints of the 

problem. Steady state so, this term is 0 vr is not existing vϴ is existing, but vr is not 

there, vz is not there vϴ is there, pressure in general we do not know. 

So, let us keep it as it is and then then the viscous force terms vr is not there. So, vr is 

not there, vr is not there, vϴ is not function of ϴ it is function of r only. So, this term 

is also 0. And then gravity we are taking in the z direction, the configure you know 

vertical cylinders we are taking and then such a way that the gravity is only in the  z 

direction. So, this term is also 0. 

So, what we get from here? ρ
𝑣𝜃

2

𝑟
=

𝜕𝑝

𝜕𝑟
; that means, pressure is function of r that is; 

obviously, because the flow is taking the velocity is variation is taking place in the r 

direction. So, then in the direction definitely pressure variation should be there ok. 
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So, this is one. Now, ϴ component of equation of motion is given here. A steady state 

so, this term is 0 vr is not existing vϴ is existing, but vϴ is not function of ϴ. So, this 

is 0, vz is not existing, vr is not existing. So, altogether all the terms in the left-hand 

side are you know cancelled out. 

𝜕𝑝

𝜕𝜃
 pressure how it is varying in general we do not have any information about the 

pressure. So, let it be like that then vϴ is existing and it is function of r. So, then this 

term should be there vϴ is not function of ϴ, vϴ is not function of z, vr is not existing. 

And then gravity is only in the z direction, right. So, now, about the pressure it is 

mentioned in the problem that pressure is function of r and z only it is mentioned, it 

is not function of ϴ that is given in the problem statement. So, at least now it is given. 

So, then we can strike off this term as well. 

So, then what we have? We have only one term remaining and then all other terms are 

cancelled out then we have 
𝑑

𝑑𝑟
[

1

𝑟

𝑑

𝑑𝑟
(𝑟𝑣𝜃)] = 0 this equation if you solve you get the 

velocity profile vϴ as function of r right. Now z component of equation of motion 

given here. 

So, steady state this term is 0, vr is not existing vz is not existing, vz is not existing. 

So, all the terms in the left-hand side are negligible. Pressure it is function of z because 



we are taking vertical cylinder and then gravity in the negative z direction. So, it would 

be there. So, vz is not existing.  

So, all these three terms are 0. So, gz is nothing but − g. So, −
𝜕𝑝

𝜕𝑧
− ρg = 0, right. So, 

that is what we have now ok. So, now we need this equation for getting the velocity 

profile. So, this equation we are going to solve it. 
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So, when you do first time integration you get C1 constant right-hand side now this C 

and this r you take to the right-hand side. So, 𝐶1𝑟 =
𝑑

𝑑𝑟
(𝑟𝑣𝜃) when you integrate next 

step you get 𝑟𝑣𝜃 = 𝐶1
𝑟2

2
+ 𝐶2. Now, this r if you bring it to the right-hand side, you 

have 𝑣𝜃 = 𝐶1
𝑟

2
+

𝐶2

𝑟
. 

So, now from this step itself is clear that you know whatever the values of C1 C2 the 

velocity profile is not linear, it is non-linear ok whereas, when we have the 

confinement gap very narrow be very smaller than the R then we got a velocity profile 

a linear velocity profile ok, but it is not true here if the gap is fairly small, it is not 

very small, but only fairly small then it is non-linear velocity profile. 



Now, boundary condition inner cylinder is stationary, inner cylinder location is at r = 

R λ. So, 0 = 𝐶1
(λ R)

2
+

𝐶2

(λ R)
 whereas, the outer cylinder is rotating with Ω0 angular 

velocity. So, vϴ = Ω0 R at r = R. So, that is Ω R = C1 R + C2/R. 

So, now this equation both sides we multiply by λ. So, that we get Ω0λ R = 𝐶1
(λ R)

2
+

𝐶2

(λ R)
 you are going to have. Why because this now 6a minus 6b you do 𝐶1

(λ R)

2
would 

be cancel out and then you will have an equation for C2, right. 
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Then −Ω0λ R =
𝐶2

λ R
−

𝐶2λ

 R
 , this you first do you know C2 you take common here then 

you are doing the LCM. So, then next step what you do? You take C2 one side and 

then all other terms to the other side then you get 𝐶2 =
Ω0 R2λ2

λ2−1
.  

So, now, this we substitute in equation number 6a which is nothing, but 0 = 𝐶1 (
λ R

2
) +

1

λ R
[

Ω0(λ R)2 

λ2−1
]. So, now C2 is this one, right. So, you substituted here. So, now, what you 

do? Your C1 you take this term one side and then simplify then you get 𝐶1 =
2Ω0 

1−λ2. 
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So, now, you have both C1 C2 this C1 C2 you substitute in 𝑣𝛳 = 𝐶1
𝑟

2
+

𝐶2

r
 when you 

get. So, this is 
𝑟

2
 𝐶1. So, this is 𝐶1 and then 

1

r
𝐶2 this is 𝐶2 right. So, now, what you do? 

From both the terms 1 − λ2 you take common in the denominator. So, then you have 

𝑟Ω0 − (
Ω0

𝑟
) 𝑅2λ2 because these two is cancelled out. 

Now, this velocity profile you can see it is non-linear ok so, but further what we do? 

We write outer cylinder in terms of the velocity because outer cylinder is rotating with 

Ω0 angular velocity. So, velocity profile we will write such a way that R Ω0 multiplied 

by some whatever the additional factor or correction factors, right. 

So, that is this one. So, this is the final velocity profile fine. So, now, what we do? 

This term we take and then do some more simplification, what are those 

simplification? We divide by r both sides. So, 
𝑣𝛳

r
=

Ω0−(Ω0)
𝑅2λ2

𝑟2  

1−λ2
. 

Because we are taking viscous dissipation also under consideration here, the gap is 

small. So, viscous dissipation should be there, only thing that it is not very small that 

we velocity profile can be taken as linear ok that is the major difference. So, here also 

viscous dissipation is there and then in the viscous dissipation terms you are going to 

have 
𝜕𝑣𝛳

𝜕𝑟
 kind of terms. 



So, that for that I am making calculation in advance. So, this is 
𝑣𝛳

r
 you can write like 

this now differentiate with respect to r. So, 
𝑑

𝑑𝑟
(

Ω0 

1−λ2
) −

𝑑

𝑑𝑟
(

Ω0 

1−λ2

𝑅2λ2

𝑟2
 ). 

So, this is constant. So, this 
𝑑

𝑑𝑟
 of first term is 0 −

Ω0 

1−λ2 𝑅2λ2 and then 
𝑑

𝑑𝑟
(

1

𝑟2) is (
−2

𝑟3 ), 

right. So, now, it is nothing, but 
2Ω0 

1−λ2

𝑅2λ2

𝑟3
.  

Now, what you do? You multiply both sides by r. So, 𝑟
𝑑

𝑑𝑟
(

𝑣𝛳

r
) is nothing, but 

2Ω0 

1−λ2

𝑅2λ2

𝑟2 , 

right. 

So, this term we are going to use in energy equation after simplifying, that is the 

reason we have done this part. Energy equation in cylindrical coordinates is given 

here. 
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So, now here also you apply the constraints of the problem steady state. So, this term 

is 0 vr is not existing, vϴ is existing right, but the temperature is not function of ϴ, it 

is function of r only is given. So, this term is 0 vz is not existing. So, this term is also 

0. So, right hand side temperature is function of r. So, this term would be there, but it 

is not function of ϴ and z. So, second third terms of the parenthesis are cancelled out. 

And then this term indicates the viscous dissipation term. So, viscous dissipation these 

9 terms should be there. So, when you expand and then apply the constraints of the 



problem you get only [𝑟
𝑑

𝑑𝑟
(

𝑣𝛳

r
)]

2

 this particular term you get from phi v after 

simplifying Φv this is what we get. So, now, 𝑟
𝜕

𝜕𝑟
(

𝑣𝛳

r
) we have already obtained it. 

So, that is this one from equation number 9. So, that you can substitute here. So, you 

get this one and then further simplifying you get 
4μ Ω0

2𝑅4λ4 

(1−λ2)2

1

𝑟4
 and then that whole =

−
𝑘

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
). 
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So, the same equation written here. So, now, what we do? We take a scaling 

parameters. So, ξ =
𝑟

𝑅
 and then ϴ is dimensionless temperature, ok. So, which is 

defined as 
𝑇−𝑇λ

𝑇1−𝑇λ
, ok.  

So, because what we are trying to do? This equation we are trying to write in 

dimensionless form by using this scaling parameters, directly also if you can integrate 

and get the solution there is no difficult there is no problem, but this is going to be a 

kind of exercise for us for the next problem that we are going to solve in the next 

lecture. 

So, now if 
𝑟

𝑅
 if you are taking as ξ then 𝑑𝑟 = 𝑅𝑑ξ  and then 

𝑇−𝑇λ

𝑇1−𝑇λ
 if you are taking as 

ϴ then 𝑑𝑇 = (𝑇1 − 𝑇λ) dϴ this ϴ is nothing but dimensionless temperature, ξ is 



nothing but dimensionless radial coordinate that is what we understand now from here, 

ok. 

So, now these things we are going to use here in this equation when you use it you get 

− k in place of r you are having R ξ from this definition d by again in place of dr you 

are writing 𝑅𝑑ξ. And then parenthesis then r is again nothing but R ξ and dT is nothing 

but (𝑇1 − 𝑇λ) dϴ.  

So, this one and dr is nothing but R d ξ ok and then right-hand side only r term is only 

this one R4 in place of R4 we can write R4 ξ4 this is what we have, right. 

Now, this equation if you simplify what happens this R this R is cancelled out right 

now here you have R2 R and R. So, R2 that will come here, but here R4 and then this 

R4 is cancelled out. So, that you have 
1

ξ

𝑑

𝑑ξ
(ξ

𝑑𝜃

𝑑ξ
) and then whatever (𝑇1 − 𝑇λ) is there 

that also we are taking to the right-hand side.  

So, then −4 Ω0
2𝑅2. So, this 𝑅2 is coming from the left-hand side R and then R here is 

this. So, 𝑅2 that brought it here. 

And then λ4 divided by this k also coming from the left-hand side (1 − λ2)2 is already 

there and then this (𝑇1 − 𝑇λ) is also coming from the left-hand side and then 
1

ξ4. So, 

now, what we do?  

In the right-hand side except this ξ4 rest of the terms whatever are there other than 

negative symbol we write it as N, N which is similar like you know Brinkman number. 

So, then this equation would be 
1

ξ

𝑑

𝑑ξ
(ξ

𝑑𝜃

𝑑ξ
) =

−4𝑁

ξ4  right. 
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So, now 
1

ξ
 whatever in the left-hand side is there if you take to the right-hand side that 

would become 
−4𝑁

ξ3  it will become earlier it was ξ4. So, then left hand side whatever ξ 

is there that we brought it the brought it to the right-hand side. 

So, then ξ3 it has become. So, now, you do the integration. So, (ξ
𝑑𝜃

𝑑ξ
) = −4𝑁

ξ−3+1

−3+1
+

𝐶1 that is (ξ
𝑑𝜃

𝑑ξ
) =

2𝑁

ξ2 + 𝐶1. 

Now, this ξ you take it to the right-hand side. So, then here in the right-hand side you 

have 
2𝑁

ξ3 +
𝐶1

ξ
. So, now, once again if you do the integration 𝜃 = 2𝑁

ξ−3+1

−3+1
+ 𝐶1𝑙𝑛ξ + 𝐶2 

that is ϴ = −
𝑁

ξ2 + 𝐶1𝑙𝑛ξ + 𝐶2. 

So, this is the temperature distribution in the non dimensional form that is non 

dimensionalized temperature as function of non dimensionalized radial coordinate is 

this one only thing that C1 C2 constants we have to find out right. 

So, r = λ r is nothing but the inner cylinder surface and then at inner cylinder surface 

T = Tλ, right. So, now, ϴ is nothing but 
𝑇−𝑇λ

𝑇1−𝑇λ
 this is what we have. So, now, here if 

you substitute T = T λ then ϴ = 0 at r = λ r. So, ϴ = 0= −
𝑁

λ2 + 𝐶1𝑙𝑛λ + 𝐶2, because at 

r = λ R; that means, ξ is nothing but λ, ok. 



So, this is we are getting. Other boundary condition is at r = R, T = T 1. So, r = R in 

the sense ξ = 1 and then ϴ = 
𝑇1−𝑇λ

𝑇1−𝑇λ
 that is 1. So, that you substitute here. So, ϴ = 1 = 

−
𝑁

12 + 𝐶1ln (1) + 𝐶2ln (1) is 0. 

So, C2 = you get N + 1 from this equation this C2 you substitute here right and then 

you get C1 ln λ = 
𝑁

λ2 − C2. So, that is 
𝑁

λ2 − 𝑁 − 1 and then C1 on expansion you get this 

one. So, this C1 C2 both now you can substitute here in this equation to get the final 

temperature distribution. 
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So, when you do it this is what you get and out of these two what you do? This 1 and 

then −
𝑙𝑛ξ

𝑙𝑛λ
 these are the two terms which are not having N. So, you combine these two 

terms as 1 term and then from other terms what you do?  

You take the N common and then after that also 1 − 
1

ξ2 as 1 term and then − (1 −
1

λ2)
𝑙𝑛ξ

𝑙𝑛λ
 

other term you can write it. So, this is the final temperature distribution in 

dimensionless form, ok. 

Dimensionless temperature as function of dimensionless radial coordinate is this  one 

right, but in dimensional form we have this T − ϴ is nothing but 
𝑇−𝑇λ

𝑇1−𝑇λ
, right. So, this 



= 1 − lnξ is nothing, but 
𝑙𝑛

𝑟

𝑅

𝑙𝑛λ
 is as it is and then this N is nothing, but 

μΩ0
2𝑅2λ4

𝑘(1−λ2)2(𝑇1−𝑇λ)
 

and then multiplied by wherever ξ is there we are writing 
𝑟

𝑅
. So, this is the final 

temperature distribution. 

Now, we can see how different it is compared to the case of a previous lecture where 

we avoided the curvature effects if you are considering curvature effects on the 

velocity distribution. So, the velocity distribution is not linear as we got unlike the 

previous problem also the temperature profile is also very different. So, we can realize 

how much important is the curvature effect especially when you are solving the 

viscous dissipation problem for coaxial cylinders like this. 

(Refer Slide Time: 30:51) 

 

References: this problem is you know taken from this reference book ok, other useful 

references are provided here. 

Thank you. 


