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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. Title 

of today’s lecture is Free Convection between Two Vertical Plates. So, till now 

whatever the isothermal flow of non-Newtonian fluids when we have studied in 

different geometries primarily, we have made use of our continuity equation, 

momentum equation.  

And then by using some mathematical procedures we try to obtain velocity profile 

then volumetric flow rate then friction factor etcetera that is what we have seen right. 

So, but if you have a non-isothermal flow of non-Newtonian fluids then, what are the 

additional things you may be requiring? 

Obviously, when the system is at non-isothermal conditions, so then you may required 

more additional information, something like let us say in a given condition if the 

viscosity of fluid is changing is varying with respect to the temperature, so, that 

additional information is required which we have not considered till now right .  

Sometimes let us say if there is a density variation because of the temperature changes, 

because of the non-isothermality of the system then so, those associated changes in 

the density with respect to temperature should also be encountered should also be 

incorporated in the system. 

Then obviously, energy equation must be coming into the picture, because the system 

is at non-isothermal conditions. So, that is the additional thing is required. So, then 

sometimes we also require something like you know caloric equations of state etcetera 

those kind of information are also required.  

So, before getting into the more details of non-isothermal flow of non-Newtonian 

fluids we make a list of things that are required in general in order to study this non-

isothermal flow of non-Newtonian fluids. 
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So, what are the things are required? Whether it is isothermal system or non-

isothermal system in the transport phenomena definitely we need continuity equation 

or equation of continuity. Then equation of motion that is required, because if the non-

isothermal flow we are talking about non-isothermal flow we are not just talking about 

the conduction where there is no flow etcetera.  

We are also taking incorporation we are also taking the information of the flow, flow 

of non-Newtonian fluid. So, then if the flow is involved, so then equation of motion 

definitely would be there. Then, equation of energy because the system at non-

isothermal condition. So, definitely we need to know how the energy is changing with 

respect to the space and time. So, that is the reason equation of energy is also required.  

Then, thermal equation of state, the p function of ρ, t etcetera, then caloric equation 

of state, �̂�𝑝 function of ρ, t etcetera. Then for density and then temperature dependence 

viscosity and thermal conductivity, how it is dependent on temperature etcetera those 

information, those equations are also required.  

And then obviously, the rheological model of non-Newtonian fluid is definitely is 

required whether the flow is isothermal or non-isothermal, if we are anticipating that 

material is having non-Newtonian behavior. 



So, then that rheological model information must be had, so that in order to solve in 

order to solve these problems. Then obviously, boundary conditions and then initial 

conditions are also required if you are solving for the time dependence as well ok. So, 

now, here so majority of them are not required for all the problems in general, but 

many of them are definitely required.  

So, what happens? Let us say if you are incorporating all the information how the 

velocity is changing with respect to the space in time, how the temperature is changing 

with respect to space in time. Similarly, pressure distribution, density distribution 

etcetera if you wanted to know all of these things, so definitely, all these things should 

be incorporated in the solver. 

And then when you incorporate all this information then analytically solving such 

problems becomes relatively impossible. So, then we have to go for numerical 

solutions. Even for the isothermal systems if you do not if you have the dependence 

of velocity on more than one variable then it becomes very difficult.  

So, now, at least in the velocity case you know in the flow cases, isothermal flow 

cases we can say that you know velocity is function of only y or only z those kind of 

thing or velocity is function of r etcetera. Those information we can say we can deduce 

from you know the basic problem statement, but for majority of the cases the 

temperature you cannot say whether it is function of only y, function of only z.  

It must be explicitly mentioned or otherwise you have to you may be solving the  

temperature function of both y and z. Let us say flow through pipes when we have 

taken vz is function of r that is what we have taken and then accordingly constraints 

we have listed out. And then we solve the problem for vz as function of r right. 

But the same pipe flow if the pipe and the flow is at non-isothermal conditions then 

temperature you cannot say it is function of r only, it will also be function of z. Even 

though velocity is function of r only, vz even if vz is function of r temperature you 

cannot say it is function of r only, it will also be function of z in the case of pipe flow 

if the system is at non-isothermal conditions ok.  

So, those are the additional problems are there right. So obviously, now, what we 

understand? More equations are coming, more constraints are coming the solving heat 



transfer problems or solving non-isothermal flow problems that is where flow is also 

involved. It is not just you know temperature variations are there and there is no flow 

it is not like that. 

So, when there is a flow also there and then temperature variations are there. So, that 

is non-isothermal flow conditions are there. The solving problems is going to be 

relatively difficult compared to the isothermal flow of non-Newtonian fluids what we 

had seen in till now ok. 

However, for any problem as engineering students we can list out the constraints and 

then we make we can make the problems as simpler as possible. But not going far 

away from the reality still maintaining; not exactly the reality, but close to the reality 

we can solve the problems by making certain kind of assumptions as engineering 

students. So, that is what we are going to do in the case of this non-isothermal flow of 

a non-Newtonian fluids in coming few lectures. 
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So, as I mentioned the entire set of equations whatever we listed in the previous slide 

if you wanted to solve, so then you have to depend on the numerical simulations. 

However, prior to solve the problems numerically it is a good idea to have a restricted 

solution. 



So, restricted solutions in the sense under certain kind of you know constraints like 

you know like momentum transfer we have listed or some constraints like steady, 

isothermal and then you know symmetric, fully developed flow etcetera those kind of 

constraints under those constraints we have solved problems.  

Likewise, in this case of in this case of non-isothermal flows of any system also if you 

make some kind of constraints, so, you are going to have certain advantages like you 

know making order of magnitude analysis. So, and then or investigating limiting cases 

something like that, those things you can see.  

What does it mean by? Let us say even for example, you know getting back to our 

viscoelastic behavior. When a same viscoelastic fluid is flowing through a packed bed 

of a particle of different sizes. So, then we have seen under such one conditions of 

particle size the viscoelasticity is not necessary to consider, that is what mean by you 

know this order of magnitude analysis. Such kind of analysis we can do here also in 

the case of non-isothermal flow.  

Let us say the Reynolds number is very small right, but the Prandtl number or Peclet 

number is very very large. So, then we can apply something like a thermal boundary 

analysis and then saw simplify the problem. And then find out you know required 

temperature distribution etcetera, those things we can do right. 

So, limiting cases also, so like you know order of magnitude limiting cases like, you 

will come to know whether is it really important to incorporate all the information, all 

the equation that are we have that we have taken etcetera. Let us say if you are taken 

the flow through pipes right vertical pipe.  

Is it really important to have the convection effect or free convection effect? That we 

can, those kind of analysis we can do by having the restricted solutions, how? We go 

problem to problem right. And then this can be done by obviously, making some 

standard assumptions.  

Some of the standard assumptions which are very common to the non-isothermal 

systems you know flux, heat flux is 0, right. Like in the momentum transfer we can 

say you know shear stress is zero at a given location those kind of constraints . 



Another constraint is that constant physical properties. So, constant physical 

properties, zero fluxes may be useful in many of the cases as a standard assumptions. 

Some examples where we can have in general zero fluxes case are adiabatic flow 

processes in systems designated to minimize frictional effects like in venturi meters 

and turbines.  

Then high speed flows around streamlined objects etcetera. So, these are some kind 

of examples we can have. So, that is a very generalized introduction about a non-

isothermal flows what we need to have how should we proceed kind of thing right . 

So, now what we start?  

We start with a free convection problem, free convection problem between two 

vertical plates right. So, here non-isothermality is there in the system, but we are not 

solving only temperature distribution. But that temperature distribution we utilize to 

find out how it is affecting the density and then that change in density how it is it 

causing you know convection.  

And then because of that free convection how the velocity distribution is changing 

that is what we are going to see. Basically, we are going to find out here also the 

velocity distribution, but now the velocity distribution is also affected by the non-

isothermality of the system because of you know free convection existing in the 

system ok. 
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So, free convection usually you know for that purpose we use the Boussinesq’s 

equation of motion for forced and free convection. So, that we can say under which 

conditions forced convection is dominating, under which conditions free convection 

is dominating that is what we can understand. So, since we are starting with the free 

convection problem, so, we see a few details about the Boussinesq’s approximation. 

So, equation of motion derived previously are valid for isothermal and non-isothermal 

flows as well that we have already mentioned while deriving the equations ok, 

irrespective of the nature of the flow, irrespective of the nature of the fluid generalized 

momentum equations we have developed. So, in non-isothermal flow fluid density 

and viscosity may depend on temperature and pressure. 

So, is it depending both on temperature and pressure or both density and then viscosity 

are dependent on this temperature and pressure or only density is depending on the 

temperature, but not depending on pressure all these constraints of the problem one 

should have ok. So, variation in density is important as it gives rise to buoyant forces 

and thus to free convection.  

Whatever the density variations are there because of the temperature differences, what 

happens that buoyant forces cause a change in the velocity distributions? How we is 

it going to change in the velocity distribution, that has to be discussed specific to 

problem to problem. 

So, we are going to discuss one problem today. So, density variation with respect to 

temperature can be approximated by Boussinesq’s approximation and then it is given 

by these things ρ(𝑇) = ρ̅ − ρ̅ �̅�(𝑇 − �̅�). So, whatever the bar are there so that indicates 

evaluated at reference temperature �̅� ok. 

So, ρ̅ is nothing but density at temperature �̅� ok. And then �̅� is nothing but coefficient 

of volume expansion at constant pressure, but temperature �̅�. So, that is �̅� =

(−
1

ρ̅
) (

𝜕ρ

𝜕𝑇
)
𝑝
 right. So, this ρ̅ is a temperature �̅� and then this ρ how it is changing with 

respect to temperature at constant pressure this first derivative from here we can get 

it ok. 
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So, how do we get this equation? So, let us say density 
𝜕ρ

𝜕𝑇
 whatever is there that if you 

do the Taylor series expansion at constant pressure then 
𝜕ρ

𝜕𝑇
=

𝜌(𝑇)−𝜌(�̅�)

𝑇−�̅�
. So that means, 

if 𝑇 − �̅� if you take to the left hand side (𝑇 − �̅�) 
𝜕ρ

𝜕𝑇
= 𝜌(𝑇) − 𝜌(�̅�), 𝜌(�̅�)we can call it 

ρ̅.  

So that means, from this �̅� definition what we can have, in place of a 
𝜕ρ

𝜕𝑇
? We can have 

−ρ̅ �̅�. So, left hand side −ρ̅ �̅� (𝑇 − �̅�) = 𝜌(𝑇) − ρ̅. So that means, ρ(𝑇) = ρ̅ − ρ̅ 

𝛽 ̅(𝑇 − �̅�) ok. So, this equation is giving you know how the density is varying with 

respect to the temperature by taking a reference temperature �̅� ok.  

By substituting this equation in ρ g term of equation of motion then what we get? This 

is the generalized equation of motion that we have seen in vectorial form we have 

written ρ
𝐷�⃗⃗� 

𝐷𝑡
= (−∇𝑃) − [∇. 𝜏] + 𝜌𝑔 was there. In place of + ρ g now we are writing in 

place of ρ what we are writing?  

ρ̅ − ρ̅ �̅�(𝑇 − �̅�) and then this entire thing is being multiplied by g. So, whatever ρ̅ g is 

there from here ρ̅ g is combined with the pressure term and then written here. And 

then remaining −ρ̅ g�̅� (𝑇 − �̅�) is written as additional term, so this term is buoyant 

term ok. So, in LHS of this equation here, here in place of ρ we are not writing this 

Boussinesq’s approximation.  



Because it is valid for buoyancy terms only, but; however, in some cases like you 

know very high flow rates there also like you know supersonic flows etcetera, in such 

conditions also if the velocity, in such conditions also if the density is varying you 

know with respect to temperature in such kind of high flows then also in the left hand 

side we have to do, we have to apply such kind of approximation.  

But for the time being for our chemical engineering problems we are not doing it , we 

are doing that replacing ρ by ρ̅ −ρ̅ �̅� (𝑇 − �̅�) only in the right hand side term in place 

of ρ g term ok, there only we are doing it. 
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So, the previous equation whatever we have seen describes two limiting cases of 

forced and free convection and the region between these two limiting cases. What 

does it mean by? If it is a forced convention is dominated, so then last term whatever 

is there that can be neglected ok, in relative in relation to the or in comparison to the 

other term.  

If it is free convection is dominating in the problem then what we can see? Whatever 

this (−∇𝑃 + ρ̅𝑔) term can be neglected in comparison to the other term of a free 

convection buoyant term ok. So, this kind of analysis we can have. 

So, in forced convection buoyancy term that is −ρ̅g �̅� (𝑇 − �̅�)is negligible. In free 

convection, term (−∇𝑃 + ρ̅𝑔) is small and usually omitting it is not going to affect the 



solution much. And then in general some examples where we can omit this 

(−∇𝑃 + ρ̅𝑔) despite of which the solution is not going to be affected much.  

So, those examples are vertical, rectilinear flow and flow near submerged objects in 

large bodies of fluid etcetera. Then, setting (−∇𝑃 + ρ̅𝑔) = 0 means that pressure 

distribution is same as that of fluid at rest. Whatever the hydrostatic pressures are 

there, so that is you know the pressure distribution is same to that hydrostatic pressure 

ok. So, that is what it mean by.  

If you are setting up if you are taking m(−∇𝑃 + ρ̅𝑔) = 0; that means, pressure 

distribution is same as that for the fluid rest fluid at rest. Because this ρ̅𝑔 is nothing 

but something like h ρ g that hydrostatic pressure etcetera those kind of terms, so that 

is what it mean by ok.  

So, replacing ρ on LHS of equation of motion by ρ̅ has been successful for free 

convection at moderate temperature differences. Under these conditions fluid motion 

is slow and acceleration term 
𝐷�⃗⃗� 

𝐷𝑡
 is smaller compared to the gravity term in equation 

of motion in general. 

And then for systems where acceleration is also large with respect to g, one must also 

use Boussinesq’s approximation on LHS of equation of motion, some examples like 

you know gas turbines, near hypersonic missiles etcetera ok. So, but for most of the 

chemical engineering problems we do not need to worry about you know applying the 

Boussinesq’s approximation in the left hand side density term of equation of motion.  
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So, now coming to the problem that we are going to solve, laminar free convection 

flow between two vertical plates at different temperatures. So, schematically if you 

see we have taken two vertical plates ok, which are long enough that you can say that 

end effects are negligible. These two plates are separated at distance 2B ok, coordinate 

system is taken such a way that the y = 0 is in between these two plates, horizontal 

axis is y axis, vertical axis is z axis.  

So, one of the plate is located at y = − B another plate is located at y = + B and then 

gap between these two is 2B. So, the heated plate it is at y = − B and then 

corresponding temperature is T2 as given here, shown here. And then cooled plate 

temperature is maintained at T1 as shown here.  

Now, what happens in this problem? The velocity distribution, what is this velocity 

distribution that we have to find out ok. Just pictorially it is shown like you know 

parabolic profile like that, but it may not be true ok, so, we have to derive it. So, now, 

in this problem we are talking about the free convection, laminar free convection flow, 

what happens here?  

That means, free convection is taking place; that means, the variations in density are 

taking place because of the temperature variations. Further to mention these plates are 

closed both at the top and bottom, this is closed at the both at the top and bottom right. 



So that, whatever the fluid is there so that is circulating because of the convection 

only.  

That means whatever the fluid elements are there towards the heated plate their density 

is decreasing because of the higher temperature. And then since the fluid molecules 

density is decreasing the fluid molecules are raising towards the heated plate .  

And then towards the cold plate the temperature of the fluid elements are less, so then 

density is decreasing. So, then you know, so called the fluid elements or the fluid 

layers towards the wall are you know having the decreasing velocity.  

And then because of this temperature difference that is T2 − T1 is maintained here. 

So, because of that one that temperature difference is causing the density variations 

and then that density variation is causing buoyant forces within the system. And then 

because of that buoyant force this material is circulating, the fluid is circulating, you 

know it is raising towards the left wall and then it is falling towards the right wall .  

Because left wall is heated plate and then right wall is cold plate. So, this circulation 

is continuously taking place ok because the both the top and bottom of the system are 

closed right. Now, for this case how this Vz is changing? So, if it is isothermal 

condition, so then we can solve the way that we have solved by simply simplifying 

the continuity and then momentum equations.  

And then one of the momentum equation would be giving expression for τyz and then 

τyz for the given fluid nature if you substitute power law, Newtonian or Bingham 

plastic and then integrate it, apply the boundary condition, get the velocity profile that 

is done, but in this case we have to follow the similar approach. 

But in addition to that we have we should also consider how this ρ is changing with 

respect to temperature. And then that change in ρ should be brought into the equation 

of motion in the right hand side term where ρ g term is there ok. So, whatever the 

listed out details of figure are given here fluid of density ρ and then viscosity μ is 

located between two vertical walls at 2B distance. 

For the simplicity we are taking as a first problem only Newtonian fluid ok, so, that 

we can solve the problem easily for the time being, because it is the first problem on 



non-isothermal flow of fluids ok. So, temperature at heated wall is T2 at y = − B, 

temperature of cold wall is T1 at y = + B.  

Assume ∆T is very small, so that terms containing ∆T2 ∆T3 etcetera are negligible. If 

∆T itself is very small, so then their square cube terms should also be very very small, 

so that we can neglect them. And then temperature gradient causes fluid near hot wall 

to rise and descend near cold wall.  

System is closed at top and bottom, so that the fluid is circulating between the plates. 

Mass rates of flow of fluid in upward moving stream is same as in downward as in 

downward moving stream. 

So; that means, let us say between y = − B to y = 0 fluid is raising. Whatever the rate 

it is raising the same rise, at the same rate it is falling in the region y = 0 to y = + B 

ok. So, that is fluid raising rate is equals to fluid falling rate in the system. 

So, plates are tall enough to avoid end effects, so that we can have you know fully 

developed flow assumptions and then temperature is function of y alone it is given it 

is given. So, we do not need to worry about this that temperature is function of y or z.  

Because for the temperature, not only just for the temperature in general for the any 

of the scalars it is difficult to say whether it is function of only one coordinate it is not 

function of other coordinates like that it is very difficult to say. Since, in the problem 

statement it is given, so we do not need to worry. 

So, the temperature variations are required or the temperature distribution we should 

understand. Because that information is required to substitute in Boussinesq’s 

approximation that we are going to apply for the right hand side ρ term ok. So, what 

are the constraints in general we have such kind of problems? 
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We have steady state, laminar flow it is already mentioned in the problem statement 

ok. And then plates are tall enough, so end effects may be avoided that is what it 

mentioned, so fully developed flow we can have alright.  

And then vz component is only existing and then it is function of y, temperature from 

schematic we do not understand whether it is function of y alone or z also. But 

however, luckily it is given in the problem that it is function of y only. So, need not 

to worry about that one. 

So, these kind of assumptions you know we are having. So, vx is 0, vy is 0 and then T 

is not function of z and then x ok. So, under these constraints what we do? We first 

obtain the temperature distribution and then we use the temperature distribution in 

equation of motion to find out the velocity distribution for this free convection 

problem.  

So, equation of change for non-isothermal system in Cartesian coordinate systems we 

have ρ�̂�𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑥

𝜕𝑇

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
+𝑣𝑧

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
). This is we derived in 

week 3 or 4 of the course right. 

So, now, here steady state, so the first term is 0, vx is negligible, vy is also negligible, 

vz is existing, but the temperature is not function of z it is function of y only that way 

you can cancel out. Let us say if that information is also not given, so we retain it ok. 



Then temperature is not function of x temperature is not function of z. So, we have 

𝜕2𝑇

𝜕𝑦2 term only in the right hand side.  

So, ρ�̂�𝑝𝑣𝑧
𝜕𝑇

𝜕𝑧
= 𝑘

𝜕2𝑇

𝜕𝑦2
. So now, from here this term can be cancelled out based on two 

constraints, one is the temperature is not function of z that is given. But from the 

physics of the problem the convection whatever is there that is there in the y direction 

right. Or the convection whatever is shown in the z direction that is very less compared 

to the conduction in the y direction. 

So, but the, so by that constraint also we can have that convection in z direction is 

very small compared to conduction in y direction. So, then we can have 𝑘
𝜕2𝑇

𝜕𝑦2 = 0. 

And then when you integrate you get T = C1 y + C2. We have two boundary conditions, 

T = T2 at y = − B and then T = T1 at y = + B.  

So, we have these two equations, two unknowns C1, C2, so we can find out them. So, 

now, if you add them together what will happen? C2 = 1/2 T1 + T2. Now this C2 if you 

substitute here then you can get C1. 
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So, T = C1 y + 1/2 (T1 + T2). Now, this first boundary condition we have at y = (−𝐵) 

T = T 2. So, T2 = C1 (−𝐵) + C2, C2 is 1/2 (T1 + T2). So, from here if you do the 

simplification right, so then, what we will have?  



Left hand side we have all these temperature terms, so right hand side C1 − B we are 

keeping right. So, then this T2 – 1/2 T2 is + 1/2T2, so + 1/2T2 −1/2T1 is nothing but 

C1 (−𝐵). 

So, from here C1 = (T1 + T2)/2 (−𝐵)right. So, T2 −T1 we are writing ∆T right, I am 

not writing this one ∆T/2(−𝐵). So, let us keep it as it is ok there is a reason for 

simplification later on. So, C1 = ∆T/2(−𝐵), 2 multiplied by (−𝐵).  

Now, we have both C1 and then C2, this is nothing but C2. This C1, C2 if you substitute 

in this equation T = C1 y + C2 then we get this equation T = C1. C1 is nothing but ∆T 

by 2 multiplied by (−𝐵), C1 y and then y + C2 is nothing but (T1 + T2)/2 that we are 

calling �̅� average temperature ok. 

So, this is what we are having, so; that means, T we can write T = �̅� –(1/2) ∆ T (y/B). 

So, what we understand here? T is a linear function of y that is what we understand. 

Before solving the problem from the problem schematic we do not have any 

information whether it is linear or non-linear etcetera.  

So now, by simplifying this, an equation of energy and then applying the boundary 

conditions we understand the temperature is a linear function of y fine. So, 

temperature distribution is known. So now, what we do? We simplify the equations of 

motion alright, different components of equation of motion. 
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So, start with the z component, z component equation of motion in Cartesian 

coordinate is this one. So, what we have here? Steady state this term is 0, vx is 0, vy is 

0 and then vz is not function of z it is function of y only or by fully developed flow 

also 
𝜕𝑣𝑧

𝜕𝑧
= 0. Because plates are long enough, so that end effects are negligible that is 

given in the problem statement.  

The pressure in general we do not know anything, so keep it as it is. And then this you 

know vz is not function of x, it is not function of z, so it is function of y. So, then we 

have to retain this thing. And then in the z direction, z direction is vertical z direction 

z coordinate is in the vertical direction, so then gz is there ok. 

So, what we get? 𝜇
𝜕2𝑣𝑧

𝜕𝑦2 =
𝜕𝑝

𝜕𝑧
− ρ𝑔𝑧. Now, g is acting in the negative z direction, so gz 

is nothing but −g. So, we have this equation, 𝜇
𝜕2𝑣𝑧

𝜕𝑦2 =
𝜕𝑝

𝜕𝑧
+  ρ g. So, let us keep it as it 

is, not solving this problem this equation as of now because this pressure is function 

of z that is what we are understanding from this equation. 

Now, if you integrate this equation, so you should know whether it is function of y or 

not, if it is function of y also then integration become complicated. So, we should 

understand whether the pressure is a function of y or not especially before solving this 

differential equation for vz right. So, if you wanted to know this one what you have to 

do? You have to simplify the y component of equation of motion, so that is what we 

are going to do. 

Similarly, if it is pressure is function of x or not that if you wanted to know you have 

to simplify x component of equation of motion. So, if we find that p is not function of 

y, so, then this integration will become easy and then we can straightforward do the 

integration by assuming the right hand side terms are constant with respect to y.  

But that also we cannot do directly because now here ρ is function of T and then T 

function of y. So, that also we have to substitute here as per the Boussinesq’s 

approximation. So, those steps we are going to do subsequently. 
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So, y component of equation of motion is given here. So, steady state this term is 0, 

vx is not there, vy is not there, vy is not there. So, left hand side all the terms are 

negligible, pressure we do not know, vy is 0. So, all these three terms are 0 and then 

in the horizontal direction gravity is not there, y direction is horizontal direction.  

So, what we understand? 
𝜕𝑝

𝜕𝑦
= 0; that means, pressure is not function of y. So, at least 

we are not worried about 
𝜕𝑝

𝜕𝑧
 term in equation number 4 you know to integrate it and 

then get the velocity profile ok. 
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So, now next is x component of equation of motion that is given here. So, we have 

steady state problem, so first term is 0, vx is 0, vy is 0 and then vx is 0. So, here also 

left hand side terms all terms are negligible. And then vx is 0 and then in the, and then 

gravity is only in the z direction. So, gx is also 0, so here also we get 
𝜕𝑝

𝜕𝑥
= 0; that 

means, pressure is not function of x. 
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Now, what we understand? ∆T is very small here that is what we assume. So, that ∆T2, 

∆T3 cube we can neglect thus density changes in the system will be so small. And then 



this suggests that ρ should be expanded in Taylor series about reference temperature 

�̅� which is the average temperature of T1, T2.  

Then according to this Taylor series expansion ρ = 𝜌|𝑇=�̅� +
𝑑𝑝

𝑑𝑇
|𝑇=�̅�(𝑇 − �̅�) that is what 

we have. And then so on so, ∆T2 term, ∆T3 term should be there, so we are not 

considering it. So, this we can write ρ at �̅� is nothing but �̅�.  

So, this 
𝑑𝑝

𝑑𝑇
 we already understand that it is −�̅�𝛽 ̅that is what we understand from the 

definition of a volume expansion coefficient or coefficient of volume expansion for a 

given fluid at constant pressure right. So, that is we are evaluating at �̅� temperature 

right.  

So, β is coefficient of volume expansion at �̅�, so then 𝛽 ̅ we can have. So, this 𝛽 ̅ 

definition of coefficient of volume expansion is nothing but 
1

𝑉
(
𝜕𝑉

𝜕𝑇
)
𝑝
. So, V we are 

writing a 
1

�̅�
 because this V whatever is there this is for the volume and then this is at 

the reference temperature �̅�.  

So, in place of V we can write 
1

𝜌
 and then that also at reference temperature ρ bar. So, 

that is what we have done and then we can then we can differentiate this one. So, we 

get −
1

�̅�
(
𝜕𝑝

𝜕𝑇
)
𝑝
. 

This is not, there is no bar here there should not be bar, because �̅� is a constant value, 

(
𝜕𝑝

𝜕𝑇
)
𝑝
. So, this if you substitute in equation number 4 in place of ρ g, ρ should be 

replaced by �̅� −�̅�𝛽 ̅  (T −�̅�), so then this equation we get. Now, this equation we have 

to integrate to get the velocity distribution. So, before that we should also substitute 

what is this T that also we do subsequently ok. 

So, now here this equation gives a balance amongst different forces this force indicate 

viscous force, this term gives the pressure distribution pressure force. And then this 

term gives the hydrostatic pressure terms and then this gives the buoyant force. So, 

balance amongst viscous, pressure, gravity and buoyant forces are given by this 

particular equation. 
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Now, we have already derived temperature by simplifying the energy equation that 

we got T = �̅� − (1/2)∆ T (y/B). This is our equation number 3 in previous slides, this 

equation number 3 we are substituting our just derived equation number 9.  

So, this is equation number 9 in place of T we are going to use this equation now. So, 

when you use it, so what you get? Right hand side term T −�̅� you can write −(1/2)∆T 

(y/B). 

So, this term would be + 1/2�̅�𝑔𝛽 ̅ ∆T (y/B). So, now, in the right hand side except this 

y all other terms are independent of y. So, we can integrate without any difficulty 

right. Before integrating what we do? We take this μ to the right hand side. So, we 

need boundary conditions at y at both the walls because of the no slip conditions we 

have the velocity 0 right. 

Whether it is y = −B or y = + B the velocity is 0 because of the no slip conditions 

right ok. So, this is in this equation when you integrate you will get two constants. So, 

we have two boundary conditions, so there should not be any difficulty in obtaining 

the constants also. On integrating this equation we get this particular term that before 

integrating first I have taken mu to the right hand side. 

So, it is coming under the denominator term right then after first derivative I what I 

get? Here first term is multiplied by y and then second term y is there. So, y2/2 + one 



constant, once again integrating what I get? vz is equals to this term is as it is 

1

𝜇
(
𝜕𝑝

𝜕𝑧
+ �̅�𝑔) and then y integration of y is y2/2. Now, here integration of y2 is y3/3 and 

then C1 y + C2. 

(Refer Slide Time: 40:17) 

 

So, this is the equation, we have rewritten once again ok. Now, applying the boundary 

condition at y = −B vz = 0. So, wherever y is there we are writing −B. So, B2 here 

and then –B3 here and then −B here. Another boundary condition at y = + B also vz = 

0. So, in equation number 12 wherever y is there we can substitute + B. 

So, + B2, + B3, + B here. Now, these two equations if you add together what will 

happen? So, this term this term are same, so we can cancel out this term this term are 

same, but different signs, so we can cancel out. So, C2, 2 C2 and then 2 times of this 

term that is 
𝐵2

𝜇
(
𝜕𝑝

𝜕𝑧
+ �̅�𝑔) right. So, from here C2 you get this expression, this C2 we 

are going to substitute here to get the C1. 
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So, in that equation number 12 a, this is 12 a in place of C2 we are writing this C2 

constant that we just obtained. Then simplify it then you will get C1 is equals to this 

constant. Now, this both C1, C2 you substitute in equation number 12, so then you 

have this expression. 

Next step what you do? From this term and then from this term what you do? You try 

to take B2 common, what you try to do? B square if you take common 

�̅� g �̅� ∆T 

12𝜇𝐵
𝐵2 {(

𝑦

𝐵
)
3

− (
𝑦

𝐵
)} you will get.  

And then from these two terms 
𝐵2

2𝜇
(
𝜕𝑝

𝜕𝑧
+ �̅� g) if you take common, then you get (

𝑦

𝐵
)
2

−

1 as the multiplication factor. So, this is the velocity profile ok. So, now, this velocity 

profile �̅� that is density is density at reference temperature �̅� is known, β̅ for a given 

system might be available or must be given.  

∆T is known, viscosity is known, width of or gap between two plates is known 

everything is known except this 
𝜕𝑝

𝜕𝑧
. If you know this 

𝜕𝑝

𝜕𝑧
 then you can know the velocity 

profile easily. So, now still this is the final velocity distribution equation, so, we do 

not know what is 
𝜕𝑝

𝜕𝑧
. So, we cannot use it for our final applications, so now we try to 

obtain what it is. 
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From the problem statement it is given the rate at which fluid is raising the same rate 

it is falling. That means, if you take for the both the limits of y = −B to y = + B integral 

of �̅�  vz dy should be 0 right. And then �̅�  is constant, so that also you can take to the 

right hand side. So, integral −B to + B vz dy = 0, if you do then you can get some kind 

of information about this 
𝜕𝑝

𝜕𝑧
. 

So, vz just now we derived this equation, now this equation we substitute here and 

then integrate it. When you integrate here the first term these are the constant. In place 

of y3 integration of y3 is y4/4 integration of y is y2/2 and then second term this is 

constant.  

So, integration of y2 is y3/3 and then integration of constant 1 is y. Limits −B to + B 

if you substitute first term, 
�̅� g �̅� ∆T 

12𝜇𝐵
𝐵2 is as it is. Then when you substitute these limits 

you get upper limit these two terms, lower limits these two terms, what you can 

understand? These two terms are same, but the opposite signs, similarly these two 

terms are also same but opposite sign, so we can cancel out. 

The second term 
𝐵2

2𝜇
(
𝜕𝑝

𝜕𝑧
+ �̅� g) and then this is the upper limit after substitution this is 

the lower limit after substitution right. So now, altogether in these two terms first term 

is anyway 0, because whatever the terms that are being multiplied, so that is all 0.  



So, first term is 0, second term whatever this summation comes out we can write 

simply take it to the right hand side and we can write this way. So, what we can get? 

𝜕𝑝

𝜕𝑧
= �̅� g; that means, 

𝜕𝑝

𝜕𝑧
 + �̅� g = 0 0. 

So that means, in this equation the second term is 0. So, in the velocity profile we 

need only this first term, because 
𝜕𝑝

𝜕𝑧
 + �̅� g = 0  that we understand from this statement 

of the problem. 
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So, therefore, vz will be only the first part, first term of equation number 12 that we 

have derived previously. Only first term of velocity distribution should be taken under 

consideration, because second term is having 
𝜕𝑝

𝜕𝑧
 + �̅� g which is 0. So, second term of 

that velocity distribution equation is 0. So, we have only first term in the equation, so 

then velocity profile is this one. 

So, before winding the class if you wanted to have the average velocity in the upward 

moving stream, so average velocity only in the upward moving stream. Upward 

moving stream is between y = −B to y = 0. So, 
1

𝐵
∫ 𝑣𝑧𝑑𝑦

0

−𝐵
 if you do you get the average 

velocity in the upward moving stream.  

So, when you do it this vz avg is equals to this all term divided by B and then integration 

of these terms. So, integration of y3 is y4/4 and then integration of y is, and then 



integration of y is y2/2 limits −B to 0. When you substitute and then simplify you get 

vz avg is 
�̅� g �̅� ∆T 𝐵2

48𝜇
 ok.  

This is how we have to solve non-isothermal flow of any fluid whether Newtonian or 

non-Newtonian. So, we have taken simple Newtonian fluid in this today’s lecture. So, 

we will be taking different non-Newtonian fluids and then more complicated 

geometries in the coming lectures. 
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Reference: these details have been taken by the standard book Transport Phenomena 

by Bird, Stewart and then Lightfoot, other useful references are provided here. 

Thank you.  


