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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of today’s lecture is Dispersion in Packed Beds: Non-Newtonian Effects. In the previous 

lecture we have seen if a power law or Bingham plastic fluid is flowing through a packed, 

bed how to obtain expression for the frictional pressure drop etcetera those things, the 

derivations etcetera those things we have seen, we have also seen an example problem. 

Now, in the same packed bed let us say if you wanted to include the effect of dispersion 

as well in the overall transport phenomena, then how to proceed. So, what are the things 

that you have to worry about, so all those things that we are going to see right.  

We are going to see an equation for a dispersion in packed bed as well. If there is a 

dispersion in packed bed, so they how the concentration is varying because of the 

dispersion in addition to the because of the bulk flow those things we are going to see and 

then derive an equation as well. 
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Often dispersion is regarded as types of self-induced mixing process that arise during flow 

of fluids. Mechanism of dispersion; there are two different possible mechanisms in 

general, one is the molecular diffusion another one is the mixing arising from flow pattern 

within the fluid. How does it appear, how does it occur, and that we see especially in the 

case of packed bed now.  

In packed beds or porous media true plug flow never occurs due to the dispersion. 

Obviously, if there is a dispersion, we will never have a kind of a true plug flow. And then 

because of that one performance of packed beds would be adversely affected by the 

dispersion. So, why dispersion is very much essential in the case of packed bed that we 

see. 
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So, let us say if you have a column right, and then that is packed with certain particles 

regular or irregular whatever particles right. So, now, what happens when a fluid enters 

from the bottom let us say it is entering like this. So, whatever the fluid element is entering 

that is entering at certain high velocity. So, then it must be entering the column at certain 

high kinetic energy. 

So, when this fluid element comes and then enters the perforated plate here. So, 

immediately it may be encountering you know resistance from the particle right. When 

this fluid elements comes and then hits the particle because of high kinetic energy that 



kinetic energy has to disperse other way. So, then what happens? A kind of rotational of 

the rotation of the fluid elements takes place in the interstitial spaces. 

So, because of that one the rotation is there that causes a kind of self-inducing of a mixing 

in the process, mixing of the fluid within the bed. So, because of such kind of reasons what 

happens the dispersion is very much important in the case of a packed beds. 
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So, dispersion effects are more important in packed beds than in simple pipe flows because 

of several reason, one of them is the contraction and expansion in flow passages in general 

takes place. 

So, in that; because of that contraction and expansion of a flow passages interconnecting 

interstitial spaces there will be a kind of a rotational motion of the particles. And in that 

induces dispersion in the packed beds that is one region. Another region is this radial 

mixing readily occurs in the flow passages or cells because of the loss of kinetic energy 

that fluid element is carrying before hitting a particle. And then that loss of kinetic energy 

induces a rotational motion in the neighboring interstitial spaces. 

Because fluid element enters with high kinetic energy much of which is converted into 

rotational motion within the cells, because of that one radial mixing readily occurs in the 

case of packed beds and then that induces additional dispersion. And a continuously 

changing velocity promotes dispersion in packed beds.  



In packed beds we know that completely laminar flow or completely turbulent flow does 

not appear in the entire column. At some interstitial spaces there may be laminar flow other 

interstitial spaces maybe there turbulent kind of thing may be there. 

So; that means, you know from one flow passage area to the other flow passage area the 

velocity is drastically changing, sometimes it is decreasing sometimes, it is increasing. 

And then because of this change in velocity that also promotes dispersion in packed beds.  

Also wall effects are also significant because of a channeling through the region of high 

voidage near the wall. Near the walls usually what we have you know the voidage or 

volume fraction is more the actually this voidage is also not uniform in the entire packed 

bed. 

If you take region wise if you do right, overall volume fraction we take for an engineering 

calculations. But if you are using especially regular non-spherical particles etcetera then 

what happens the voidage is varying from location to the location. So, that voidage is in 

general very high near the walls right compared to the voidage at the center of the bed 

right. So, in because of that one also wall effects near the wall you know that also induces 

dispersion in packed beds. 

Because of these many reasons what happens? We have seeing that you know dispersion 

is very much essential in the case of packed bed if a column is packed with particles rather 

than if you are having only empty column. If there is an empty column dispersion may be 

very small or may be negligible in many of the applications.  

But if the column, part of the column is packed with particles then dispersion is going to 

be very large. And then one cannot avoid the considering it in engineering calculation 

either for the design of the equipment or for tuning of the operational parameters. So, why 

does at; why does it happen in the case of packed beds because of a these many listed 

reasons. 
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So, in general what happens at low flow rates or small Reynolds number molecular 

diffusion dominates in general that we know. And then cell mixing due to the rotational 

motion contributes relatively very little to overall dispersion in general right. So, this 

dispersion also it we have seen like you know because of the molecular diffusion as well 

as the because of you know flow right. 

So, at low Reynolds number molecular diffusion dominates that we understand the 

convection or contribution because of the bulk flow is very less. So obviously, under such 

conditions if you have the flow rates small that is small Reynolds number reason, so 

molecular diffusion would be dominating. And cell mixing due to the rotational motion or 

cell mixing due to the rotational motion contributes very little to the overall dispersion if 

the Reynolds number is small. 

However, if Reynolds number is high mixing in packed bed may be modelled by 

considering it consist of series of mixing cells, how to do that all we do. So that means, at 

high Reynolds number or high flow rates the dispersion is going to be significantly large. 

So, that one has to consider appropriately and then each mixing cell being of same size as 

the packing itself. So, next slide we are going to derive the equation for the dispersion in 

packed bed. So, for that region these assumptions are important. 

So, we are assuming the packed bed is divided into several you know small cells in which 

dispersion or mixing is taking place. And those cells are also having the same shape like a 



column in which we have done the packing to get the packed beds right. So, each mixing 

cell being of same size and then all such cells have been assumed to be like equal size.  

And then finally, irrespective of mechanism dispersion is characterized by the dispersion 

coefficient. So, like you know in the case of diffusion we have diffusivity or diffusion 

coefficients, when we are considering this dispersion then we have a dispersion 

coefficients. 

And then diffusivity does not depend on the flow regime and then you know geometry in 

which the flow is taking place etcetera, it does not depend on that one. But dispersion 

strongly depends on the flow regime and then also depends on the flow geometry in which 

the flow is taking place.  

For example, just said you know if you have an empty column in which fluid is flowing 

so then dispersion coefficients may be very small and negligible, but the same column part 

of the column if you packed with certain kind of materials.  

So, what happens the dispersion significantly increases right so; that means, it depends on 

the flow geometry as well. And then; obviously, definitely it is if it is depending on a flow 

geometry definitely it will be depending on the flow conditions whether the low Reynolds 

number region or high Reynolds number region, that is you know flow of the fluid also 

having the effect on the dispersion. 
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So, in packed bed dispersion is anisotropic except at low velocities, because at low 

velocities usually you know we understand that molecular diffusion dominates. Whatever 

the mixing radial mixing that occurs in the cells that is very small you know because of 

the dispersion or the contribution to the dispersion. The contribution to the dispersion 

because of the radial mixing is very small compared to the molecular diffusion at low 

velocities or small Reynolds number that we know. 

However, dispersion if it is not in the low Reynolds number region or low flow rate 

regions, it is not anisotropic it will be having different values in different directions right. 

So, molecular diffusion we have only one, for a given system diffusivity or diffusion 

coefficient we have only one irrespective of the flow region, flow regime, irrespective of 

the geometry we have only one. 

But here in the case of you know dispersion it depends on the geometry. And then 

especially in the case of packed beds, what happens? You know this dispersion is 

anisotropic especially beyond the low Reynolds number region right. If it is low Reynolds 

number region in general dispersion which is very small. And then molecular diffusion is 

going to dominate. 

So; that means, above the beyond the beyond certain low Reynolds number region, after 

crossing certain low Reynolds number region dispersion is going to be different in 

different direction. That is it is going to be different in radial direction, it is going to 

different in axial direction, if you are taking a cylindrical column for packing of the bed. 

So, that is what it means by it is anisotropic. 

So, that is DL is dispersion coefficient in axial or longitudinal direction and DR is dispersion 

coefficient in radial directions ok. And these are very different from each other especially 

when the Reynolds number is beyond the low Reynolds number region or the flow rate is 

not in the low velocities region, but high velocities region right. So, they are different from 

each other when the velocity is more than the low velocity region are small Reynolds 

number region. 

So, when the Reynolds number region is higher or when you go beyond the streamlines 

region then, what we have? We have this DL DR are very much different from each other. 

Dispersion is considered to be linear in general and then rate of dispersion is proportional 



to the concentration gradient multiplied by the corresponding dispersion coefficient. It is 

defined slightly similar way as we defined molecular diffusion right. 

So, where here dispersion whatever is the rate of dispersion, rate of dispersion whatever is 

there that is proportional to the concentration gradient. Like in molecular diffusion the flux 

says a proportional to the concentration gradient, here also rate of dispersion is 

proportional to the concentration gradient. And the proportionality constant is known as 

the dispersion coefficient. It changes in the different direction, all three direction of the 

geometry it may be having different dispersion coefficients. 

Let us say if you have a cylindrical packed bed then you know dispersion coefficient in 

longitudinal direction and dispersion coefficient in the radial direction are going to be 

different ok. So, unlike in a molecular diffusion coefficient DAB as I already mentioned DL 

DR are strongly dependent on flow regime and bed geometry ok. So, dispersion coefficient 

is as analogous to eddy kinematic viscosity which is not same in all the direction, it varies 

from direction to direction. 
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So, now what we do? We do derivation of differential equation for dispersion. So, very 

first assumption in this case is that whatever the column is there, if the column is 

cylindrical column. Then whatever the packed bed is there that we are dividing into the 

small small cells which is which are also in cylindrical shape. And then all those cells are 

having same size ok. 



So, cells of same shape and size this is one essential important assumption right. Another 

one is that these cells are porous, because our whatever the packed bed is there that is 

having you know that is a one type of porous media and then interstitial spaces are there. 

So, these entire bed is not completely packed some of the volume fraction is void space is 

there. So, because of that one you know we have to take these cells also porous. 

In general, whenever we do the momentum or mass balance for the given geometry we 

take that walls or you know solid no slip walls kind of thing. But now this is packed bed 

which is like a porous media. So, then cells we have to take they are as porous right. So, 

that these two are the important essential assumptions in this derivation.  

Other than these two after having these two and then it is simply what is the rate of you 

know dispersion at the inlet, what is the rate of dispersion at the outlet, what is the net rate 

etcetera those things we have to mathematically represent. And then do you know 

substitution in the overall balance equation. 

So, that is all mathematical procedure right. So, now, this is these two are the very essential 

and then after that we can understand schematically what it what does it mean by exactly. 
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So, differential equation for dispersion in a cylindrical bed of voidage ε should be derived 

now. So, this is the cell that I was mentioning, so we have taken porous packed bed ok or 

packed bed we have taken were interstitial spaces are there. And then the packed bed we 



have made in a cylindrical column by making some kind of packing material. So, that is 

the reason that packed bed whatever is there. 

So, let us say this packed bed. So, now, this packed bed we have divided into several 

cylindrical object cylindrical cells. Because this bed itself is you know made in a kind of 

cylindrical column like this. So, what will happen? So, then we have to have a kind of a 

bed cells also cylindrical type. And then these cells you know they are also having the 

equal size and then same shape like a bed or like a column in which we have done you 

know packing. So, then we have this representation. 
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So, now this is the representation of such cells of same size and shape and then they are 

porous in nature. Shape we have taken cylindrical cell, because there packing we have 

done in a cylindrical column right. The height of this cell is dl, the inner radius of the cell 

is r, and outer radius of cell is r + dr. So, that thickness of the cell we can take as dr the 

material the fluid is entering at v0 velocity at the bottom and then leaving from the top ok. 

The concentration of the material that is entering is C. So, how this C, variations in C are 

occurring because of the dispersion that is what we are going to derive mathematically 

right. So, material balance over annular element of height dl, inner radius r and outer radius 

r + dr should be used now.  



Let C be the concentration of reference material and it is function of; obviously, the space, 

time and then dispersion coefficients right, as well as the voidage ok. So, it is a function 

of axial position l, radial position r that is what mean by it is function of space. And then 

it is function of time as well, in addition to that one it is also function of the dispersion 

coefficients DL and DR ok. 

DL is the dispersion coefficient in the axial direction, DR is the dispersion coefficient in 

the radial direction. We understand that you know if the flow Reynolds, if the flow rate is 

higher, if you are not in the stream line flow region. Then this dispersion coefficients are 

anisotropic, we have more than one dispersion coefficient and then they may be different 

in the different directions, unlike a molecular diffusivity DAB. DAB same irrespective of the 

flow geometry and then flow regime. But here it is not like that ok. 
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So, pictorially we write quantities that are entering here. So, the rate of material that is 

entering at the inlet because of the flow is this one 2πr dr V0 C. 2πr dr is the cross section 

area of the cell through which the material is entering. And then V0 is the velocity at which 

entering, C is the concentration, this is because of the motion bulk motion ok.  

And then it may because the mechanism, two mechanisms are there here also, molecular 

diffusion mechanism or molecular mechanism as well as the bulk motion mechanism that 

we are having. 



So, this is because of the bulk motion because of the molecular mechanism the rate at 

which material is entering is 2πr dr and then ε, because it is a porous. Multiplied by DL
𝜕𝐶

𝜕𝑙
 

actually D𝐿
−𝜕𝐶

𝜕𝑙
 that (−) we have written here right ok. So, DL, why DL? Why not DR, why 

not DR? Why DL here? Because it is an axial direction we are taking, axial direction 

components we are taking that is the region it is DL. 

So, similarly at the outlet what are the corresponding quantities they are leaving because 

of the convection and then because of the bulk motion and because of the diffusion. 

Because of bulk motion this is the component that is 2 π r dr V0 C in C there is a change 

of ∆ C the change in ∆ C we are writing 
𝜕𝐶

𝜕𝑙
D𝐿 ok.  

And then similarly material leaving because of the diffusion is 2 π r dr ε dl is as it is, what 

we have? 
𝜕𝐶

𝜕𝑙
 is as it is it is having the change in C is change in 

𝜕𝐶

𝜕𝑙
 we have to write, that 

change in 
𝜕𝐶

𝜕𝑙
 is nothing, but 

𝜕

𝜕𝑙

𝜕𝐶

𝜕𝑙
𝑑𝑙. 

So, that is 
𝜕2𝐶

𝜕𝑙2 𝑑𝑙 that is the addition the change in concentration at the outlet because of 

the diffusion is 
𝜕2𝐶

𝜕𝑙2
 that is what is this, so that we have written here right. Now this is in 

the axial direction; now in the radial direction there is no convection, whatever the bulk 

flow is there that is there only in the axial direction right. 

So, bulk flow component or the rate of the material entering because of the bulk flow will 

not be there in the case of radial components. Because the bulk flow is there only in the 

axial direction, in the radial direction we have only diffusion or molecular mechanism is 

taking place.  

So, what is the rate at which the material is entering at r is 2 π r dr ε and then because of 

the molecular diffusion 𝑑𝑟
𝜕𝐶

𝜕𝑟
. Why dr here? Because now the now the dispersion we are 

considering in the radial direction. 

And then the change in concentration also in the radial direction that is the region 
𝜕𝐶

𝜕𝑟
 ok. 

So then, what is the rate at which it is leaving at r + dr? It should be 2 π in place of r we 



have to write r + dr and then d r ε dr as it is and then change in 
𝜕𝐶

𝜕𝑟
. Change in 

𝜕𝐶

𝜕𝑟
 is nothing, 

but 
𝜕

𝜕𝑟

𝜕𝐶

𝜕𝑟
𝑑𝑟. 

So, that is 
𝜕2𝐶

𝜕𝑟2
𝑑𝑟. So, that is the component that is the rate of the material that is living at 

r + dr because of the molecular diffusion in the radial direction ok. So, in the pictorially 

we have shown all the components here.  

So, now, all this should be balanced by the total overall accumulation. So, inlet minus 

outlet in the radial direction + inlet minus outlet in the axial direction that you do, then 

whatever the entire all the summation is there of two components that should be equated 

to the overall accumulation ok. So, that is 2 π r dr dl 
𝜕𝐶

𝜕𝑡
 ok. So, then when you do then you 

get the final equation. So, that we are representing here. 
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So, rate of entry of reference material due to flow in axial direction is this one same because 

of the, then corresponding exit of material due to the flow in axial direction is this one that 

we have seen pictorial in the picture. So, net accumulation rate in element due to flow in 

flow in axial direction due to flow only. So, this 1 - 2 if you do this is what you get that is 

what we have written in picture, figure as well. 
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Similarly, rate of diffusion in axial direction across the entry inlet this is what we have 

written. And then corresponding rate of diffusion in axial direction across the exit or outlet 

boundary is this one that is what we have written after simplifying this one we got. 

(Refer Slide Time: 23:53) 

 

Then net accumulation rate due to diffusion in axial direction should be across, that is 

across inlet and outlet boundaries that is equation number 4 and 5 when you do you get 

this equation right. All these pictorially I have shown these quantities we are again writing 

here. 
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So, now diffusion in radial direction at r we have written this one. And then corresponding 

diffusion rate at r + dr the other side of the boundary we have written this one, after 

simplifying we get this equation. 
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So, net accumulation rate due to diffusion from boundaries in radial direction from r to r 

+ dr is equation 8 minus equation 7 that we you do simply you get this equation right. So, 

now dr we are taking very small, so then this term may be cancelled out ok. And then these 

two terms we can combined and write like this term right. 
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Total accumulation rate in the overall cell is (2 π r dr dl) ε 
𝜕𝐶

𝜕𝑡
. Total volume of the cell 

multiplied by ε because whatever the transfer or of the material is taking place because of 

the dispersion that is taking only in the ε void space fraction only. 

So, that the total volume of the cell multiplied by ε and then that multiplied by 
𝜕𝐶

𝜕𝑡
, 

𝜕𝐶

𝜕𝑡
 that 

will give total accumulation rate. So, now, this total accumulation rate should be balanced 

by net accumulation rate due to flow in axial direction + net accumulation rate due to 

diffusion in axial direction + net accumulation rate due to diffusion in radial direction that 

all the quantities we have written in previous slides ok. 



(Refer Slide Time: 25:48) 

 

When you do this material balance (2πrdrdl)ε 
𝜕𝐶

𝜕𝑡
 is this one. This is the net accumulation 

in the axial direction because of the bulk flow and then this is a net accumulation in the 

again axial direction but because of the molecular mechanism. 

And then this is net accumulation in the radial direction because of the molecular 

mechanism. In the radial direction there is no bulk flow; bulk flow is dominating in only 

axial direction.  

So, now, this entire equation you divide by (2πrdrdl) ε then you get simply 
𝜕𝐶

𝜕𝑡
 + 

𝑣0

ε

𝜕𝐶

𝜕𝑙
=

𝐷𝐿
𝜕2𝐶

𝜕𝑙2 +
1

𝑟
𝐷𝑅

𝜕

𝜕𝑟
(𝑟

𝜕𝐶

𝜕𝑟
) this is what you get. And this the, this equation is nothing, but 

change in concentration of reference material in a packed bed because of the dispersion. 

It is similar like you know our species concentration equation that we have derived the for 

a mass transfer part ok. So, but only thing that here the whatever the change in 

concentration are there that because of the dispersion and then bulk motion only we are 

taking here taking into the consideration.  

So, now, here at what velocity you are allowing the material to flow that in general you 

know. You also know what is the ε voidage of a bed that you have made for your real life 

situation, right. 



So, if you wanted to find out the change in concentration with respect to the space n time 

that is C as function of r, l and t then what you should have? You should also have the 

information of DL and DR then only you can use this equation in order to know the change 

in concentration because of the dispersion.  

Otherwise, this equation is as useless as nothing has been done. So, the importance of this 

equation depends on if how effectively you going to measure this DL and DR for your 

system in which you are going to apply this equation ok. 

So, that we see now this is in general done let us say if you wanted to find out you know 

DL dispersion coefficient in the axial direction. So, you take a tracer element and then you 

release in the axial direction only like this without it any shape variations in the radial 

direction.  

Shape variations of this tracer element should not be there in the radial direction, it should 

go in the axial direction such a way that such a way you have to measure this. You have 

to release this tracer element and then measure the change in shape you know along the 

axial direction as well as the change in shape with respect to the time. 
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So, longitudinal dispersion coefficient if you wanted to obtain inject a pulse of tracer into 

the bed in such a way that radial concentration gradient are eliminated, these are the pulse 

of tracer. So, then the concentration gradient in the sense that shape in change in shapes, 



the shapes you know there should not be change in shape in the radial direction, whatever 

the change in shape is there that should be there only in the axial direction.  

That means, only concentration gradient should be there only in the axial direction such a 

way you have to inject. So, then measuring the change in shape of the pulse as it passes 

through the bed you can find out you can measure that one. So; that means, 
𝜕𝐶

𝜕𝑟
= 0 in 

equation 12 previous equation so; that means 
𝜕𝐶

𝜕𝑡
+

𝑣0

ε

𝜕𝐶

𝜕𝑙
= 𝐷𝐿

𝜕2𝐶

𝜕𝑙2 .  

So, C you are measuring that is what measuring the change in shape of the pulse as it 

passes through the bed that; that means, 
𝜕𝐶

𝜕𝑙
 you are measuring. And then you can get the 

𝜕2𝐶

𝜕𝑙2
 as well if you have 

𝜕𝐶

𝜕𝑙
 right. 

So, then similarly 
𝜕𝐶

𝜕𝑡
 also with respect to time you can measure. So, then DL you can find 

out because v0 ε are known ok. So, values of DL can be calculated from change in shape 

of pulse tracer at as it passes between two locations in the bed ok. So, then you can get dl 

by solving this above equation 13 right. 

(Refer Slide Time: 30:29) 

 

So, for gases in general its small Reynolds numbers. Peclet number increases linearly with 

Reynolds number so that Pe = K Re, K is the proportionality constants for the time being 

ok. 



So, usually this is the reality from the experimental results when the Reynolds number is 

very small for gases Pe increases proportionally with Reynolds number. So, this is the 

relation Pe = K Re. So, Pe for the packed bed is nothing, but 
𝑣0𝑑

ε𝐷𝐿
= 𝐾𝑅𝑒 is nothing, but 

𝑣0
𝑑𝜌

μ
. 

So, now right side you divide by DAB and multiply by DAB and then rearrange, so that 𝜌
𝐷𝐴𝐵

μ
 

and then 𝑣0
𝑑

𝐷𝐴𝐵
 you have two terms. This 

μ

ρ𝐷𝐴𝐵
 is nothing, but Schmidt number. So, then 

ρ 
𝐷𝐴𝐵

μ
 we can write Schmidt number inverse right. 

So, from this equation Schmidt number divided by K ε = 
𝐷𝐿

𝐷𝐴𝐵
. So; that means, for gases 

system usually Schmidt number is known because μ, ρ, DAB etcetera are known. From 

experimental results this K is known in general, for any gases system DAB is known or you 

can measure right. So, then from this equation you can find out what is DL especially, for 

gases at small Reynolds number regions right. 

So, 
𝐷𝐿

𝐷𝐴𝐵
 is in general constant which has a value of approximately 0.7. So, Schmidt number 

is approximately constant for gases in general it does not vary much from points you know 

it is within 0.1, 0.5 to 0.7, 0.8 region in that region only.  

And then voidage of randomly packed bed is also usually 0.4 or between 0.4 & 0.5. So; 

obviously, this 
𝐷𝐿

𝐷𝐴𝐵
 from this equation 14 that is also going to be constant. And then for 

most of the gases at low Reynolds number this 
𝐷𝐿

𝐷𝐴𝐵
 is found to be 0.7. 

So; that means, for any gases system if you know 𝐷𝐴𝐵, 𝐷𝐿 you can find out by multiplying 

𝐷𝐴𝐵 by 0.7. And then it is consistent with the assumption, what is the assumption? That its 

small Reynolds number molecular diffusivity dominates compared to the radial mixing 

etcetera or dispersion. So; that means, if 𝐷𝐿 is 0.7 times the 𝐷𝐴𝐵; that means, 𝐷𝐴𝐵is having 

higher contribution compared to the 𝐷𝐿. 
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At high Reynolds number; obviously, in packed beds as we have seen the critical Reynolds 

number for transition from laminar to turbulent flow is in general 5 to 10. So, beyond 10 

it is consider as the high Reynolds number or turbulent flow region in the packed beds. 

So, at high Reynolds number Re greater than to 10, Pe becomes approximately constant 

as per the mania experimental observation especially for the gases. So, from Pe versus Re 

plots for dispersion in packed beds we can have this you know whatever the 
𝑣0𝑑

ε𝐷𝐿
 is 

approximately 2 that Peclet number is approximately 2 at high Reynolds number that is 

constant in general. So, from here we can get DL = 
1

2

𝑣0𝑑

ε
 right. 

So, you do not even need to know the diffusivity if the Reynolds number is high in order 

to know the DL. If in order to know the DL at high Reynolds number high Reynolds number 

region you do not need anything including the diffusivity is also not required. Only thing 

that you need to know what is the velocity at which you are releasing the fluid material, 

what is the voidage and then what is the size of the particle that you have used for the 

packing. 

In the intermediate range of Re people found these two on these two contributions at low 

Reynolds number and then high Reynolds number whatever the contributions are there 

they are additive. And then people have written DL = 8 DAB + 
1

2

𝑣0

ε
𝑑So, this is the 



contribution because of the high Reynolds number, this is the contribution because of the 

low Reynolds number and then intermediate range these two are you know added together. 
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So, similarly radial dispersion coefficients if you wanted to obtain what you have to do? 

You have to do inject you have to inject the steady stream of tracer at the axis and measure 

the radial concentration gradient across the bed. Now, at certain middle portion at the axis 

at the central axis, what you have to do?  

You have to release this same tracer pulse of tracer, but how do you need to release? You 

have to release such a way that the change in shape should be there only in the radial 

direction it should not be there in the axial direction. 

So, that you know 
𝜕𝐶

∂l
 etcetera can be taken 0 and then you can find out what is DR from 

the dispersion coefficient equation that we have derived. So, we know we understand that 

molecular diffusion dominates at low Re. So, ratio of 𝐷𝐿 and 𝐷𝑅 equal to approximately 

0.7 times the molecular diffusivity in general if you combined both, the previous 

expressions we have done only considering 𝐷𝐿. 

Now, you have to considering both 𝐷𝐿 and 𝐷𝑅 it is found that 
𝐷𝐿

𝐷𝑅
 is approximately 0.7 times 

the 𝐷𝐴𝐵 from the experimental results. At high Reynolds number people found this ratio 



𝐷𝐿

𝐷𝑅
 is approximately 5. So, in the case of high Reynolds number region the ratio is constant 

whereas, in the case of low Reynolds number region the ratio is not constant.  

It is some constant multiplied by the diffusivity of the system that is 0.7 DAB right. 

Experimental results for dispersion coefficients in gases show that they can be 

satisfactorily represented as Peclet number expressed as function of Re. 
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But in the liquid case in the case, whatever that whatever previous slides we have seen that 

is for the gases. In the case of liquids usually Schmidt number varies because the viscosity, 

density of the liquids are you know from one liquid to the other liquid variations may be 

large right. For the gases variations in the viscosity and the density values are very small 

from one gas to the other gas. That is the reason usually Schmidt number range for gases 

is very narrow, so then we can take the constant. 

But in the case of liquids this ρ DAB μ etcetera you know they are not they are changing 

by higher magnitude from one liquid to the other liquid. So, because of that one this 

Schmidt number is in general variable and generally about three order of magnitudes 

greater than that for gases.  

For the liquid case when the experimental results are plotted Peclet number versus 

Reynolds number that indicated that its small Reynolds number, small in the sense Re less 

than or equals to order of 10 power minus 2 or 10 power minus 3 such small Reynolds 



number Peclet number does not show any variation, does not show any variation or only 

little variation and it is order of unity.  

Comparison of these results with the corresponding ones for the gases shows that effect of 

molecular diffusion in liquids is insignificant at Re up to order of 10 power minus 2, 10 

power minus 3 or less than Re is equals to 1. 

(Refer Slide Time: 38:23) 

 

Now, finally, before ending this lecture what we do little literature information for 

dispersion in flow of shear thinning liquids through packed beds. So, Wen and Yim 

reported few results on axial dispersion coefficient DL under the following flow conditions 

weekly shear thinning polymer solutions, packed bed with a glass spheres of such and 

diameter and then such diameters, voidage of 0.4 and 0.5. And then experiments they 

conducted in the Reynolds number range 7 to 800 right they are all experimental results 

we are discussing now. 

Because we wanted to see the effect of non-Newtonian fluids in the dispersion in packed 

beds ok. So, in these people they have developed this correlation for the case of Newtonian 

fluids say the voidage diameter of particles used for packing keeping same. They have 

taken Newtonian fluids and then have done the experiments in order to find out the 

dispersion coefficients etcetera. So, they found this correlation is suitable right. 



However, when they change the fluid to weekly shear thinning fluids they found the same 

correlation is still valid, but with Reynolds number defined like ReMR this is similar like 

ReMR or RePL that we have seen previously. And then Peclet number is V0 
𝑑

𝐷𝐿
 they have 

not taken ε in the definition of a Peclet number or Reynolds number. 
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Subsequent experimental work carried out with wider range of n between 0.53 & 1. And 

then, but smaller voidage range and then very small particles of a glass beads, but at 

Reynolds number order of 10-3. So, that the second term in their correlation is negligible, 

so that is what they found right. 

So, in this correlation later on they have done the experiments by taking very small values 

of Reynolds number. If the Reynolds number is small, so Reynolds power 0.48 and then 

that is again multiplied by 0.011. So, if Reynolds number is small, so then; obviously, 

Peclet number is going to be constant for the case of a small Reynolds number case that 

also they have done. 

But under these conditions Peclet number showed weak dependence on the power law 

index. That is Peclet number is decreasing from 0.2 to 0.1 when n is decreasing from 1 to 

0.53 right. Thereby, suggesting greater dispersion in shear thinning fluids ok. 
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So, finally, mass transfer in packed beds Kumar and Upadhyay measured rate of 

dissolution of benzoic acid spheres and cylindrical pellets. So, they have taken benzoic 

acid the particles in two shapes spherical and cylindrical shapes. 

And then they have done the experiments in CMC solution, dissolution or dispersion of 

these pellets in CMC solutions having n = 0.85. And then they have used to plug flow 

model and proposed a correlation for ε correlation for jm factor and then that is given by 

this equation ok. 
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Where Re’ is the modified Reynolds number that is defined as this one. Same like a packed 

bed case yesterday that we have seen where 𝜇𝑒𝑓𝑓 = 𝑚′ {
12𝑉0(1−𝜀)

𝑑𝜀2 }
𝑛−1

. 

This definition is same like yesterday’s class whatever we have studied for the frictional 

pressure drop calculations by Kumar and Upadhyaya. Here k c is mass transfer coefficient 

and Schmidt number is defined as a 
𝜇𝑒𝑓𝑓

𝜌𝐷𝐴𝐵
. Effective viscosity they have taken in order to 

define the Schmidt number that have been used for the jm correlation.  

And the range of condition of their experiments are given here they have taken only one n 

value. And they found that their correlation having within + or − 10 percent of mean error. 
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So, above correlation has subsequently been confirmed independently by Wronski and 

Stoeger and they found that jm factor over predicts at lower Reynolds number regions ok. 

And these people considered most of the data in the literature and proposed the following 

modified correlation for the jm factor which is different from the Kumar and Upadhyaya.  

It offers more improvement over the correlation of Kumar and Upadhyay that we have 

shown in the previous slides especially, in the low Reynolds number region. However, no 

analogous heat transfer results have been found in the literature especially, when you use 

non-Newtonian fluids flowing through packed beds. 
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References the entire lecture is prepared from this book Chhabra and Richardson. 

However, the derivation of the equation that we have done that has been taken from 

Carlson and Richardson book volume II, other useful references are provided here. 

Thank you. 


