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Laminar flow GNFs along Inclined Surface and Concentric Annulus 

 

Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of today’s lecture is Laminar flow of Generalized Newtonian Fluids along Inclined Surface 

and Concentric Annulus.  

So, in the previous lecture also we have taken inclined surface geometry, but however, we 

have taken Ellis model fluid flowing down along inclined surface. So, that problem we 

have solved. And then we have also solved an example problem based on that analysis. 
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So, now what we do? We take the Bingham plastic fluid flowing down along inclined 

surface right. So, the geometry is same like this, so we have an inclined surface and then 

coordinate system we have taken this is y direction this is z direction. And then thickness 

of the fluid whatever is there that is H. So, the fluid is coming down on the surface like 

this. So, the thickness of the fluid is H. Usually these fluids are you know they flow down 

as a very thin layers maybe 3 mm, 4 mm or maximum 5 mm something like that ok. 

And then these applications in general we find such kind of application in polymer 

industries right. So, now the gravities acting this direction, but the surface along with the 



fluid is flowing down that is it the angle β making angle β with the horizontal right. So, 

then obviously, what we have to do since the surface is inclined. 

So, corresponding horizontal and then vertical components for this g we have to find out. 

So, then in the flow direction we have g sin β and then in the normal to the flow direction 

we have g cos β has the components of the gravity, that is fine.  

So, now, next thing is that since it is Bingham plastic fluid obviously, we have a two 

regions of flow possible that we know. So, one is the plastic solid like region and then 

another one is the fluid deformation region. Or the other one is the deformation region, so 

where the material flows down as a fluid because the deformation is taking place.  

In the region where deformation is not taking place that region material flows like a solid 

fluid. That we already know from the basic understanding of the Bingham plastic fluids. 

Why that happens? Because you know if the applied stress whatever is there if it is less 

than characteristic yield stress of the material. So, then the material does not deform it 

flows like a plug right. 

Because this material viscoplastic Bingham plastic material is a viscoplastic it is having 

both plastic and viscous nature. So, the plastic is in general refer for the solid kind of thing 

here as a kind of common terminology right. So, it is having some characteristic that yield 

stress; one of the characteristic is the yield stress. So, that indicates below that stress region 

or the whenever the applied stress is below that one that material will not deform and then 

it flow like a solid plug ok. 

So, that is the one region another one region is the when applied stress is more than this τ 

naught B then material will start deforming and then that material will flow like a viscous 

material, that we know. So, now, what we have to do? In order to find out these two regions 

for this geometry as well we have to find out the point at which this applied stress is 

becoming equal to the yield stress ok.  

So, that is what we have to see. So, now, here the flow is taking place in the you know z 

direction. So, then obviously, vz component is dominating and then that z direction 

velocities varying with respect to y ok. So, that we have to find out. 



And then here only shear stress that is possible is that τyz is possible here rest all other 

component of this stresses are 0 or very small compared to the τyz that we can neglect right. 

So now, basically we have to have a basic information about the shear stress how it is 

varying.  

So, for such kind of geometries we understand that shear stress linearly varies along the 

direction normal to the flow right. That is normal to the flow direction is y direction here. 

So, that shear stress linearly varies in y direction. So, let us say now one point the shear 

stress at one particular point it would be maximum shear stress another particular point it 

may be 0 or very small negligible 0 where the velocity is maximum, those points we have 

to first find out, right.  

 So, we cannot blindly say that you know upper region is the fluid like region or upper 

region is a solid like region we cannot say, from this understanding we only we can have. 

So, how do we get? So, we can get that one, so along on the surface on the solid surface 

you know the material is having zero-velocity. So, then in near to that on the surface and 

near to that region the gradients are going to be very high.  

So, then obviously, the stress is going to be very large and then that high shear stress is 

going to be is known as the wall shear stress that we know right. So, but now here in this 

case the outer surface of the fluid right. So, the bottommost surface of the fluid which is 

attached to the solid surface along with which is flowing. So, at that surface y = 0. So, at 

y = 0 we have the maximum shear stress. 

But the outer outermost layer of the fluid this is the outermost layer of the fluid. So, that 

is having you know exposing expose to the atmosphere or you know maybe there may be 

hot air is blowing etcetera in order to dry this fluid etcetera; those things may be taking 

place. But that is exposed to the open atmosphere. So, then obviously, it will be having the 

free surface. So, the maximum velocity would be there at this layer that is at y = H. At y = 

0 we have τw and then vz = 0. 

So, at y = 0 we have τw maximum shear stress and then vz = 0. Whereas, at y = H we have 

the maximum velocity and then shear stress τyz is 0 that is what we understand. So now, 

between these two point y = 0 to y = H if you draw the shear stress line linearly like this. 

So, it is a 0 value it is maximum value. So, then gradually what happens when you move 



outwards towards the outermost fuel layer fluid layer. So, then the shear stress decreases 

and then it becomes 0 at the outermost layer ok. 

So, there would be some point; there would be some point you know at which applied 

shear stress τ = τ0
𝐵, what is that point that we do not know. So, let us call that is at yp 

distance from the surface; that is at the yp distance from the surface right. So now, towards 

the wall the shear stress distribution is there and then at the wall shear stress is maximum. 

So, then towards the wall what we have? Here we have a velocity distribution for example, 

like this right. 

So, but after crossing when the applied stress is becoming τ naught B and then after that it 

is gradually decreasing as we move towards the outer surface. So, then gradually and then 

what happens? That means, applied stress is less than the yield stress, so then material is 

flowing like a plug.  

So, the slanted area region whatever is shown that is also the fluid that is also a material 

region. So, that region the material is flowing like a solid plug and then whatever this 

remaining unshaded portion is there. So, that portion is the region where the material is 

deforming and then fluid; and then that material is flowing like a fluid viscous fluid right. 

So, then obviously, so this vzy we have to find out in addition to that one we have to find 

out what is this vzp and vz max right. So, how do we find out? In order to find out either vz 

or from there vzp you have to find out what is τyz right, what is τyz that you have to find 

out.  

Once you find out this τyz what will happen you can relate this one to the velocity gradient 

and then from the velocity gradient you can find out the velocity. So, how you can relate 

this one to the velocity gradient or shear rate, that is based on the nature of the fluid. So, 

then for the Bingham plastic fluids we have to take a τyz = τ0
𝐵 ± 𝜇𝐵

𝑑𝑣𝑧

𝑑𝑦
 so, but ± that we 

have to decide.  

So now, as y increasing at y = 0 vz is 0 and then as y increasing gradually velocity is 

increasing at y = yp to y = H it is having the maximum velocity. That means, as y increasing 

the velocity increasing, so then we can have the + 
𝑑𝑣𝑧

𝑑𝑦
 ok. 



So, this is the basic understanding about the flow. So now, what we do? We simplify the 

continuity and momentum equation based on the constraints of the problem constraints of 

this problem right. So, then we can get this relation. So, before solving that or before 

simplifying the continuity or momentum equation we have to list out the constraints of the 

problem, right. 

So, now what we do? We list out the assumptions are the constraints of the problem under 

which we are obtaining this velocity profile and then followed by volumetric flow rate 

etcetera. 

(Refer Slide Time: 11:01) 

 

So, assumptions are the basically we are solving all these problems for steady laminar 

flow, incompressible fluid we are taking. And then temperature variations or the reactions 

mass transfer etcetera we are not taking right. And then in this geometry we have seen only 

vz is existing that is function of y. Whereas, the vx and then vy are negligible or 0 or very 

small compared to the vz that we can neglect them straightforward.  

So, the continuity equation when we simplify it. So, in the Cartesian coordinates we have 

to take the Cartesian coordinates because of the geometry ok. So, now because of the 

steady state this term is 0, vx is 0 vy is 0, vz is not 0 and then vz is function of y only right. 

So, it is not function of z, so that way you can straight forward you can take off.  



Or what we can do? We can take this one as a kind of constraint that we are getting fully 

developed flow. Because from the geometry we do not understand whether the flow is 

fully developed or not. So, such kind of constraints also if you wanted to get you can get 

from that only.  

So, either way it is ok either you can take it as continuity satisfied or you can take this 

equation is given fully developed flow. So, but however, see we have taken v z is function 

of y, so then we can take of this one also.  

So, that is what we can do otherwise we can take these 
𝜕𝑣𝑧

𝜕𝑧
= 0 from the continuity 

equation. So, that you know we can get a one condition that fully developed flow we can 

take without any difficulty. So, we do not know whether we should we; for certain 

geometries it is in general very clear that you can take the fully developed flow, but certain 

geometries it may not be very clear.  

So, that such kind of conditions we may get from the simplification of our continuity 

equation. Sometimes whether the symmetry is existing or not that also we may not clearly 

understand from the flow geometry. So, those kind of conditions also we may get by 

simplifying the continuity equation as well.  

So, continuity equation is having two advantages whether, first advantage is whether the 

flow or the constraint that we have taken that are physically reliable or not other one is that 

from the limited number of constraints if at all other constraints we need to be understand. 

So, those things we can understand by simplifying the continuity equation. 

Like you know whether the flow is symmetry or not, fully developed flow or not if you do 

not understand those things we can see. You can understand by simplification by 

simplifying the continuity equation. 



(Refer Slide Time: 13:43) 

 

So, now x component of momentum equation here steady state this is 0, vx is 0, vy is 0, vz 

is there, but vx is not 0 pressure we do not now. So, just leave it as it is. This component 

of shear stress is not there, this is not there, this is also not there. And then gravity is not 

there in the x direction it is there in the y and z direction, so this is also 0. So, what we 

understand from here? 
𝜕𝑝

𝜕𝑥
= 0; that means, pressure is not function of x then y component 

of equation if you simplify. 

So, steady state this term is 0, vx is 0, vy is 0, vz is not 0, but v y is 0. So, here also left hand 

side altogether all the terms are negligible, pressure we do not know. So, this component 

of shear stress is not existing, this is not existing, this is existing. But what we understand 

that from the fully developed flow condition 
𝜕𝑣𝑧

𝜕𝑧
 is 0 that is that we got from the continuity 

equation or we understand that vz is function of y only. So, then obviously, the shear stress 

is also going to be function of y. 

So, by applying either of the constraints or either of the conditions what we can say this is 

0 
𝜕

𝜕𝑧
 of any flow variable is 0. Gravity is there in the y direction, so then what we understand 

here? 
𝜕𝑝

𝜕𝑦
= 𝜌𝑔𝑦 and then 𝜌𝑔𝑦 is nothing but ρ g cos β right. 

Then z component of equation of motion, so vz is existing. So, by steady state this term is 

0, vx is not there, vy is not there, vz is there, but 
𝜕𝑣𝑧

𝜕𝑧
= 0 from the continuity equation that 



we understand, right. So, the pressure cannot be there in the z direction and the flow 

duration because the flow is taking place because of the gravity, so this is not there. So, 

this component of shear stress is not there, this component of shear stress is there and then 

it is function of y; whereas, this component of shear stress is not there. 

Then gz gravity is there in the z direction. So, then what we understand from here? 
𝜕𝜏𝑦𝑧

𝜕𝑦
=

𝜌𝑔𝑧that is −𝜌𝑔 sin β. 
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So, now this equation if you solve then you can get an expression for the shear stress as 

−𝜌𝑔 sin β y + C1 on integration this is what you get, right. Now shear stress final 

expression you can get a few get these constants C1. So, what we have? We have two 

boundary conditions at y = 0 then we have a this so called τ = τw. But at y = H we have so 

called τyz is nothing but 0, because the outermost layer which is at y = H that is exposed to 

the atmosphere ok. 

So, that layer of the fluid is having the maximum velocity. So now, that if you apply here 

then you get C1 constant as ρ g sin β H now if you substitute this C1 in the above equation 

here then you get τyz = ρ g H - y sin β. So, till this point we have not applied any constraints 

of the fluid rheology.  

So, till this point it is same as whatever we have seen in the previous problem Ellis fluid 

flowing along the inclined surface. So, till this point it is this problem also same. So now, 



from this point onwards the fluid rheology will come into the picture, for Bingham plastic 

fluids we have τyz = τ0
𝐵 + 𝜇𝐵

𝑑𝑣𝑧

𝑑𝑦
. 

So, from here what we do? We write in place of τyz (𝐻 − 𝑦) ρ g sin β. Then in the next 

step what we do? We keep this the 
𝑑𝑣𝑧

𝑑𝑦
 term one side and then that whatever minus; 

whatever τ0
𝐵 is there that we take to the other side. So, then minus τ0

𝐵. Then both sides you 

know we divide by 𝜇𝐵, so then we have 
𝑑𝑣𝑧

𝑑𝑦
=

ρg

𝜇𝐵
(𝐻 − 𝑦)sin β −

τ0
𝐵

𝜇𝐵
.  

Now if you integrate this equation what will happen? You will get a expression for the vz. 

So, that 
ρgsin β

𝜇𝐵
(𝐻𝑦 −

𝑦2

2
) −

τ0
𝐵𝑦

𝜇𝐵
+ 𝐶 this is what you are having. 

So, now at y = 0 that is the surface of the inclined surface the top layer of the inclined 

surface on which the first layer of the fluid is having zero-velocity because of the no slip 

condition. So, if you substitute y = 0 in this equation vz would be 0 and then you can get 

this constant C as well as 0 right. Because all the terms are being multiplied by y, so then 

you get this C constant as 0.  

So, then finally, you get vz = 
ρgsin β

𝜇𝐵
(𝐻𝑦 −

𝑦2

2
)

τ0
𝐵𝑦

𝜇𝐵
. And then this is valid between 0 to yp 

region only deforming region; it is valid for the deforming region only ok.  

So now, in this equation if you substitute y = yp then what you can have? You can have a; 

you can have a maximum plug velocity because it is valid up to yp. From yp to h it is not 

valid. Some yp to h we have a constant velocity in that constant velocity you can substitute 

we can get by this velocity expression by substituting y = yp. Because it is valid up to the 

yp point and then from yp point or not it is having constant plug velocity like a solid 

material. So that we do know. 
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So, that vzp you can get by substituting y = yp in vz expression that just we got. So, in the 

vz here in place of y we have written yp, here also in place of y2 we have written 𝑦𝑝
2, here 

also here also in place of y we have written yp and then vz is nothing vzp right. So, now, vzp 

= 
ρgsin β

𝜇𝐵
.  

From both the terms first from this term what we do? We take out H2 common, so that we 

have [
𝑦𝑝

𝐻
] −

1

2
[

𝑦𝑝

𝐻
]

2

. And then from this term what we are doing? We are dividing and 

multiplying by H, so that we have 
τ0

𝐵𝐻

𝜇𝐵
(

𝑦𝑝

𝐻
). Why are we writing this in terms of 

𝑦𝑝

𝐻
? 

Because this 
𝑦𝑝

𝐻
is related to the shear stress and then yield stress or the ratio between yield 

stress and then shear stress that applied wall shear stress ok.  

So, then that we are writing in terms of ϕ. Is it directly equal to ϕ, like in previous problems 

we have seen or is it 1 − 𝜙 or 𝜙 − 1; that we have to see. So, how do we know? For that 

we have to do 
τ0

𝐵

τ𝑤
 we have to do, because 

τ0
𝐵

τ𝑤
 is nothing but ϕ. And then τ0

𝐵 is nothing but ρ 

g sin β (𝐻 − 𝑦)in place of y we have to write yp. 

Because at y = yp applied shear stress is becoming equal to the yield stress that is the point 

which is separating the fluid; which is separating the flow region into two regions 

deforming region and non deforming region right. And then wall shear stress in this case 



we are having at y = 0; our coordinate system is like that. So, then y = 0 if you substitute 

here you get wall shear stress. 

So, now from here  1 −
𝑦𝑝

𝐻
 you are getting as ϕ; that means, wherever 

𝑦𝑝

𝐻
 is there we can 

write 1 − 𝜙 when you write it. So, here 1 − 𝜙, (1 − 𝜙 )2 1 − 𝜙; this is what we are 

having. And this is valid for plug like solid plug like region which is flowing you know 

from 𝑦𝑝 to H region as a solid plug material ok. 
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Now, volumetric flow rate we can get by integrating this vz multiplied by w; dy w is 

nothing but the width of the fluid or the width of the fluid that is extended in the x direction. 

So, 𝑄 = ∫ 𝑣𝑧𝑤𝑑𝑦
𝐻

0
 and then now this vz is having two components vz as function of y to 

yp point; 0 to yp point and then vzp from yp to H point.  

So, that is the region this integration we separated out in the two parts. So, now, vz is this 

one ρ g μ; 
ρgsin β

𝜇𝐵
 multiplied by this 1 −

τ0
𝐵

𝜇𝐵
 multiplied by y is this one. So now, this only 

the parts which are having y component that are kept into the integration and then 

remaining constant we have taken outside of the integration. 

Whereas the vzp is constant value, so this is all the constant vzp. So, its expression is 

lengthy, but it is one constant value it is not varying in the y direction ok, it is one fixed 

value and then integration w dy, right. So, when you do the integration for this part you 



get 
𝑦2

2
 here 

𝑦3

6
 you get, because divided by 2 is there. And then here you get simply 

𝑦2

2
; and 

then here what do you get? All these all these multiplied by simply y and then in for this 

case limits yp to H. 

So, other than integration what we have done? We have done in place of τ0
𝐵 we have 

written ρ g (𝐻 − 𝑦𝑝) sin β also we have written ok. So, that what we can do? 
ρgwsin β

𝜇𝐵
 we 

can take common from all the terms right. So, when we do 
ρgwsin β

𝜇𝐵
 you take common and 

then you substitute the limits.  

When you substitute the limits this is what you get; from the first term and then from the 

second term you get or that or from the vz point you get 
ρgwsin β

𝜇𝐵
 and then H2 we are taking 

common. So, because all these terms are having H2 terms are there right, it is already there 

H square term, so that is we are taking common. 

So, the same step we have rewritten here once again, next step what we are doing? We are 

taking 
ρgwsin β

𝜇𝐵
 common from both the terms earlier we have written for the two terms 

separately. And then from the both the terms we are also taking H3 as common so that 

within the parentheses we get these terms right.  

Because here what happens? This is −
𝐻𝑦𝑝

2

2
 this is +

𝐻𝑦𝑝
2

2
 is cancelled out. So, only two 

terms are there 
𝑦𝑝

3

2
 and then this −

𝑦𝑝
3

6
. So, that comes out 

1

3
𝑦𝑝

3 and then we are dividing 

by H. So, 
1

3
[

𝑦𝑝

𝐻
]

3

 we are getting from this point.  

And then at this point what happens? It is already H2 is there and this H is there. So, that 

we are multiplying as H3, so there is no problem. So, whatever this parenthesis term is 

there that is a constant, so as it is right ok.  

And then whatever 1 −
𝑦𝑝

𝐻
 is there, so that we are writing as a ϕ, we are writing as ϕ. And 

then that ϕ is being multiplied by this 1 − 𝜙 that 𝜙 term is being multiplied by all these 

three terms. So, that is the region here we have extra ϕ, here also we have extra ϕ, here 

also we have in place ϕ we are getting ϕ2 right. So, this is all simplification step, so that 



you know what we do now? We combine these two terms underline terms so that we have 

1 − 𝜙 multiplied by 𝜙 − 𝜙2, right. 

Next step what we do from this 𝜙 − 𝜙2 if you take ϕ common, so you have 1 − 𝜙. So, ϕ 

multiplied by (1 − 𝜙 )2 you get from these two steps whereas, the remaining steps we are 

keeping as it is. So, now, we have a ϕ multiplied by (1 − 𝜙 )2 and then −
𝜙

2
 multiplied by 

(1 − 𝜙 )2. So, then you get +
1

2
𝜙 multiplied by (1 − 𝜙 )2. So, that is your; that is nothing 

but this value right.  

So, the final expression for the volumetric flow rate for the case of Bingham plastic fluid 

flowing down an inclined surface making β angle with the horizontal axis. So, then the 

volumetric flow rate you can have this expression, right. 
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So, now we take another geometry; the another geometry that we are taking is concentric 

annulus ok; laminar flow of power law liquids in concentric annulus. So, this is the 

geometry, what we have? We have two cylinders, so one cylinder outer cylinder is having 

the radius R, another inner cylinder having the radius σ R right. So, these between these 

two cylinder there is a gap, annulus gap is there within that annulus gap what happened, 

the fluid is flowing the fluid is flowing. 

Now, what we say? We cannot say that the velocity profile is going to be like a you know 

parabolic or linear directly from here, why? Because now there are two walls right. So, 



earlier what we have taken whether it is pipe flow or you know inclined surface or between 

infinite parallel plates there is a central axis which we are taking as a y = 0 and then that 

central axis is not the solid wall solid. 

Now, here you know the flow is taking place between two solid walls right. So, then at 

this solid wall let us say you have the shear stress τ𝑤𝑖
 we cannot say its 0 right, and then 

at this surface you have τ𝑤0
 let us say. So, in the previous problems till now whatever we 

have studied? We have seen only one wall shear stress cases whichever is the geometry 

we have taken.  

Now here there are two wall shear stresses are there between that two we are taking, we 

are having the fluid flowing down flowing. Because between these two walls the fluid is 

flowing and then two walls are having two different wall shear stresses right. So, we cannot 

say one is 0 another one is maximum. So, then between these two y values the material is 

you know are the shear stresses you know having linear profile that we cannot say now 

right.  

So, now, that is a one problem another problem is that the velocity also, now the velocity 

distribution if you wanted to have for this case let us say. So, how do you have? Like you 

know let us say it is a 0 velocity here, it is a 0 velocity here, can we say like this parabolic 

will be there or can we say you know like this or can we say the flattened flow like this, 

we do not know we cannot so; we are not sure. Why? Because either of these I mean 

whatever it is parabolic or anything we know the location of the maximum velocity in 

general for the previous geometries. But in this geometry we do not know at which location 

the maximum velocity is existing. 

So, that is the problem; that is the difference compared to the other geometries that we 

have taken whether pipe flow or the concentric or parallel plates whatever we have taken. 

So, compared to those geometries here the problem is we do not know at which location 

we are having the maximum velocity, because that also is required. If you know that 

region, so that region you can take that is or that point you can take it as the point at which 

the shear stress is 0 and then accordingly you can do some analysis. 

So, now here what happened? So, we are assuming λ R is the position from the central 

axis. So, because this the radial direction we are taking vertically and then z direction we 



are taking horizontal right. So, at certain value of R = λ R, what happens? The velocity is 

having maximum velocity that is the point that point we do not know, we are assuming let 

us say at R = λ R maximum velocity is existing. 

So, now here this τ𝑤𝑖
 and then τ𝑤0

they are wall shear stress and they are not equal to each 

other, they are not equal to each other they are different from each other. So obviously, it 

is not going to be existing at the middle point, if they are equal to each other then we can 

say somehow it may be at the middle point between these two regions. So, τ𝑤𝑖
 is very 

much different from the τ𝑤0
 right. 

So, now what happens? The velocity profile here towards the wall maybe you may be 

having like this right, and then towards the outer wall you may be having like this. So, this 

part let us say v𝑧0
this part let us say v𝑧𝑖

, so that is possible right.  

So, symmetry between the within the annulus region symmetry is not possible that is what 

I mean to say, because we do not have a maximum velocity location at the center, we 

cannot say that one. Because the two points or the two regions two walls between which 

the flow is taking place those two walls the shear stress are different shear stress wall it is 

having right.  

So now, how to find out that velocity? So, we first if you want to find out the velocity this 

you have to find out, this vz v𝑧0
 both of them you have to find out. And then before that 

what is this λ R that location also you have to find out. If you do not know that location 

there is no you know proper solution for the reliable solution you cannot get it ok right. 

So, that is what we are going to do.  

We are going to follow the same approach that we have been following, but the constraints 

are slightly different here slightly complicated. So, within these constraints we are going 

to; we are going to solve the problem right. So, this whatever v𝑧𝑖
 v𝑧0  that I have shown that 

is a just for a understanding only I have shown, it is not that this kind of profile we are 

getting; we may get something like this also. 

May be possible that depends on the values of τ𝑤𝑖
τ𝑤0  in and all that. So, what is that we 

do not know. But however, since we are taking the laminar flow so such complicated flows 

flow geometries, flow distributions may not be there right. So, now what we do? We write 



the constraints of the problem right then simplify the continuity and then momentum 

equation, so that we have some expression for the shear stress. And then we applied either 

of the constraints τ𝑤𝑖
τ𝑤0  in order to find out the λ R and all that we are going to do here.  

Remember, what are the known? R is known, σR is known here and then ∆P is known 

through which because of which the flow is taking place through this annulus. Only three 

things we know we do not know what is τ𝑤0
 we cannot calculate, τ𝑤𝑖

 also we do not know. 

What is this λ R also we do not know. We take a generalized case that these are τ𝑤𝑖
τ𝑤0

 

are very different from each other, so that we can have a generalized solution. If you take 

both of them are equal, so then you can take you can get the solution for only one case of 

λ R which is maybe between these two values of R and σ R right.  

So, if you take a different values of τ𝑤𝑖
 τ𝑤0

, so then you can solve a generalized solution; 

we can obtain a generalized solution which may be valued for any λ R value ok. 
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So, applications first we see for this geometry where we in general have such kind of a 

geometries.  

One major application we see in oil well drilling mud circulated through the annulus space 

around the drill pipe in general. Then extrusion of plastic, pipes and tubes in polymeric 

industries. And then flow in double pipe heat exchangers in general that is true. Any of the 



chemical processing industries we find double pipe heat exchangers, there also we have 

the flow through annulus geometry.  

So, then assumptions steady state, laminar, incompressible flow standard assumptions we 

are having. And then only vz is existing and it is function of r, here also no gravity effect. 

Remember that annulus space whatever we said that is cylindrical annulus ok. So 

obviously, continuity and then momentum equations we have to solve in cylindrical 

coordinates. 
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So, continuity equation if you have in cylindrical coordinates that is this one right. So, 

steady state this term is 0, vr is not existing, v θ is not existing, vz is existing and it is 

function of r only that way also this term is canceled out. But however, we can understand 

this one other way 
𝜕𝑣𝑧

𝜕𝑧
= 0, because if 

𝜕𝑣𝑧

𝜕𝑧
 is existing, so then we can say fully developed 

flow conditions are existing. 

If we have these conditions this may be; if you have this condition this may be useful for 

solving the momentum equation subsequently, so that way we can take it ok. So, r 

component of momentum equation in is given here. So, steady state term this is 0, vr is not 

existing, vθ is not existing, vθ is not existing, vr is not existing.  

So, left hand side all terms, altogether all the terms are 0. Right hand side pressure we do 

not know anything, so only τrz shear stress component is existing other shear stress 



components are not existing. So, this is 0, this is 0, this is 0, τrz is there. But because of the, 

so this term is 0 because of a fully developed flow which we understand by simplifying 

the continuity equation. 

Because from the flow geometry we do not understand whether the flow is really fully 

developed or not, so that we understand here. So, if you have the fully developed flow 
𝜕𝑟

𝜕𝑧
 

any derivative in the flow direction of any flow property is 0 only for the vector. So, that 

is this entire term is 0. Since, horizontal concentric cylinders are there, so then there is no 

gravity term.  

So, what we understand? 
𝜕𝑝

𝜕𝑟
= 0; that means, pressure is not function of r that is what we 

understand from simplification of r component of equation of motion. So, then θ 

component of equation of motion if you right here this is what it.  

So now, here steady state. So, this term is 0, vr is not there, vθ is not there, vr vθ both are 

not existing, vθ is not existing. So, again left hand side all terms altogether are 0, pressure 

we do not know anything in general. So, next is this component of shear stress is not 

existing, this is also not existing, this is also not existing, these two identically equal, so 

they for laminar flow. So, that way also 0 otherwise, individually also these two stress 

components are not existing for this term, for this geometry ok. 

Gravity is not there because of the horizontal geometry. And then, what we understand 

now here? 
𝜕𝑝

𝜕θ
= 0. That means, here in this case also the pressure is not function of θ. So, 

what we understand? Pressure is not function of both r and θ it is function of z only as we 

seen from the schematic also. 
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So, z component of momentum equation written here. So, because of the steady state this 

term is 0, vr is 0, vθ is 0, vz is existing but vz is function of r only and then from the 

continuity equation we understand 
𝜕𝑣𝑧

𝜕𝑧
 is 0 right. Pressure we do not know, so let us keep 

it as it is. 

τrz component of shear stress is existing and it is function of r. So, then we cannot cancel 

out this one τθz is 0, τzz is also 0 and then there is no gravity because of horizontal geometry. 

So, only two terms are remaining in the right hand side. So, that we can write 
𝜕𝑝

𝜕𝑧
=

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧). 

So, now here if you wanted to solve this equation you have to understand the dependency 

independent dependent variable. So now, left hand side terms it is function of z only it is 

not function of r whereas, the right hand side term it is function of r only it is not function 

of z. So, then what we can say? We can individually integrate to some constants right, so 

that it will be is we can integrate them right. 

So, now taking only LHS that is 
𝜕𝑝

𝜕𝑧
= 𝑐1 constant 𝑐1. So, then we get p = 𝑐1 z + 𝑐2 at z = 0 

let us say pressure is p0 then 𝑐2 is p0. At z = L that is the length of the cylinder if the pressure 

is pL then substitute this one here and then apply c2 = p0. And then simplify you get 𝑐1 =

𝑝𝐿−𝑝0

𝐿
 𝑜𝑟 (

−∆𝑝

𝐿
) you can write. 



So, pressure distribution you get this one by substituting c1 c2 in this equation. And then 

𝜕𝑝

𝜕𝑧
 that is 𝑐1 you get it at (

−∆𝑝

𝐿
) which is nothing but ∆𝑝 is nothing but 𝑝0 − 𝑝𝐿. So, (

−∆𝑝

𝐿
)  

that is what we are having.  

So, now this you this you can make use in equation number 3 by taking RHS side term 

= (
−∆𝑝

𝐿
) right. So that you do know here. 
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So, RHS =
𝜕𝑝

𝜕𝑧
 which is nothing but 𝑐1 and then that is nothing but (

−∆𝑝

𝐿
). So, now you take 

this r on the left hand side to the other side and then integrate then you get 𝑟𝜏𝑟𝑧 =

(
−∆𝑝

𝐿
)

𝑟2

2
+ 𝑐3. Then whatever the another r is there in the left hand side that also if you 

bring it to the right hand side you will get 𝑟𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑟2

2
+

𝑐3

𝑟
 right.  

Now this c3 we have find out we have to find out c3 by applying the boundary condition 

for the shear stress. Shear stress is having some wall shear stress at r = σ R that is inner 

wall. And then it is having some other wall shear stress value at r = R that is outer wall.  

So, we cannot use those two boundary conditions. But we are having maximum velocity 

at certain location r = λ R that we are assuming; we are assuming we do not know the 

location, but later on we find it out ok. So, at r = λ R we are having you know maximum 

velocity. So, that at that point at r = λ R τrz is going to be 0.  



So, in this equation if you substitute r = λ R then τrz would be 0. Because at r = λ R is the 

location at which we are assuming the velocity is maximum we do not know we are going 

to find out anyway right. So, now this now you simplify you get this equation c3 like. This 

c3 you substitute here and then rearrange the terms. So, that you get 𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑅

2
{𝜉 −

𝜆2

𝜉
}. 

Where ξ is nothing but 
𝑟

𝑅
, 

𝑟

𝑅
 we are writing as ξ right.  

Now we have this τrz expression right, τrz expression; now in this expression if you 

substitute r = σ R then you will get τrz at inner wall that is τ𝑤𝑖
. And then if you substitute 

r = R then you get τrz at outer wall which is nothing but τ𝑤0
.  

Both of them are having certain values they are not equals to each other. They may be 

equal to each other for given pressure drop and all that, right. So, but they are you know 

mostly not equal to each other in most of the cases that is the reason we are solving this 

problem right.  

So, now that is what about the shear stress, now we are having the equation for the shear 

stress. So, our next step is that we have to obtain the velocity profile by having the equation 

for shear stress as per the rheology of the fluid. So, we are taking power law fluid. 
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So, as per the geometry what we have? From r = σ R to r = λ R the velocity gradient you 

know it is a positive. Because at r = σ R we are having vz = 0, at r = λ R vz = vz max right. 



Because of the you know this is the no slip condition this is the location at which maximum 

velocity is there.  

So, as r is increasing from σ R to λ R velocity is increasing. So, towards the inner wall 

whatever the velocity profile is there. So, that is having the positive gradients; that is 

having the positive gradients. So, then you know that we have to take right, but at r = R 

what happens? You know again vz is 0. 

So, now this because at the upper wall outer wall again because of the no slip it is a; it is 

0. So, from 0 to some maximum velocity it is increasing with y, but after that maximum 

velocity is again decreasing as y increasing right. So, then the velocity gradient is changing 

its say at r = λ R that is location and the v at which vz is maximum right. 

So, this is required to understand, because now though it is one power law fluids within 

single one power law fluid the flow is having two regions, two different velocity profiles 

are possible. Now in this case because of the two different wall shear stress values are 

having ok. So, that individually we have to solve or we have to solve them simultaneously 

so that this condition is maintained at which the velocity gradient is changing the sign that 

has to be maintained. 

So, the solving of the equation to get the velocity distribution should be such way that both 

the velocity distribution towards the inner wall and towards the outer wall they should be 

satisfied or should become equal to each other at r = λ R and then that value should be 

maximum. So, for the power law fluids we have taking, so τrz =−𝑚
𝑑𝑣𝑧

𝑑𝑟
|

𝑑𝑣𝑧

𝑑𝑟
|

𝑛−1

. 

So, velocity gradient is positive in this region σ R to λ R region and then negative λ R to 

R region. So, in terms of a ξ if you write these are the two regions. So, first what we do? 

Now vzi we are calling it towards the inner wall whatever the velocity that is σ R to λ R 

region. And then 𝑣𝑧0
 we are calling the outer wall towards the outer value; towards the 

outer wall that is r = λ R to r = R right. 

So, now for the case of 𝑣𝑧𝑖
, so velocity gradient is positive. So, then we can have minus 

this modulus we can remove directly as it is. So, then we have (−
𝑑𝑣𝑧

𝑑𝑟
)

𝑛

 and then that is 



equals to nothing but (
−∆𝑝

𝐿
)

𝑟

2
{𝜉 −

𝜆2

𝜉
} from the shear stress expression. This is what shear 

stress we got from equation number 4; equation number 4 this is what we have right. 

So, now what we do this m before taking m to the other side, so this minus we take to the 

other side, so that this term we can write the when you take this minus to the other side 

this term we can write 
𝜆2

𝜉
− 𝜉. And then after that this m also we take to the right hand side 

and then this n also we have to we will take to the right hand side. So, that we have 

(
−∆𝑝

𝐿

𝑅

2𝑚
)

1/𝑛

∫ (
𝜆2

𝑥
− 𝑥)

1/𝑛

𝑑𝑥
𝜉(=𝜆)

𝜎
 this is 𝑣𝑧𝑖

.  

We are not solving it we are writing where x is the dummy variable similar to ξ here right 

and then this is valid for this region only; ξ = σ to λ right. 
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Now, similarly for the outer region 𝑣𝑧0 is nothing but + (
𝑑𝑣𝑧

𝑑𝑟
)

𝑛

. And then that should be 

equals to the τrz that is nothing but (
−∆𝑝

𝐿
)

𝑅

2
{𝜉 −

𝜆2

𝜉
}. So, now, this m you take to the right 

hand side and then this n also you take to the right hand side. So, then right hand side term 

all the terms should be getting whole power 1/n.  

Then if you integrate 𝑣𝑧0  you get R (
−∆𝑝

𝐿

𝑅

2𝑚
)

1/𝑛

 ∫ (𝑥 −
𝜆2

𝑥
)

1/𝑛

𝑑𝑥
1

𝜉(=𝜆)
. So, x is a dummy 

variable and this is now valid between ξ = λ to 1 right. 



So, now the solution of this; why we are not doing the complete integration? Because we 

have to understand or we have to find out what is this λ; λ we do not know right. And then 

at λ this both the two values at ξ = λ both 𝑣𝑧𝑖 and then 𝑣𝑧0 or 𝑣𝑧0  = each other right. Then 

we have this expression.  

So, now, this condition has to be maintained such a way that you know for a given λ value; 

for a given λ value this condition has to be maintained. Then only that whatever the λ value 

is there that correct that is correct, otherwise it is not correct. 

Or this integration we have to solve simultaneously, so that you get that λ value which is 

analytically not possible to do. So, numerically one has to do. That is the region we have 

not done the integration also. In addition to this region that 𝑣𝑧𝑖 = 𝑣𝑧0  should be maintain 

at ξ = λ. So, that is the region. Another region that we cannot integrate this one analytically. 

So, we have to do the numerical integration for this. 
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So, now volumetric flow rate then 𝑄 = 2𝜋 ∫ 𝑟𝑣𝑧𝑑𝑟
𝑅

𝜎𝑅
 it is not 0 to R because 0 to R = 0 to 

σ R is an inner wall inner cylinder. So, where there is no flow, so that is the region σ R to 

R is the limiting condition.  

So, the in terms of ξ if you write it would be σ to 1 integral integration limits should be σ 

to 1 because we have ξ = R/R. So, in places r we can write R ξ in place of a dr we can 

write R d ξ. So, when we write here this one you get it right.  



So, now 2𝜋𝑅2 then multiplied by 𝑅 (
−∆𝑝

𝐿

𝑅

2𝑚
)

1/𝑛

. So, 𝑅2 R multiplied, so 𝑅3 we are getting. 

And then ∫ 𝑣𝑧𝑖
𝑑ξ 

λ ξ

𝜎
+ ∫ ξ𝑣𝑧0

𝑑ξ  
 1

λ
. This is what we have, right.  

Since 𝑣𝑧𝑖 𝑣𝑧0  are not known, so we cannot integrate this one as well, we have to depend 

on the numerical integration. So, analytical solution however, are possible if 1/n values are 

you know you know integers like 1, 2, 3, 4 etcetera. 
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So, for that reason people have solved numerically, so some of them we will see. Fredric 

and Bird evaluated that integral previous equation for such values of 1 by n like 1, 2, 3, 4. 

And then they have interpolated for the other values of n; other values of 1/n so that wide 

spectrum of n values can be covered. 

Then they presented a chart relating non-dimensional flow rate pressure drop and n value. 

But accuracy of their results deteriorate rapidly with decreasing values of n and or the gap 

annular region is becoming narrow either of the case the accuracy is less compare to the 

experimental results. 
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So that, and then Hanks and Larson evaluated volumetric flow rate analytically and is 

given by this expression, we are not going to derive this equation. So, this is the 

analytically the Hanks and Larson have obtained volumetric flow rate for this geometry, 

for the power law fluids right. 

But however, in this case also λ is known not known. So, that λ as function of σ and n they 

obtained that they obtained by numerically. So, it is not completely analytical, so some 

part is done by numerical part. So, numerically they obtained you know λ values by taking 

𝑣𝑧𝑖 = 𝑣𝑧0 or by maintaining 𝑣𝑧𝑖 = 𝑣𝑧0 conditions for different n and σ values.  

For different n and σ values they have maintained 𝑣𝑧𝑖 = 𝑣𝑧0  are you know by maintaining 

that one they found the λ values right. 
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So, that λ values are tabulated here right. For different n values and then different σ values 

given here you know the corresponding λ values are given here right. Let us say if n = 0.5 

and then σ is also 0.5. So, the λ value is 0.7283 right. 

So, now this is the laminar flow through concentric annulus right. So, if you have 

complicated geometry, so then analytical solution completely is not possible we have to 

depends to some extent on numerical integrations etcetera, for example this problem.  

So, now, before winding up today’s class what we are going to do? We are going to take 

an example problem. 



(Refer Slide Time: 54:53) 

 

So, a polymer solution exhibits power-law behavior with n = 0.5 m is equals to 3.2 pascal 

second power n. The estimate we have to estimate the pressure gradient required to 

maintain steady flow of 0.3 meter cube per minute, so Q expression is given. So, the 

annulus between 10 mm and 20 mm diameter tubes, so this is σ R this is R ok 
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So, now we see the solution diameter of the outer wall or outer tube is given that is 20 mm, 

so its radius would be 10 mm, so that is 0.01 meters. Similarly diameter of inner tube is 

given as 10 mm, so its radius would be a 5 mm. So, σ R would be 0.005 m because diameter 



of inner tube is given as 10 mm. So, its radius would be 5 mm in terms of meter it is 5 into 

10-3 meters. 

So, now if you do σ R/R you will get the σ value that is 0.005 by 0.1 is nothing but 0.5 

right. And then n is given 0.5 now σ we got 0.5, so both we got 0.5 0.5. So, from the tables 

that has been given by Hanks and Larson that is for different σ values and n values λ 

corresponding λ values are given. So, that λ if n is 0.5 and then σ is 0.5 from that table λ 

is 0.7283. Just previous couple of slides before we have that table right. 

Then their volumetric flow rate expression is given by this. In this equation now everything 

is known including the λ except the (
−∆𝑝

𝐿
). So, that you can find out by substituting, Q is 

also given as a 0.3 meter cube per minute. So, divided by 60 we have, so that we have 

meter cube per second. 

So, right hand side you substitute all the values for R, n, m etcetera, λ etcetera, σ etcetera 

then only thing unknown is (
−∆𝑝

𝐿
). So, that you get 169 kilo pascal per minute; upon the 

simplification you can get this values ok. 
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So, the references: The entire lecture is prepared from this reference book by Chhabra and 

Richardson, other references are provided here. 

Thank you. 


