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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of today’s lecture is Laminar Flow of Generalized Newtonian Fluids between Parallel 

Plates and along Inclined Surfaces. 

Till now what we have seen? We have seen only pipe geometry for the circular pipe 

geometry; infinitely long circular pipe geometry when L/D is very large and then laminar 

flow conditions are existing; how to obtain the volumetric flow rate, how to obtain the 

velocity profile, average velocity, maximum velocity, volumetric flow rate, friction factor 

etcetera those things we have seen for the laminar flow conditions. 

When the geometry is pipe or circular cylinder, then we have also seen for the same 

circular cylinder or pipe geometry if the flow is under the transition or you know turbulent 

flow conditions; how to get the velocity profiles, how to obtain the friction factors.  

If it is possible to obtain analytically how to get them, if not what are the correlations or 

empirical correlations existing for these friction factors etcetera. Those things we have 

seen even for the transition and turbulent flow conditions, but when the geometry is the 

pipe geometry. So now, what we do? This and then next couple of lectures we will be 

taking different geometries, other than the pipe geometries. Let us say in today’s lecture 

we are going to take two geometries; one is the parallel plates.  

If a fluid is confined between two infinitely long parallel plates, then if the flow is under 

laminar conditions how we can obtain the velocity profile for a given generalized 

Newtonian fluid. Generalized Newtonian fluid in the sense, any time independent non-

Newtonian fluids which can reduce to the Newtonian behavior under certain limiting 

conditions. That we know. 

So, that is Power-law fluids, Bingham fluids, etcetera, or visco-plastic fluids generalized 

one. So, these kind of fluids we are going to study now for the flow between parallel plates; 

infinite parallel plates. Another geometry that we are going to take is inclined surface.  



If you have an inclined surface and then along that inclined surface if the material is 

flowing down because of the gravity, so then how to obtain the velocity profile for that 

geometry and then how to obtain the volumetric flow rate of a certain fluid flowing down 

the inclined surface. That is what we are going to see, and then we wind up the class which 

with an example problem as well. 

So, the methodology is same, whatever we have done for the case of pipe flow; so that is 

we have to draw the geometry and then make out or list out all the assumptions or 

restrictions, if we are solving the problem for under laminar flow conditions. And then 

simplify the continuity equation, momentum equation so that you get a relation between 

shear stress and the pressure drop or whatever the driving force that is causing for the flow 

to occur, so that relation we have to obtain. 

Once we have that relation for the shear stress then getting the velocity profile, volumetric 

flow rate is etcetera are just a kind of a mathematical simplifications. So, that is what we 

are going to do now, for the case of an infinite parallel plates; flow between infinite parallel 

plates. 
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So, first we take a power-law fluid for this geometry. We are going to take Bingham plastic 

fluids as well. So, but whether it is power-law fluid or Bingham plastic fluids as long as 

the flow is the laminar symmetric one dimensional flow; then what we can have? We can 



have a kind of an analysis simplification. Simplification of a momentum equations up to 

that point it is going to be same, right. 

So, because up to getting the relation for the shear stress we are not incorporating any 

information about the rheology of the fluids. So, till that point whether it is a power-law 

fluid or Bingham plastic fluids the methodology is going to be same. 

So, schematically if you see you have a two infinite parallel plates which are separated at 

a distance 2 h. So, the center axis you know whatever is there that we are taking y = 0. So, 

the geometry we are taking y = 0 at the center of the two these two infinite parallel plates 

ok. So, that is the central axis we are taking. 

So now, between these plates, these plates actually in general we in real-life application 

these plates are infinitely long, but the gap between these two plates is in general very 

small. It may not be very very small that it is negligible, that you take the viscous 

dissipation etcetera also into the consideration. In fact, those kinds of things would also be 

there. 

But however, you know the gap between these two is in general very very small so that let 

us say in the z axis; in the z direction the length of these parallel plates if it is L, so L/h if 

you do its going to be very long; very large way. If you take L/h value for this kind of 

geometry in general you are going to have that L/ h very large value.  

When you have this L/h kind of values or L/D kind of values that we have in pipe 

geometry, so here L/h if you have a very large value of L/h then you can say that flow is a 

kind of a fully developed, ok. So, this is the geometry. So now, the material whatever the 

fluid that we are considering here.  

So, let us say now here power-law fluid that is flowing between these infinite parallel 

plates and then that flow is because of the pressure gradient, ok. Obviously, because of the 

pressure difference only the flow is taking place otherwise the, however the flow will take 

place because this is a horizontal plate so gravity is also not there. 

So, some external force has to be there so that to flow takes place, so then that external 

force is because of the pressure difference that we are generating or maintaining in order 

to have a required flow rate of this fluid whatever we are confining between these two 



plates ok. So, this is geometrically this is what we are having now. So now, what we do? 

We have to list out the assumptions; we have to list out the assumptions right. 

Before seeing the assumptions you know if it is a laminar one-dimensional flow. So, what 

we see? The flow is dominated in which direction? It is dominated in the z direction. So, 

we are going to have only vz velocity right. And then that is, that flow is confined between 

y = - h to y = + h, so whatever the vz component of velocity is there that is varying in the 

y direction. 

So, vz as function of y that is what we are going to have in this case whereas, the vx and 

then vy are going to be negligibly small compared to the vz. So, then vx vy we can cancel 

out or we do not need to consider because vz is dominating, compared to vz magnitude 

wise vx, vy are going to be negligible we can neglect them. 

And then what are these stress component are going to exist here? So, there are nine stress 

components any flow field if you take in general. So, out of which here in this case since 

the flow is in the z direction and then that flow is varying in the y direction we are going 

to have only τyz component of the shear stress. Rest all other we are not going to have. 

Since the material is a time independent non-Newtonian fluid and there are no elasticity, 

so normal stresses are altogether not existing. And then out of the other τxz τzx etcetera all 

those components are you know negligible. So, what we are going to have? We are going 

to have only τyz. 

So, what we have to do? We have to when we do solve this problem, the primary aim is to 

get what is this expression for τyz. In this case τyz, in the case of pipe flow it was τrz. If you 

have the other geometry like inclined surface we are going to see, so there you may be 

having τxz or something other geometry depending on the geometry and then coordinate 

system how you selected. 

So, if you have that information about the shear stress and then after that everything is you 

know straightforward mathematical simplification to get the velocity profile, to get the you 

know volumetric flow rate etcetera or even friction factor, right. 

So, the primary thing that we are going to; we are doing in this kind of problem solving 

first we are getting the expression for τyz or shear stress x. Whatever the shear stress 



distribution is there that expression we are going to get in general first. How we get that 

one? Simply by simplifying the momentum equation, right. 

Simply by applying the constraints of the problem to the momentum equations generalized 

momentum equations, then after applying those simplifications or restrictions to these 

momentum equations we will be having an expression for a shear stress, upon solving that 

expression for shear stress you will be getting the velocity profile. 

So, for this problem what are the assumptions? Flow is steady, obviously the under those 

limitations only we are studying and then laminar so that; and then symmetric. Laminar 

flow conditions we are taking, right. So, symmetric in the sense whatever the flow 

distribution is there between y = 0 to y = + h, the same distribution we are going to have 

between y = 0 to y = - h, ok. 

The fluid is incompressible and then flow is fully developed, because L/h is a very large 

or the length wise these parallel plates are very long, the gap between these two parallel 

plates is very small. So, because of that one we can have a fully developed flow conditions 

under as a kind of valid condition, ok. 

Three-dimensional way if you see, so then width of the plate in the x direction that is going 

to be w. So, that is going to be useful when you do the volumetric flow calculations. So 

that is what now, yeah. 

So, now another assumption is that it is a; rather assumption reality we are having 

horizontal plates, so then gravity is negligible. Then isothermal conditions; there are no 

reactions, there are no mass transfer conditions, etcetera standard things and then flow is 

dominated in the z direction. So, vz component is existing that vz component of velocity is 

varying in the y direction. So, vz is function of y that is only existing vx vy are going to be 

very small compared to the vz. So, then we can take them as 0. 

So, now, having enough understanding about the geometry and then restrictions of the 

problem what we can do? We can go to the simplifications of you know momentum and 

then, conservation of mass and conservation of a momentum equations. 
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So, we are going to simplify the continuity equation right, then we are going to simplify 

the momentum equations. So, the geometries in Cartesian coordinates. So, the continuity 

equation in Cartesian coordinate is given here. So, this is the continuity equation that we 

have already derived in the Cartesian coordinate. So, it is an incompressible as well as 

steady flow. 

So, then first term is 0, vx is negligible, vy is negligible and then flow is fully developed 

flow; vz is existing, but flow is fully developed. If the flow is fully developed, that means 

any variations in the flow properties along the flow direction would be negligible. So, 

𝜕𝑣𝑧

𝜕𝑧
= 0, so then continuity is satisfied ok. 

So, what does it mean by? Whatever the assumption that we have taken or you know 

constraints of the problem that we have listed out they are consistent. They are consistent 

if we are getting the continuity equation is being satisfied, then that is what it mean by. So, 

if continuity equation is satisfied by applying the constraints of the problem, that means, 

the whatever the listed out constraints are there in the previous slide they are reliable 

physically acceptable. 

Then momentum equation, first we see the x-component of momentum equation. So, this 

is the momentum equation, so now we apply the constraints. Steady problem, so first term 

is 0, vx is 0, vy is 0, vz is existing, but vx is 0 so then left-hand side all the terms are cancelled 



out. Pressure we do not know in general; pressure limitations in general any of the such 

kind of problems we do not know, so then we just keep it as it is, right. 

So, only τyz is existing, so all these components are you know shear stress are negligible. 

So, then we can strike out. And then we have not taken any gravity because the geometry 

is horizontal geometry. So, then what we get? 
𝜕𝑝

𝜕𝑥
= 0, that means pressure is not function 

of x direction; pressure is not varying in the x direction, right. 

Similarly, y-component of momentum equation if you simplify. So, because of the steady 

state this first term is 0, vx is 0, vy is 0, vz is existing, but vy is 0 as well as 
𝜕

𝜕𝑧
 of you know 

velocity components are 0. So, then this term is also 0. So, here also left-hand side 

altogether all the terms are very small; that we can take left-hand side = 0. 

Now pressure we do not know what it is, we have only one shear stress. So, then this is τxy 

is 0 τyy is 0. Because of the fully developed flow condition this is 0. And then the gravity 

is not there, so this is 0. So, then here also we get 
𝜕𝑝

𝜕𝑦
= 0, so that means pressure is not 

function of y as well. 

(Refer Slide Time: 14:18) 

 

Now, z-component of momentum equation if you simplify. So, steady state term this is 0, 

vx is 0, vy is 0, vz is existing, but it is not function of z it is function of y only. Why it is 



not function of z? Because of the fully developed flow. Because of the fully developed 

flow 
𝜕

𝜕𝑧
 of velocity component is 0. 

Pressure we do not know, so let us leave it as it is. And then this τxz is not existing, τyz is 

existing, and then τyz is function of y right. Shear stress is 0 at the center between two 

parallel plates and then it is maximum at the wall. So, from center to the wall or the any of 

the top plate or bottom plate when you move in the y direction and that is y = 0 to y = + h 

or y = 0 to y = - h the shear stress is varying. 

So, that is the reason this 
𝜕

𝜕𝑦
 of this one we cannot cancel out ok. And then this shear stress 

component is anyways 0, so then we can cancel out. And then the gravity we are not taking 

because of the horizontal geometry. So, then here what we get? Left-hand side again all 

terms are negligible that we can take left-hand side is equals to 0. Right-hand side we have 

two terms remaining that is 
𝜕𝑝

𝜕𝑧
 and then 

𝜕𝜏𝑦𝑧

𝜕𝑦
. So, 

𝜕𝑝

𝜕𝑧
=

𝜕𝜏𝑦𝑧

𝜕𝑦
 this is what we have. 

Now, coming to the case how to solve this equation, because left-hand side it is function 

of z and then y right-hand side is function of y. But however, already we have seen the 

pressure is not function of x and y. That means, for the when you for the right-hand side 

term whatever the 
𝜕𝑝

𝜕𝑧
 is a constant one, because right-hand side term is function of y, but 

left-hand side term whatever the pressure is there it is not function of y. We have already 

seen by simplifying the x and y components of momentum equation. 

So, with respect to the right-hand side term left-hand side is constant. Similarly, this 𝜏𝑦𝑧 it 

is not changing in the z direction because of the fully flow conditions, right. So, it is 

changing only in the y direction. So, when you take the right left-hand side term; when 

you take the left-hand side term for the solving or integrating it, so right-hand side term is 

going to be constant for it. So that means, in these two terms individually we can take and 

then equate to some constant and then integrate them. 

So, let us say that constant you can take c1 or anything like that. So that means, 
𝜕𝑝

𝜕𝑧
 if you 

take let us say constant c1, then p is c1 z + c2, apply the boundary conditions. At the z = 0 

let us say if you take p = p0 then c2 you get p0 at z = L if you take p = pL then you will get 



c1 = 
𝑝𝐿−𝑝0

𝐿
. Straightforward simplifications by applying these two boundary conditions in 

this pressure distribution equation, right. 

So, now if you substitute c1 and c2 here in this equation back, then you get 𝑝 =

(
−𝑝0−𝑝𝐿

𝐿
) 𝑧 + 𝑝0 that is what you are going to get or 

𝜕𝑝

𝜕𝑧
 is nothing but c1 that is 

−𝑝0−𝑝𝐿

𝐿
 that 

is 
−∆𝑝

𝐿
. So, there 

𝜕𝑝

𝜕𝑧
 is nothing but a constant that is 

−∆𝑝

𝐿
. 
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Now again 𝜏, now whatever the 
𝜕𝑝

𝜕𝑧
=

𝜕𝜏𝑦𝑧

𝜕𝑦
 is there that equating to c1. So now, 𝑐1 =

−∆𝑝

𝐿
. 

That means, 𝜏𝑦𝑧 is nothing but (
−∆𝑝

𝐿
) 𝑦 + 𝑐3, get it on integration. 

Now, we have to apply a boundary condition in order to get this c3. So, what is the 

boundary condition that we take? At y = 0, at the center of these two plates between these 

two infinite parallel plates at the center point, that center point we have designated as y = 

0; at y = 0 shear stress is going to be 0, and then velocity is going to be maximum. So, at 

y = 0 𝜏𝑦𝑧 = 0, so obviously the constant c3 is going to be 0. 

That means, 𝜏𝑦𝑧 = (
−∆𝑝

𝐿
) 𝑦. So, here also in this geometry also, when the flow is laminar 

and then fully developed flow then shear stress is linearly varying in the y direction; is 

linearly varying in the y direction, ok. 



Now, till this point what we have done? We have done, simplifying of continuity and 

momentum equations after having enough understanding about the geometry and then 

confinements or constraints of the problem we got this expression, right. We have not 

applied any restrictions or you know assumptions about the rheology of the fluid, right. 

So that means, up to this problem whether the fluid is power-law fluid, whether the fluid 

is Newtonian fluid, whether the fluid is a visco-plastic fluid, whatever it is as long as the 

you know you know fluid geometry fluid is generalized Newtonian fluid. So, this 

expression is not going to change; this expression is not going to change. So, the rheology 

of the fluid is coming into the picture from this point onwards, ok. 

So, now this expression you can use in order to get the velocity profile. How to get that 

one that all now depends on the mathematical simplification, depends on the rheology of 

the fluid and then subsequent mathematical simplifications. So, the flow is symmetrical 

about mid plane that is what we have seen. 

So, that is whatever the flow is taking place between y = 0 to y = + h the same thing is 

taking place between y = 0 to y = − h So, in order to reduce mathematical simplifications 

what you can do? You can take the flow between y = 0 to h and then do the required 

simplifications ok. 

So, between y = 0 to h we take for power-law fluids 𝜏𝑦𝑧 = 𝑚 (
− 𝑑𝑣𝑧

𝑑𝑦
)

𝑛

. Why minus we are 

taking? Because at y = 0 the velocity is maximum, and then at y = h the velocity is 0; vz is 

0 here vz is maximum. 

And then as y increasing; as y increasing what happens? The velocity is decreasing right. 

So that means, you are going to have the flow profile something like this let us say. So that 

means, as y increasing velocity is decreasing; that means, the velocity gradient is going to 

be negative. So, that is the reason here we have taken 
− 𝑑𝑣𝑧

𝑑𝑦
. 

So, that is shear rate is negative in this region between y = 0 to y = h, that is velocity is 

decreasing as increasing that is the reason we have taken this one. 
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So, now this 𝜏𝑦𝑧 = (
−∆𝑝

𝐿
) 𝑦. So, (

−∆𝑝

𝐿
) 𝑦 = 𝜏𝑦𝑧, in place of 𝜏𝑦𝑧 we have written 

𝑚 (
− 𝑑𝑣𝑧

𝑑𝑦
)

𝑛

. So, now what we want? We want this velocity expression vz expression is 

required. So, then vz term we are keeping one side rest all other terms we are taking other 

side. So, that we have − 𝑑𝑣𝑧 = (
−∆𝑝

𝐿𝑚
)

1/𝑛

𝑦1/𝑛𝑑𝑦. This is what we are going to have. 

Now, if you integrate this equation we get − 𝑣𝑧 = (
−∆𝑝

𝐿𝑚
)

1

𝑛 𝑦
1
𝑛

(
𝑛+1

𝑛
)

+ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. So, now, next 

step what we do? We, both sides multiply by minus so that we get 𝑣𝑧 =

− (
𝑛

𝑛+1
)

1

𝑛
(

−∆𝑝

𝐿𝑚
)

1

𝑛
𝑦

𝑛+1

𝑛 − 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Now, this constant we have to obtain. How do we obtain? We can obtain you know = 0 vz 

= vmax that we can apply or y = + h vz = 0 that also we can apply. So, what is vmax or vz max 

we do not know; so, the better is you apply a boundary condition where you have the fixed 

known value as a boundary value. 

So, that is at y = + h we have vz = 0, so then we get in this equation constant is 

=− (
𝑛

𝑛+1
)

1

𝑛
(

−∆𝑝

𝐿𝑚
)

1

𝑛
 (ℎ)

𝑛+1

𝑛 . So now, this constant you can substitute here in this equation 

and then simplify then you have this vz = (
𝑛

𝑛+1
)

1

𝑛
(

−∆𝑝

𝐿𝑚
)

1

𝑛
{1 − (

𝑦

ℎ
)

𝑛+1

𝑛
}. 



After substituting this constant here what we have done? From the both the terms we have 

taken (ℎ)
𝑛+1

𝑛  common, so that we have {1 − (
𝑦

ℎ
)

𝑛+1

𝑛
} as a within the parenthesis, right. So, 

this is what we get velocity profile, right. 

If you wanted to know the maximum velocity in this expression if you substitute y = 0 you 

get the maximum velocity, because at the center line that is at y = 0 velocity is maximum. 

So, vz max = (
𝑛

𝑛+1
)

1

𝑛
(

−∆𝑝

𝐿𝑚
)

1

𝑛
 (ℎ)

𝑛+1

𝑛 , fine. So now, we got the velocity profile as well as the 

maximum velocity. 
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Now, we try to obtain the volumetric flow rate. Volumetric flow rate is nothing but integral 

∫ 𝑣𝑧(2𝑤𝑑𝑦)
ℎ

0
; w is nothing but width of the plate along which the fluid is extended in the 

x direction as I mentioned while discussing the geometry. Then y is this two is multiplied 

because we are the whatever the velocity profile that is there that we got between y = 0 to 

+ h only, but the volumetric flow rate we are getting for the entire geometry. Because it is 

flowing in the entire geometry, so average whatever the volumetric flow rate is that is what 

we are going to get. 

So, that is the reason since y whatever the velocity profile is there y = 0 to y = + h, same 

velocity profile is there between y = 0 to y = − h. So, that is the reason the velocity is 

multiplied by 2 here ok. 



So, now vz you can substitute here. So, vz is this expression right; 2w is a constant so we 

take outside of the integration and then dy. So, if you do the integration, so this all this 

term before the parenthesis whatever is there that is a constant term. So, only this part you 

how to integrate. 

So, when you do it you get y ∫ 𝑑𝑦 is y, then from the second term (
1

ℎ
)

𝑛+1

𝑛
 is a constant that 

you take common. And then integration of 𝑦
𝑛+1

𝑛  is nothing but (𝑦)

2𝑛+1
𝑛

2𝑛+1
𝑛  and then limits 0 

to h. 

So, when lower limit is 0, so both the terms should be 0. So, when you substitute the upper 

limit here, so we have ℎ − (
1

ℎ
)

𝑛+1

𝑛
ℎ

2𝑛+1

𝑛 (
𝑛

2𝑛+1
), right. So, this is what we have. So now, 

next step what we do? This whatever (
1

ℎ
)

𝑛+1

𝑛
 is there that I am writing ℎ−(

𝑛+1

𝑛
)
 so that you 

know I can combine these two terms or you can directly write ℎ
2𝑛+1

𝑛
−

𝑛+1

𝑛  that you can do. 
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So then, when you do that one simplify it, you get it that this one. So, what you have here? 

h1 you are having. So, what you can take? So, ℎ − ℎ (
𝑛

2𝑛+1
) from these two terms now, 

you can take h common and then if you do the LCM; so, ℎ (
1−𝑛

2𝑛+1
) is nothing but 

𝑛+1

2𝑛+1
. This 

is what you are having here, right. 



So now, this h we combined with 2w. So, 2wh we will be having here. And then this n + 

1 this n + 1 is cancelled out, so then remaining term 
𝑛

2𝑛+1
 we are having, the remaining two 

terms are as it is. So, this is the expression for the volumetric flow rate for a power-law 

fluid flowing between two infinitely long parallel plates. 

Then average velocity if you wanted to get; if you divide this 
𝑄

2𝑤ℎ
 you will be getting 

average velocity. That is average velocity is nothing but 
𝑄

2𝑤ℎ
, so that is 

𝑛

2𝑛+1
− (

−∆𝑝

𝐿𝑚
)

1

𝑛
ℎ

𝑛+1

𝑛 . 

This is what we are going to have, right. 

So, now what we do? The same geometry, but we are going to have a different fluid we 

are going to take a Bingham plastic fluid, right 

(Refer Slide Time: 28:20) 

 

So now, we have a Bingham plastic fluid. So, what we know that Bingham plastic fluids? 

They do not flow until and unless the applied stress is more than the characteristic yield 

stress of the material that we know. So now, at y = 0; this is y = 0, the same geometry we 

are taking, same coordinate system everything. 

At y = 0 what we have? We have the 𝜏𝑦𝑧 = 0, right. At y = h; at y = h we are going to have 

a maximum wall shear stress. In these two between these two points we know that the 

shear stress is linearly increasing. That is what we have already seen, so that we know for 

the power-law fluid. So, that it is increasing like this. 



So now, what happens? So, let us say up to certain point. So, at y = 0 velocity is going to 

be maximum and then at y = h it is 0, right. So, now shear stress is 0 here, so gradually it 

increases; gradually it increases. There would be a point where; there would be a point 

where 𝜏𝑦𝑧 whatever is there that will become 𝜏0
𝐵or characteristic yield stress of the 

material. So, that point we do not know what it is where location we do not know. So, let 

us call this point is hp, right. 

Because now, it is a Bingham plastic material the velocity profile if you try to obtain for 

this one. So, up to this y = hp point, the point where up to which the material is flowing as 

a kind of a constant velocity plug; it is having a constant plug velocity, right.  

So, that is velocity profile is going to be something like this. And then within the limit of 

y = 0 to y = hp it is going to a constant maximum plug velocity. After that only deformation 

starts, and then when the deformation is starting as we move towards the wall towards the 

top plate the velocity is decreasing because of a no-slip boundary condition at the wall, 

right. 

So, now what we have here? We have a two velocity profiles rather two velocity profile, 

one velocity profile which is function of a y and then another velocity profile or constant 

velocity vzp which is not a function of y which is constant; which is constant between y = 

0 to y =hp, right. But from y = hp to y = h deformation is taking place, within that 

deformation region velocity is function of y. That is what we are going to see now right. 

So now, like in the pipe flow conditions we have done here also in this geometry also we 

are going to develop the velocity profile for a two regions. One is the non-deforming solid 

plug kind of region where the velocity is constant that is vzp or vz max. Another region where 

the deformation is taking place, where the material is flowing like a viscous fluid not like 

a plastic solid; so, within that viscous fluid region or where the deformation is taking place 

the velocity is function of y. 

So, the division of the floor geometry in two parts is the only difference here, because that 

is the characteristic nature of the viscoplastic fluids. Viscoplastic fluids does not flow as 

long as the applied stress is more than the characteristic yield stress of the material. 



Yield stress of the material is the characteristic of the material; like density, viscosity, 

etcetera that characteristic of the material we are having in general. So, this yield stress 

also is a characteristic of the material for the viscoplastic material. 

So now, which we have to identify the location at which the, at which the applied stress is 

equal becomes equal to the yield stress of the material, right. So, that location we are 

calling hp, because we know that this τyz is linearly varying in the y direction. We already 

seen in the power-law fluid case. So, that does not change with the fluid nature, only 

velocity profile is going to change with the fluid nature or rheology of the fluid ok. 

So, between 0 to hp we are having constant plug like region where the material is flowing 

like a plastic solid material with a constant plug velocity. And then y = hp to y = + h we 

are going to have a kind of deforming region, where the material is flowing like a viscous 

liquid. Because, in that region the applied stress is more than the characteristic yield stress 

of the material, right. 

So, for that reason velocity is going to be a function of y. So, these two things we similar 

to kind of pipe flow things whatever we have taken, but we are now geometry is different 

so we have to define like this here again. 

So, now this is the basic understanding of the Bingham plastic fluid flow between two 

infinite parallel plates. Next is whatever the assumptions constraints and then 

simplification of a continuity momentum equation they are going to be same, so then we 

can have exactly same thing like in the power-law case. 
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So, these are these things are same constraints, simplification of continuity equation, 

simplification of momentum equation, whether it is x-component or y-component 

whichever component of momentum equation their simplification is same. So, we are 

going to get the same outcome of simplification of this momentum equation because of 

the constraints are same, only the rheology of the fluid is change. So, that is coming into 

the picture only after having the shear stress expression. 
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So, the simplification of z component of momentum equation is also going to be same 

exactly like a power-law case, because the geometry is same constraints are same; flow 

constraints are same. So, the pressure distribution whatever we got for the power-law case 

the same thing is valid here also. 
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So, shear stress also same thing is valid here. So, exactly same thing we get. Up to this 

point did we incorporate rheology of the fluid? No, not at all. So, up to this point whether 

it is power-law fluid or Bingham plastic fluid it is going to be same, ok. So, now, the fluid 

rheology will come in the picture through this τyz part ok. 

So, we have seen the symmetric about mid plane y = 0. So, between y = 0 to y = h whatever 

the flow is taking place distribution whatever the distribution that we are going to get, the 

same distribution we are going to we are going to get between y = 0 to y = − h, that is 

towards the bottom plate. 

So, what we do? We solve only in the half domain so that to reduce mathematical listings; 

simplification steps we can reduce. So, then τyz = 𝜏0
𝐵 + 𝜇𝐵 (

− 𝑑𝑣𝑧

𝑑𝑦
). That minus I have 

written before in the 𝜇𝐵. Why 
− 𝑑𝑣𝑧

𝑑𝑦
? Because the same reason here also from y = hp to y = 

h as we are increasing the y the velocity is decreasing.  



From maximum vzp or plug velocity it is going to 0 velocity at the top plate y is equal to 

which is located at y = h. So, from y = 0 to y = h when we are increasing we are increasing 

the y value the velocity is decreasing, that means shear rate is going to be negative. So, 

that is the reason we have minus here. 
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So, now here again in place of τyz if you substitute (
−∆𝑝

𝐿
) 𝑦 and then that you equate to 

𝜏0
𝐵 − 𝜇𝐵 (

 𝑑𝑣𝑧

𝑑𝑦
) right. Then we wanted to get the velocity profile. So, 

 𝑑𝑣𝑧

𝑑𝑦
 we are keeping 

one side rest all terms we have taken to the other side, right. Next what we are doing? We 

are integrating it. So, here 𝜏0
𝐵 y here 

𝑦2

2
 for the multiplication of (

−∆𝑝

𝐿
) we get by integration 

and then constant, right. 

So, now the boundary condition that we apply that is again same boundary condition at y 

= + h vz is 0 because of the no slip boundary condition and then constant you get 

−1

𝜇𝐵
{𝜏0

𝐵ℎ −  (
−∆𝑝

𝐿
)

ℎ2

2
}. Now this we substitute here. 

So, and then after substituting what we are doing? We are combining the terms 1; this is 

the 
 1

𝜇𝐵
 {𝜏0

𝐵𝑦 −  (
−∆𝑝

𝐿
)

𝑦2

2
} as it is, in place of constant 

−1

𝜇𝐵
{𝜏0

𝐵ℎ −  (
−∆𝑝

𝐿
)

ℎ2

2
} we are having. 



So, now next what we do? We take or combine the terms which are having 
−∆𝑝

𝐿
 terms and 

then 𝜏0
𝐵 terms. So, when you combine these terms 

−∆𝑝

𝐿
 terms you what you can have? 

(
−∆𝑝

𝐿
)

ℎ2

2
 𝜇𝐵 you can take common. So, when you do that one remaining terms would be 

1 −
𝑦2

ℎ2. Similarly, from the remaining two terms if you take 
𝜏0

𝐵ℎ

𝜇𝐵
 common you can have 

1 −
𝑦

ℎ
 as a multiplication. 

And then this is this velocity profile is only for the deforming region or where the region 

or the region where applied shear stress is greater than the characteristic yield stress. So, 

that deformation is taking place and then material is flowing like a viscous fluid, right. So, 

that is between hp to h only this equation is valid, right. 

So, but if you wanted to know the plug velocity what you can do? In this equation you can 

substitute y = hp, because this equation is valid between hp to h you can substitute y = hp 

to get vzp, right. So, that is what we getting we are doing that one that is that will give you 

the maximum velocity or the plug velocity. So now, plug velocity or maximum velocity is 

at y = hp. 
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So, in the above equation that is in this equation wherever y value was there. So, we 

substituted hp in the previous equation. In the vz expression, in the vz expression wherever 

y was there we are substituting hp then we get vzp. So, this is what we have. 



So, now what we have further simplification of this equation we can do by taking this 𝜏0
𝐵 

as (
−∆𝑝

𝐿
) ℎ𝑝, because 

𝜏0
𝐵

𝜏𝑤
 if you do what you get? 𝜏0

𝐵 = (
−∆𝑝

𝐿
) 𝑦 in place of y you have the 

hp, and then 𝜏𝑤 is nothing but (
−∆𝑝

𝐿
) ℎ, at y = h. This is what we have. 

So that means, in place of 𝜏0
𝐵 you can write (

−∆𝑝

𝐿
) ℎ𝑝 that is what you can write. Because 

this 𝜏0 whatever the 𝜏𝑦𝑧 expression was there (
−∆𝑝

𝐿
) 𝑦 this expression is valid between y = 

0 to h y h. 

So, in when you substitute y = hp that will become equal to the characteristic yield stress 

of the material. So, in place of 𝜏0
𝐵 we are writing (

−∆𝑝

𝐿
) ℎ𝑝, ok. So, that we have because 

of this relation, right. So now, what we do why because this entire equation vzp equation 

we are we wanted to write in terms of the pressure that is the only thing, otherwise this 

also we can after simplify and then take it as a final expression, right. 

So, now here what we can do? From these two terms we can take 
ℎ2

2𝜇𝐵
(

−∆𝑝

𝐿
) as a common 

term. So, then we have 1 −
ℎ𝑝

2

ℎ2 this is as it is. Remaining term −2ℎ𝑝 −
2

ℎ2 ℎ𝑝ℎ (1 −
ℎ𝑝

ℎ
) you 

are having. 

So now, what we do? We expand this term, when we expand this term what we will have; 

we will have like this is −2
ℎ𝑝

ℎ
 we are having and then this is +2

ℎ𝑝
2

ℎ2. So, there it is −
ℎ𝑝

2

ℎ2 is 

there, so then +
ℎ𝑝

2

ℎ2 we are getting. So, this you can write (1 −
ℎ𝑝

ℎ
)

2

. 

So, that is vzp we are going to get this expression our vz max is this one that is 

ℎ2

2𝜇𝐵
(

−∆𝑝

𝐿
) (1 − 𝜙)2  ϕ is nothing but 

ℎ𝑝

ℎ
 which is nothing but 

𝜏0
𝐵

𝜏𝑤
; which is not known a 

priory. For a given flow geometry flow conditions it is not known. 

So, because of that reasons most of the problems associated with the viscoplastic fluids we 

have done trial and error approach kind of thing that we applied. Like Hank’s model or 

Slatter model for the case of pipe geometry we have applied we have seen you know trial 

and error kind of approach is required or some kind of analytical expressions are required. 



Anyway, we think let us not worry about that one. So, ϕ is nothing but the ratio between 

the characteristic yield stress divided by the maximum wall shear stress, right. 𝜏0
𝐵 is 

nothing but (
−∆𝑝

𝐿
) ℎ𝑝 and then 𝜏𝑤 is nothing but (

−∆𝑝

𝐿
) ℎ. That is whatever this expression 

𝜏𝑦𝑧 = (
−∆𝑝

𝐿
) 𝑦. So, in place of y if you substitute hp you get 𝜏0

𝐵, in place of y if you 

substitute h you will get the wall shear stress. 

So, that is 
ℎ𝑝

ℎ
 is nothing but the 

𝜏0
𝐵

𝜏𝑤
 that we call we are calling as ϕ. And this is valid between 

obviously 0 to hp range that is the non-deforming solid plug like material whatever is 

moving like a solid plug like as plastic plug. So, that material whatever that plug like 

velocity is there. So, that is given by this velocity and then this is valid only between 0 to 

hp. 
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So, volumetric flow rate Q =∫ 𝑣𝑧(2𝑤𝑑𝑦)
ℎ

0
 that is what we have, right from the geometry. 

But now vz is having, vzp between y = 0 to hp and then vz from between y = hp to h. So, 

this vzp vz; we already got in the previous slides like this. So now, we substitute them here 

and then integrate. 

So, when you substitute vzp this one here and then integrate. So, this entire thing is constant 

because vzp is a constant velocity, it is not changing with y direction, 2 and w are also 

constant. So, this entire thing multiplied by y you are getting after integration and then 



limits are 0 to hp. The remaining terms 2w and then this entire term when you integrate it. 

So, here for the integration you are going to get y and then here for integration 
𝑦3

3
 you are 

going to get so that is here. 

So, then again here for integration on integration you get y and then here on integration of 

this y term you get 
𝑦2

2
; that is here. And then this 𝜏0

𝐵 we are writing (
−∆𝑝

𝐿
) ℎ𝑝 as we have 

done previously for the obtain for obtaining the plug velocity, right. So, that all the terms 

now are in (
−∆𝑝

𝐿
)term L form ok. 

Now, so, this limits we substitute, so hp we are getting here. So now, here upper limit h 

you substitute, so you get these two terms when lower limit hp you substitute then you get 

these two terms. And then last term also when you substitute upper limit you get ℎ −
ℎ2

2ℎ
; 

lower limit hp if you substitute here. So, you get −ℎ𝑝 +
ℎ𝑝

2

2ℎ
. 
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So now, from all these terms what we are trying to do we are trying to take 
2𝑤ℎ2

2𝜇𝐵
(

−∆𝑝

𝐿
); h 

as a common, so then we are getting all these terms from the remaining three terms, right. 

Now, further we what you do? You combine the terms or wherever this 
ℎ𝑝

ℎ
 is there; 

wherever this 
ℎ𝑝

ℎ
 is there by taking that h common you are getting this 

ℎ𝑝

ℎ
 terms everywhere 



in all the three times, right. So, in place of 
ℎ𝑝

ℎ
 we are writing ϕ, here also we are writing ϕ, 

here also 
ℎ𝑝

ℎ3
 (

ℎ𝑝

ℎ
)

3

 we are writing 𝜙3, right.  

And then here also 
ℎ𝑝

ℎ
 we are writing 

𝜙

2
 and then this is also 

ℎ𝑝

ℎ
 is ϕ, so ϕ x ϕ = 𝜙2. So, like 

that here also 
ℎ𝑝

ℎ
 is 𝜙2 and then this another 

ℎ𝑝

ℎ
  we are multiplying, so 

𝜙3

2
 that is what we 

are having ok. 

Next step what we are going to do? We are dividing by 3 and then multiplying by 3 so that 

we can have some simplification, ok. Then, so except this term we have one and then all 

other terms are being multiplied by 3, here also it is multiplied by 3 so 3/3 1 we are writing 

here. 

So, in the next step 1 we have written here 
−3ϕ

2
 we have written 

𝜙3

2
 we have written here, 

right. So, these three terms we have written here as a first three terms and then whatever 

these 
3(1−𝜙)2𝜙

2
 term is that we have written here, right. So, remaining three terms whatever 

are there these three terms we can write them as a; if you take 3/2 common we can write 

them as (1 − 𝜙)2 by I mean whole square multiplied by 𝜙 you can write. These remaining 

three terms. 

We can write them as a 
3(1−𝜙)2𝜙

2
 that is what we can write. So, that this +

3(1−𝜙)2𝜙

2
and then 

−
3(1−𝜙)2𝜙

2
 can be canceled out, right. So, that we have Q is equal to this expression; only 

first three terms would be there. So, this is the expression for the volumetric flow rate, 

right. 

So, whether it is pipe geometry or parallel plate geometry whatever the methodology how 

to get the velocity profile, how to get the volumetric flow rate is same as long as the flow 

is the laminar one-dimensional flow without any difficulty we can do. The same 

methodology we have to follow. So now, before winding today’s lecture quickly we take 

another geometry; inclined surface. 
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So, let us say we have an inclined surface like this. So, this is the inclined surface right. 

So, which is inclined to the horizontal axis at an angle β. So, there is a material is coming 

in and then flowing down here because of the gravity, right. The thickness of the material 

that is flowing down is h ok. Inclined surface on which the material is flowing; that inclined 

surface flow direction we are taking z the other direction we are taking y. 

So, here also vz is function of y compared to the vz other vx vy are going to be 0 right. So, 

what is this velocity profile as function of y we are we have to get it. So now, here the 

gravity it is not either completely horizontal it is not either completely vertical, so it is in 

an inclined surface; inclined at β angle.  

So, then whatever the two components are there; so if it is g is acting in this direction, if 

you draw the tangent so this direction we are going to have g sin β and then this direction 

we are going to g cos β, right. So, now what we do? We do the same simplifications right; 

we write the constraints of the problem right. 
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We are taking the steady state, incompressible and isothermal flow conditions, laminar 

flow only vz is existing and then vz is function of y. This material whatever is flowing 

down it is very thin actually. The thickness of the material is very thin, within that thin 

layer of the material how the velocity profile is varying? So, for such thin layer of the 

material that is flowing down. So, it is only one component is going to be predominant 

other components are going to be 0. 

That is in the vertical direction or you know in the x direction we are not going to have 

any velocity. So, vz is only existing vx vy are going to be 0. So, here also Cartesian 

coordinates are applicable. So, then continuity equation if you apply here. So, what we 

have? Steady state so this is 0, vx is 0 vy is 0 right; vz is not 0, but whether the material is 

under fully developed flow conditions or not that also we do not know. That is the reason 

𝜕

𝜕𝑧
(𝜌𝑣𝑧) we cannot cancel out. 

So, what we get from simplifying the equation? 
𝜕𝑣𝑧

𝜕𝑧
= 0. So, what does it mean? For this 

flow geometry when you apply these constraints you get another you know constraint that 

is the flow is fully developed. Fully developed flow constraint that you can understand 

through the continuity equation. 

Remember, as we have been discussing that the importance of continuity equation; 

simplifying the continuity equation is that whether the constraints that we are taken they 



are consistent or not that is what we can understand. Otherwise, if some boundary 

conditions or some kind of limiting conditions we are not or some kind of constraints we 

are not very sure from the problem geometry then such kind of constraints we can get by 

simplifying the continuity equations. 

So, that is what we are doing here, that is what we get here. We are not sure from the 

geometry whether the flow is fully developed or not, but from the continuity equation or 

by simplifying the continuity equation what we understand 
𝜕𝑣𝑧

𝜕𝑧
= 0. That means the flow 

is fully developed in the z direction. 
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Similarly, now x-component of momentum equation if you simplify. So, vx is 0. So, then 

all the terms in the left-hand side are having vx terms because it is x-component of 

momentum equation, so all of them are 0. Pressure we do not know. And then only τyz is 

existing. So, this τy τ τ expressions are 0. And then gravity in the x direction whatever the 

gravity we are taking that is not there in the x direction it is there only in the y and z 

directions, ok. 

So, what we understand from here? 
𝜕𝑝

𝜕𝑥
= 0; that means, pressure is not function of x. 

Similarly, y-component of momentum equation if you simplify, then steady state this term 

is 0 and then vx is 0 vy is 0 vz is not 0, but vy is 0. So, that is 0. Pressure we do not know 

anything. 



This only τyz is existing, but this is not existing τxy τyy are not existing; τyz or τzy is existing, 

but because of the fully developed flow condition that we get from the continuity equation 

this term is also 0. ρgy in the y direction gravity is nothing but g cos β. So, what we get? 

𝜕𝑝

𝜕𝑦
= 𝜌𝑔𝑦 from the y-component of our momentum equation that is nothing but ρ g cos β. 

Similarly, z component of momentum equation you know, steady state this is 0 vx is 0 vy 

is 0 vz is not 0, but from the continuity equation we understand that 
𝜕𝑣𝑧

𝜕𝑧
= 0. So, this is 0. 

So, next pressure, the flow is taking place only because of the gravity. So, then whatever 

the pressure distribution in the z direction is there that also we can take it as 0.  

And then τxz is not existing τzz is not existing, τyz is existing τyz is existing and then it is 

function of y also because whatever the thickness or the fluid is there that is expanding in 

the y directions. So, from y = 0 to y = + h the shear stress is varying. So, that component 

you cannot cancel out. And then gravity in the z direction is existing. That means, 
𝜕𝜏𝑦𝑧

𝜕𝑦
=

−𝜌𝑔𝑧; that means, −𝜌 g sin β. 
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So, once we have this τyz expression rest everything is a simplification to get the required 

velocity profile ok. So, from this z component of momentum equation simplification 

whatever 
𝜕𝜏𝑦𝑧

𝜕𝑦
= −𝜌𝑔𝑧 we got from there we can get the τyz expression as; τyz = −𝜌 g sin 

β y +C1 because gz is nothing but the sin β ok. 



So, what we get? τyz = −𝜌 g sin β y + C1. This C1 constant you can get by applying the 

shear stress boundary conditions. τyz = 0 at upper surface at y = + h; upper surface of the 

fluid layer we are calling you know y = h. And then τyz = maximum of tau wall at y = 0. 

Because now, unlike the previous geometry or pipe flow conditions the fluid is you know 

at the surface at the surface inclined surface the material is flowing down. So, at the 

inclined surface what we have? The maximum walls shear stress we are having. We are 

going to have the maximum wall stress wall shear stress at the along the inclined surface. 

And then this, the reason the material is you know flowing down. So, the upper layer of 

the fluid whatever is there that is open to the atmosphere. So, then that y = h is going to 

have a 0 shear stress. So, that boundary condition we apply. That is y = h τy = 0, so C1 = 𝜌 

g sin β h. Then if you substitute that one here in this equation you get τyz = 𝜌 g h - y sin β. 

So, τyz = 𝜌 g h - y sin β once we have this expression. So, you can apply next step rheology 

of the fluid to get the velocity distribution. So, for this geometry what we are doing? We 

are taking Ellis model fluid. Ellis model fluid τyz is this one, this we already know. 

So, this expression we rearrange so that you know we get mu naught 𝜇0
𝜕𝑣𝑧

𝜕𝑦
 one side 

another terms are other side. So, then what we have? 
𝜕𝑣𝑧

𝜕𝑦
=

1

𝜇0
{𝜏𝑦𝑧 +

𝜏𝑦𝑧
𝛼

𝜏1/2
𝛼−1}. So, this α and 

then 𝜏1/2 we already know this characteristics of you know Ellis model fluid. So now, 

what we do? 
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In this expression 
𝜕𝑣𝑧

𝜕𝑦
=

1

𝜇0
{𝜏𝑦𝑧 +

𝜏𝑦𝑧
𝛼

𝜏1/2
𝛼−1}. This is coming only from the rheology of the 

material, whatever the rheological expression for the Ellis model fluid is there only from 

that only we got. 

Now, for our problem what is τz; what for our this flow problem what is 𝜏𝑦𝑧 that we already 

got that is nothing but ρg h - y sin β that we are going to substitute. So, when you substitute 

here this one. Now when you integrate this one, here (𝐻𝑦 −
𝑦2

2
) you get here you get 

(𝐻−𝑦)𝛼+1

−(𝛼+1)
 you get; −(𝛼 + 1) you get here. Rest all other terms are constants, right. 

So now, apply the boundary condition to get the constant C. So, at the wall that is it y =0 

vz is 0. So, then this constant is nothing but this one. In this equation, if you substitute y = 

0 then vz would be 0 left-hand side would be 0, so then constant you get this one. So, this 

constant you substitute here and then simplify then you get velocity profile like this. So, 

simple simplification only, just rearrangement I am writing directly here. 
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So, the volumetric flow rate Q = ∫ 𝑣𝑧𝑤𝑑𝑦
𝐻

0
; w is nothing but the width of the fluid in the 

x direction that we have seen in the geometry. So, this vz expression we got this one 

already. And then if you integrate this one you get here for this place 
𝑦2

2
, and then for this 

point you get 
𝑦3

3
 on integration. And then here this part you get y. 

And then here what you do, before integration what you do here this term? You do the 

LCM, so that you can have 
𝐻−𝑦

𝐻𝛼+1. So, (𝐻 − 𝑦)𝛼+1 if you do the integration you have 

(𝐻−𝑦)𝛼+2

(𝛼+2)
, right. Then whatever that 𝐻𝛼+1 is there so that you have taken common here. So, 

that is what we are getting this one right. 

So now, the limits 0 to H also if you substitute and then simplify, so you get this term. 

Straightforward simple simplification that you can do it. So, this is the volumetric flow 

rate Q/w = given by this expression if Ellis model fluid is flowing down along the incline 

surface. 
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So, finally, example problem. So, the material of density 1000 kg per meter cube is flowing 

down on a wide inclined surface at angle β = 30°. The fluid thickness as I said; the fluid is 

in general very thin so 3 mm thickness only there. The rheology is defined by the Ellis 

model fluid, so that we have the 𝜇0, 𝜏1/2 and then α are given, right. So, we have to find 

out the volumetric flow rate. 
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So, we just developed Q/w = this expression. So, in this expression in the right-hand side 

everything is known; ρ, g, H, β, 𝜇0, α, 𝜏1/2 everything is known. So, when you substitute 



and then simplify you get 6 x 10-4 meter cube per second per unit width of the plate. So, 

that is the volumetric flow rate, ok. 
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References: The entire lecture is prepared from this excellent book by Chhabra and 

Richardson, other reference books are provided here. 

Thank you. 


