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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of today’s lecture is Transition and Turbulent Flow of Generalized Newtonian Fluids in 

Pipes, part 2. So, before going into the details of today’s lecture, what we will have? We 

will have a kind of recapitulation of what we have seen in the last class, and then we see a 

couple of example problem today based on the things that we have discussed in a last class. 

Then, we start moving to the new topics of the day. 
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In the previous class, we have seen criteria for transition from laminar to turbulent flow of 

fluid through pipes. So, if the fluid is Newtonian, so then we already know that it is its 

critical Reynolds number for transmission of flow from laminar to turbulent is 2100. 

Whereas, what is that for the case of power-law fluids what is that critical Reynolds 

number for the case of viscoplastic fluids, etcetera, how to find out them, we have seen, 

right. 

So, for Newtonian fluids we know that critical Reynolds number is 2100. For power-law 

fluids we have a several correlations out of which two we have discuss. So, one is by Ryan 



and Johnson model who has proposed the critical Reynolds number as function of n and 

then that empirical equation is given like this. 

Then, Mishra and Tripathi have also developed empirical correlation based on their 

experimental results and then they have given this correlation for critical Reynolds number 

which is again function of n. However, this correlation by Mishra and Tripathi seems to 

be more reliable because as n decreases the critical Reynolds number gradually increasing 

that is that trend is followed. 

But, however, in the case of Ryan and Johnson, we have seen that as n decreases critical 

Reynolds number increases up to certain value of n like 0.3 or 0.38. And then after that if 

you further decrease the n value critical Reynolds number was found to decrease, which is 

not reliable, which is not acceptable from the fundamental viewpoint. So, this seems to be 

more reliable, ok. 
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Then, coming to the viscoplastic fluids, under the category of Bingham plastic and then 

Herschel-Bulkley fluids we have two different models. One is the Hanks model which is 

for the Bingham plastic fluids, where critical Reynolds number has been reported as 

function of Hedstrom number and then ϕc value. ϕc is nothing but the ϕ at critical Reynolds 

number, ok. ϕ is nothing but τ, 
𝜏0

𝜏𝑤
 that we know, ok. 



So, now if you wanted to know critical Reynolds number for Bingham plastic fluids. So, 

then you have to know the Hedstrom number which is possible because the properties of 

the material and then dimensions of the geometry are in general available, so then you can 

find out. But ϕc is not available.  

So, for that reason they have also provided a relation ϕc as function of Hedstrom number 

and then that is given by this one. Whereas, ϕc is as mentioned is nothing but 
𝜏0

𝐵

𝜏𝑤𝑐

, c stands 

for at critical condition, so critical Reynolds number, right. 

So, now, if you know the Hedstrom number you can find out the ϕc and then once you 

know both phi c and Hedstrom number you can find out the critical Reynolds number, 

right. So, what we have seen? We have seen an example problem as well based on this 

model in the previous lecture. 
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Then, Herschel-Bulkley fluids Slatter has defined a modified Reynolds number based on 

the angular velocity or the velocity of the fluid in the deforming region only because 

viscoplastic fluids, what we know? We there we know that the flow geometry is or the 

flow cross section is divided into the two fractions, one is the deforming fraction, another 

one is the non-deforming fraction. 



Non-deforming fraction towards the center of the pipe where the shear stress or the applied 

shear stress is less than the yield stress. And then, when the applied stress becomes more 

than the yield stress then there will be a deforming region. So, two regions we know. 

So, since the flow is taking place only certain region. So, then the velocity should be taken 

only for that region that is for their you know argument and then based on that one they 

have defined or Re modified or modified Reynolds number and they propose this Reynolds 

number has to be less than 2100 for a Herschel-Bulkley fluid to be in laminar flow 

conditions, right. 

Vann, we can find out using this one, and D shear is nothing but diameter of the pipe minus 

diameter of the plug, ok. Then, we have also seen couple of example problems, how to use 

these things; and obviously, what we understand that Vann is not known. If you wanted to 

know that one you should know Rp, so which is not known a priori. So, then for that region 

we have to go for a trial and error approach, that is what we have seen, and then we have 

seen couple of problems as well. 
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Then, friction factors also we have obtained. Friction factors for the transitional and 

turbulent flow conditions in smooth pipes, right. If it is Newtonian fluid then we know that 

Nikurdse equation for friction factor is this one, right. But what is if the fluid is power-law 

fluid? Then we have according to Dodge and Metzner. They have developed similar 

equation which is similar to the Newtonian case and then that is given by this one, right. 



Now, in this equation if you substitute n’ which is nothing but power-law behavior index 

as equals to 1, so then you get back to Newtonian correlation whatever given here, right. 

Then, Irvine have proposed altogether a very different expression for friction factor which 

is not having any relation with the form of a corresponding Newtonian friction factor 

correlation, ok. So, that correlation by Irvine is given by this equation. (
𝐷(𝑛)

𝑅𝑒𝑀𝑅
)

(
1

3𝑛+1
)

, 

whereas, this D function of n is given by this function, right. 
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Then, we have also seen for a viscoplastic fluids how to find out the friction factor if the 

flow is under transitional or the turbulent flow conditions. So, Darby, what they have 

proposed? They have proposed friction factor, the overall friction factor is having two 

components that is the friction factor because of the laminar flow conditions and then 

because of the turbulent conditions. 

Rather, laminar or turbulent conditions, whatever the contribution is there from the fL 

expression that should also be included and then the that fL is nothing but whatever the 

friction factor that we have developed previously for viscoplastic fluids flowing through 

pipe and then that is given by this one, right. So, this is for the Bingham plastic fluid, right. 

And this can also be written in terms of Bingham numbers like this. This is also we have 

derived. 



Whereas, fT is nothing but the friction factor because of the contribution from the 

turbulence and then that is given by this expression 10𝑎0𝑅𝑒𝐵
−0.193. Whereas, 𝑎0 is function 

of Hedstrom number and then given by this expression, right. And then this here the power 

b, whatever is there in this equation, right, so that b is function of ReB and then given by 

this expression. 

So, till this point we have seen in last lectures. So, now, what we do? We take a couple of 

problems based on these expressions and then solve couple of problems then we go into 

the details of next lecture, today’s lecture. 
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Example 1, a slurry of density 1170 kg per meter cube, this displays Bingham plastic fluid 

behavior with 𝜏0
𝐵 = 0.78 pascal and 𝜇𝐵 = 4.5 millipascal seconds. Estimate wall shear 

stress and nominal wall shear rate when V = 0.4 meter per second for flow in a 79 mm 

diameter pipeline. 

So, D is given. This V is nothing but the Vavg in general whatever we are taken. So, if you 

wanted to know nominal or apparent wall shear rate that is nothing but 
8𝑉𝑎𝑣𝑔

𝐷
, so that you 

can directly find out because V is also given, D is also given as 79 x 10-3 meters. So, you 

can substitute, you can get it directly. 



But how to get the wall shear stress 𝜏𝑤? If you wanted to know wall shear stress, what is 

the expression that we have developed for pipe flow? (
−∆𝑝

𝐿
)

𝑅

2
, right. So, now here R is 

given, D is given, so R is known, but L is not given. So, if L is not known, so even if you 

know ∆𝑝 you cannot know all shear stress because Vavg is given. So, Vavg expression for 

you know Bingham plastic fluids etcetera that we have already developed, so that we can 

use here. So, but that also is having values of L, so which is not known. 

So, calculating −∆𝑝 from either of expression Vavg or anywhere else and then finding out 

𝜏𝑤 is not possible. So, what we can do? Why it is not possible? Because in those 

corresponding equations L value is required which is not given. So, what we can do now 

here? So, we have to find out friction factor; because if friction factor is known, friction 

factor 𝑓 =
𝜏𝑤

1

2
𝜌𝑣2

. So, f is known, V is given and then 𝜏𝑤 you can find out. 

So, now, what we do? We use the Darby’s equation 𝑓 = (𝑓𝐿
𝑏 + 𝑓𝑇

𝑏)
1/𝑏

. And then, we find 

out all those values, f we find out, then we get 𝜏𝑤 value that is what we are going to do 

here. 
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So, for Bingham model 𝜏0
𝐵, 𝜇𝐵 values are given like this. These values are given ρ is given 

and then D is also given. So, according to Darby model we have to find out f, right. So, f 

you wanted to find out, so then what you have to find out? You have to find out Hedstrom 



number, you have to find out the Reynolds number, you have to find out a naught, you 

have to find out B value etcetera those things you have to find out.  

So, first what we do? First, we found we, first we will find Hedstrom number which is 

given by this value. So, now, here ρ, D, 𝜏0
𝐵, 𝜇𝐵 everything is given. So, substitute simply 

here and then get the Hedstrom number value as 2.8 x 105. 

So, once it is known, so the Reynolds number can also be found easily because Reynolds 

number is nothing but 
𝜌𝑣𝑎𝑣𝑔𝐷

𝜇𝐵
, Vavg is given, D is given, ρ is given, 𝜇𝐵 is given. So, 

substitute, you get 8216 as the Reynolds number for Bingham plastic fluid in this case, 

alright 

Then, 𝑎0 we have to find out 𝑎0 expression is given like this according to Darby’s model. 

So, here also Hedstrom number we found. So, then simply substitute that Hedstrom 

number here find out 𝑎0, so then you get -1.47 roughly, right. So, then B, you have to find 

out B is 1.7 + 
40000

𝑅𝑒𝐵
, so 40000, here, here also, one more 0. So, 1.7 + 

40000

8216
 you get 6.57. 

So, if you know 𝑎0, B, etcetera, so then you can find out all other things. 
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fL you can find out. fL we have derived this expression for Bingham plastic fluids. The 

suffix L stands for nothing but laminar flow. For the laminar conditions in week 3 or week 



4, we have developed this expression for the friction factor of a Bingham plastic fluid 

flowing through pipe. 

This is what we already found. And then we found that this expression is implicit because 

right-hand side also fL terms are there. So, there while deriving this expression we did not 

use suffix L because specifically we are using a laminar flow condition. But now in this in 

this case, you know we are also having the turbulent contribution. So, in order to 

distinguish them we have fL here in order to distinguish it from fT that is because of the 

turbulence. 

So, now, this equation when you solve by trial and error approach you get fL = 0.0131, 

right. And then fT is nothing but 10𝑎0𝑅𝑒𝐵
−0.193. So, 𝑎0 we found already, ReB we got 8216. 

So, then fT you will be getting 0.00595. So, overall f is nothing but (𝑓𝐿
𝑏 + 𝑓𝑇

𝑏)
1/𝑏

. You 

substitute fL fT here along with the B values and then simplify f you get 0.0131.  

So, once f is known, 𝜏𝑤 you can find out, 
𝑓𝜌𝑣2

2
, so that you get 1.22 pascals, that is the wall 

shear stress, right. Then apparent wall shear rate 
8𝑉

𝐷
 that you get. 8 V is given 0.4 and D is 

79 mm, so you get 40.5 second inverse apparent wall shear rates, right. 
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So, now we take another example problem. So, a slurry of density 1170 kg per meter cube 

behaves as a power-law fluid with m = 0.16 pascal second power n and n = 0.48 as its 

constants, right. 

Then, estimate wall shear stress and the nominal wall shear rate 
8𝑉

𝐷
 when V = 0.4 meter 

per second for the flow in a 79 mm diameter pipeline. So, basically it is the repetition of 

the example 1, but now the fluid is assumed to behave as a power-law fluid with the m and 

values are given like this. 

So, now, here also what we have to do? We have to find out the friction factor. If you 

wanted to find out the friction factor, what you have to do? You have to first find out the 

Reynolds number. 
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For Reynolds number for the case of power-law fluid, we have this expression ReMR, and 

then here in this expression ρ, V, D, and m everything is given. So, then when you 

substitute all of them you get ReMR 1407 which is less than 2100. So, then flow is under 

the laminar flow conditions, alright. 

Then, what is f? f is nothing but 
16

𝑅𝑒𝑀𝑅
. So, then you get f = 0.0114 for the case of power-

law fluid. So, once f is known, τw you can find out. When you do it you get 𝜏𝑤 is 1.06 

pascals. Whereas, the apparent wall shear rate remaining same as in the previous case, 



because here V D are also same. So, now, what we do? We go into the details of velocity 

profiles measurement in turbulent flow of power-law fluids in pipes. 
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So far, we have taken only pipe flow geometries. Under the pipe flow geometric conditions 

if the flow is laminar. So, different types of generalized Newtonian fluids, power-law fluid, 

Bingham plastic fluid, Herschel-Bulkley fluid, Ellis model fluid, etcetera when they are 

flowing through pipes under laminar flow conditions, we have seen how to obtain the 

velocity profile volumetric flow rate expression and then friction factor expressions, 

etcetera, those things we have seen. 

But what if the flow is not laminar, if it is under turbulent flow conditions, how to find out 

the velocity profiles? Is it really possible? That is what we have to see analytically, is it 

really possible. If it is not possible, how we can make some kind of an approximations and 

then try to get a velocity profile for the case of turbulent flows as well, right. 

So, actually turbulent flows are very chaotic kind of flows and then there are a different 

size of eddies are there. So, they lead the flow to be very randomly changing in all 3 

directions of the geometry. So, then it is very difficult to find out the velocity profile for 

such conditions even numerically. So, analytically it becomes even much more difficult. 

But however, what happens in general, the gradients are much more important. At the pipe 

wall what is the velocity profile that is much more important in general, compared to the 



what is the overall velocity distribution across the cross section and then across the flow 

direction, etcetera. So, rather than that one, what is the velocity gradient at the wall is much 

more important from engineering point of view?  

So, now, that point we take under consideration, and then making thus making that point 

under consideration, we try to make some simplifications, some assumptions, or divide the 

flow into different categories and then we try to obtain the velocity profile for the case of 

turbulent flow. But, the velocity profile close to the wall only we are going to find out. 

Why? Because close to the wall because as I already mentioned the velocity gradients are 

in general much more important compared to the individual velocity at different locations 

so right so, from engineering applications point of view, right. 

Similarly, if it is heat transfer so, then temperature gradient at the wall is much more 

important compared to the individual temperature in the remaining area because at the wall 

whatever the temperature gradient is there, that is going to show influence on the overall 

heat transfer rate, etcetera.  

Same thing here in the case of moment on transfer, what is the velocity gradient at the wall 

that is much more important, ok. So, that concept we keep in mind and then try to develop 

some simplification to get some velocity profiles even for the turbulent flow, but the 

velocity profile close to the wall that is what we are going to do. 

So, in general, shear stresses within the fluid are responsible for frictional forces or friction 

factor whatever that you wanted to measure, you know you need to know the shear stress. 

Once you know the shear stress then only you can find out. And then also if you know the 

shear stress you can also find out the velocity distribution across the cross sectional area, 

right. 

So, but how to get the shear stress? If it is simple laminar flow, then you know shear stress 

expression that we have already seen for different types of fluids. So, then it they can also 

they can easily be used and then get the flow rate. You can get we can easily get the 

velocity distribution, and then friction factor etcetera, those things we can get. But can we 

use the same shear stress expressions here also or is there any additional term is coming 

into the picture, those things we have to discuss if the flow is turbulent. 



So, for turbulent flow through pipes, in the case of Newtonian fluids number of semi-

theoretical modifications of expression for the shear stress at the walls of pipe have been 

proposed, right. So, what are those that we have to see, right. We can we cannot go all 

those semi-theoretical modification.  

We take one expression for the shear stress for the Newtonian fluids at the wall, in the case 

of turbulent flow through pipes. So, that expression we try to take and then we try to 

simplify. But such kind of information for the case of a power-law fluids has not yet been 

developed in law. 

However, whatever the concepts that have been applied for the case of a turbulent flow of 

a Newtonian fluid through pipes are there. So, then those concepts may also be analogously 

used for the case of power-law fluids and then we can develop certain kind of velocity 

profiles as we have done, as we are going to do for the Newtonian fluids as well. 

So, what we are going to do? We are going to how; we are going to use the well-established 

concepts of a turbulent flow of a Newtonian fluids, what is the corresponding shear stress 

at the walls when the fluid is flowing through pipes. So, those expressions we try to write, 

and then simplify for the case of Newtonian fluids and then get the expression for the 

velocity profile. So, those concepts we are analogously going to use for the case a power-

law fluid also. 

So, first what we are going to do? We are going to see basics of this you know flow regions 

etcetera for the case of turbulent flow through pipes, especially with the aim to get the 

frictional forces or the shear stress at the wall, right or close to the wall, ok. From those 

point of view, we are going to have a discussion. We are not going to have a discussion in 

the rigorous manner of whatever the rigorous chaotic turbulent flow is taking place. 

So, then in general what happens in the case of Newtonian fluid flow through pipes, and 

then flow is under turbulent conditions. What we can have? We can divide the flow into, 

we can divide the flow into 3 categories or 3 regimes we can categorize. 
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One is the laminar or viscous sub-layer which is at the wall which is close to the wall of 

the pipe. Another one is the turbulent region which is at the center central core of the pipe 

or the central most of the central core of the pipe cross section is under turbulent 

conditions.  

And then between this turbulent region and then laminar sub-layer regions there is a 

transition region. So, transitional or buffer zone, and then finally, turbulent core zone. 

These three are there in general. So, pictorially if you see we can have like this, right. 
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So, now, what we have? We have a pipe the tube. So, center axis of the tube is this top 

line. We have taken only half of the side of the tube, half cross section only we are we are 

taking two-dimensional and then we are out of this two-dimensional only, we are out of 

this 2D pictorial representation also, we are taking only lower half of the pipe. 

So, now coordinate system if you see the flow direction is z-direction and then vertical 

direction is r-direction. And then bottom line whatever is there that is nothing but the tube 

wall. Top line is nothing but the tube axis. In between the flow is taking place, right. So, 

now the flow is prevailing flow under these conditions are you know turbulent conditions. 

So, then you have a bigger bigger eddies, you know smaller eddies kind of things are in 

general possible everywhere within the pipe, right. 

So, they are very different in the size, shape, etcetera you cannot generalize them, right. 

So, they may be forming immediately breaking down those kind of things are in general 

possible when it comes to the turbulent eddies like this, right. So, then not necessarily be 

circles are shown, they very different way, it is, we cannot generalize them. 

So, these eddies are everywhere in the pipe cross section. It is not that they are only at the 

turbulent core, in the middle of the turbulent core. But their frequency, their influence is 

more at the central cross section of the pipe that is towards the turbulent core. Whereas, 

their intensity is there and then frequency is very less at the laminar sub-layer, ok. So, that 

we may or we are going to make use, ok. 

So, now, this turbulent eddies whatever are there, they are more frequent and then very 

chaotic in the main turbulent core. But they are infrequent and their influence is very small 

in the laminar sub-layer. 
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Why it is? Because, so at the tube wall what we have in general? We have a no slip 

condition; that means, the very first layer attached to the tube wall is having velocity 0, 

right. So, even the velocity at the center turbulent core is you know very high velocity, but 

at the wall the very first layer of the fluid attached to the wall is having 0 velocity, right. 

So, irrespective of what is the other velocity at the center of the pipe, ok. 

So, even at the center of the pipe we have the chaotic turbulent flow, at the wall we are 

having 0 velocity because of the no slip conditions, right. And then the flow is in the z-

direction here, ok. So, now, what happens? As you move along in the radial direction from 

wall towards the center, you know velocity gradually increases. 

But there is some region, so then where the velocity is very very small, right. Rather, 

velocity is very very small what we can say; so, in there is a region where the shear stress 

is you know change because now the flow is in z-direction. So, shear stress whatever this 

τrz is there, so that is also gradually changes as we move, as we change the value of R, 

from r = R to r = 0 if you move, in terms of r if you write this is r = 0, this is r = R. 

So, from r = R shear stress whatever is that τw is maximum value that we know. This 

maximum value gradually decreases as you move towards the center of the pipe. But we 

can separate out the layer where the change in the shear stress some maximum tau values 

to decreasing, that decrement is very very small to certain layer only, right. So, that layer 



we are separating out and then we are calling it laminar sub-layer which is having certain 

thickness yL, right. 

So, this y coordinate we are drawing you know in a reverse direction of R, ok. So, R is you 

know increasing to from center to the wall, whereas the y is increasing from wall to the 

center, ok. So, just for our convenience for easiness we are drawing like this way, ok. 

So, now, at the close to the wall of the pipe, what we are having? We are having this 

laminar sub-layer under which the change in shear stress, whatever the change in shear 

stress is very very small, because the flow is in z-direction and then the velocity at the wall 

is 0. And then that velocity is gradually increasing, but the close to the wall the layers fluid 

layers are having a very small velocity. 

So, then what we have this, that; why they why the fluid layers close to the wall, they are 

having very small velocities? Because the change in shear stress is very very small very 

very small. Compared to the τw value compared to τw it gradually decreases, but that 

decrement is very very small that we can neglect. So, that we can assign one single constant 

value of tau w are shear stress tau value for that laminar sub-layer. 

If the shear stress is constant for a given region, so then obviously, shear rate is also going 

to be constant. If both of them are constant, so then velocity profile is expected to be linear, 

linear velocity profile, right. So, that means, whatever the retarding force at the wall is 

there, so the retarding shearing force at the wall is these. 

So, that is counter balanced by the accelerating shearing force at the top layer of the 

laminar sub-layer, right. So, that is counter balance and the net shear stress is going to be 

negligible within this laminar sub-layer because the flow is dominating in the z-direction 

and then within this close to the wall, this region the change in shear stress is very very 

small. And then net shear rate or net shear stress is 0 here. So, if net shear stress is 0; that 

means, we can assign one single constant value of the shear stress. Let us call it that τw, 

ok. 

So, if the shear stress is constant, shear rate would also be constant and then accordingly 

the velocity profile has to be linear. If both shear stress and then shear rate has to be 

constant, so then velocity profile has to be linear, then only it is possible as long as the 

laminar flow conditions prevail. 



So, even at the center of the core, would we have the turbulent flow, at the tube wall, at 

the pipe wall, the velocity is very small that you are having almost laminar flow conditions. 

Why? Because of the no slip condition at the wall, and then a few layer close to the wall 

they are still having very small velocity. So, then we can call that, that layer is a laminar 

or viscous sub-layer. 

Then, immediately after crossing this laminar zone it is not possible the turbulent zone 

would be there. So, there will be a kind of buffer region or transition zone is there. So, let 

us call that thickness of that region is yT. And then after this yT whatever is there, so that 

is nothing but the turbulent core. So, that is nothing but the turbulent core, ok. 

So, now, what are we going to see now here? So, we are going to develop velocity profile 

for this region, what is V? What is V in this region transition zone? And then what is V in 

this turbulent region? But, all these close to the wall. In the turbulent region also, we are 

going to take a region which is close to the transition zone, so that we can say that that is 

close to the wall that is close to the wall. 

So, whatever the velocity profile that we are going to develop for the turbulent core, so 

that is valid in the turbulent core region, but that towards the wall region, towards the wall 

region only it is valid. Towards the center region it is not valid, ok. 

So, with this understanding I think we can start moving to the mathematical representation 

of these things and then get the equations. So, first we do for the case of Newtonian fluids, 

ok. So, now, this pipe geometry we have taken. So, though it is r-z coordinates. So, then 

now we are interested to know the velocity profile towards the wall. So, we have defining 

another coordinate, y coordinate here, so which is nothing but y = R - r, right. 

If this r is varying value of R value from 0 to R. If r = R that is tube wall, so then y = 0. 

So, this r and then y are in two opposite directions opposite to each other. So, whatever we 

discussed in the previous slide have been provided here. 
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So, that is laminar sub-layer or viscous sub-layer is a thin layer which extended between 

0 to yL values, which is next to the pipe wall in which effects of turbulent eddies are 

negligible. Negligible only we are saying. They are existing, but they are not you know 

there is no reason in the pipe without eddies. Only thing that in the laminar layer are close 

to the wall, the frequency of eddies or the size of eddies or their effect is very very small 

because of the no slip conditions at the wall, ok. 

So, because of no slip boundary condition at wall, fluid in contact with surface is at rest. 

Thus, the fluid close to the surface is moving at a very low velocity and any changes in 

momentum as it flows in z-direction is extremely small, is extremely small because the 

fluid close to the surface is moving at very low velocity, and then that momentum that 

momentum that fluid velocity is also in the z-direction. 
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So, consequently whatever the net shear force acting on any element of fluid in this zone 

must be negligible, that is the retarding force at its lower boundary being balanced by the 

accelerating force at its upper boundary. So, thus, the shear stress in the fluid near the 

surface must approach a constant value. It is not one single constant value. It is very small. 

The change is very small.  

So, then we can assign one’s constant value and then we can assign wall shear stress the 

as that constant value. So, if the shear stress is constant then the shear rate in this layer 

must also be constant. So, then, obviously, velocity variations must be linear in the laminar 

sub-layer all that we have discussed in the picture. 
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So, this sub-layer occupies obviously very small fraction of total cross section area. The 

yL is very very yL thickness, yL whatever is there that is very small. It has no sharp upper 

boundary and its thickness is difficult to define in general. And then it was assumed that 

this sub-layer had a definite thickness and was always away from eddies at layer before 

having you know sophisticated advanced measurement techniques. 

But after advancement of a sophistic velocity measurement techniques, it was found that 

velocity fluctuations in the sub-layer also there because of the occasional eddies that are 

coming from the turbulent core and then moving into the laminar sub-layer. So, that is very 

close to the wall, eddies are infrequent but there is no region in the pipe that is completely 

free from eddies. So, within the viscous laminar sub-layer viscous shear is important, and 

eddy diffusion if any present that is very small or minor, ok. 



(Refer Slide Time: 35:14) 

 

So, transition zone it extends between yL to yT. It separates the so called laminar sub-layer 

and then fully turbulent core. Whereas, the turbulent core is extend from yT to R value that 

is towards the center of the axis. It occupies bulk of the fluid stream where momentum 

transfer is attributable entirely to random eddies. And then viscosity effects are negligible, 

right. So, it extends between yT to R values. 

So, now, what we understand here? We understand in the laminar sub-layer only molecular 

viscosity is dominating, right. Whereas, in the turbulent core, but close to the wall we are 

taking consideration of the eddy viscosity is predominating or you know its contribution 

is much higher compared to the molecular viscosity.  

So, then we take only eddy viscosity under consideration to get the velocity profile for the 

case of turbulent flow, but close to the wall, ok. So, these two things we are going to take 

under consideration. 
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So, turbulent flow of Newtonian fluids in pipes that we take as a basis, so that it will be 

easy for us to move on to the power-law fluids once we have the basics of the Newtonian 

fluids. So; obviously, shear stress at any point in the fluid, at any distance y from the wall 

includes viscous and turbulent contributions because the flow is turbulent flow here. So, 

magnitude of these contributions vary with distance from wall. So, we need to have an 

expression for the shear stress. 

So, τyz is this expression that we can have. So, this 𝜇 whatever is there. So, now 
𝜇

𝜌

𝑑

𝑑𝑦
(𝜌𝑣𝑧) 

if you take 𝜌 constant. So, then  
𝑑𝑣𝑧

𝑑𝑦
. This 𝜇 indicates the viscous contribution to the shear 

stress whereas, this E 𝜌, E x 𝜌 whatever is this. So, that gives the turbulent contribution 

for this shear stress expression, ok. 

So, there are several semi-analytical theoretical approaches are there. So, this is one of the 

best approach that has been found to be you know valid compared to the experimental 

results. As we are going to see further anyway in the coming slides, ok. 

So, Prandtl postulated this E is nothing but 𝑙2|
𝑑𝑣𝑧

𝑑𝑦
|. So, E x 𝜌 is nothing but the turbulent 

viscosity, alright. That is turbulent viscosity is nothing but 𝜌𝑙2 (
𝑑𝑣𝑧

𝑑𝑦
)

2

, if 
𝑑𝑣𝑧

𝑑𝑦
 is positive, 

ok, where l here is nothing but mixing length which is analogous to the mean free path of 



molecules and then it is assumed to be directly proportional to the distance from the wall, 

so l = ky, k is a constant, right. 
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So, now shear stress equation for flow through pipes, what we have developed? When we 

are deriving the velocity profiles for the laminar flow through pipes, what we have 

developed; τrz is nothing but (
−∆𝑝

𝐿
)

𝑟

2
 this is what we have seen. And then from here we get 

τw = (
−∆𝑝

𝐿
)

𝑅

2
 this is what we have seen. 

And then what we have seen further? This expression when you developed, especially this 

one τrz = (
−∆𝑝

𝐿
)

𝑟

2
, we have not taken any concentration about you know nature of the fluid 

etcetera. So, then it is valid for all the fluids. And then from this expression what we get? 

𝜏𝑟𝑧

𝜏𝑤
=

𝑟

𝑅
, right. 

So, that means, r if you write in terms of y coordinates because we are writing everything 

all the equation in terms of y and z coordinates because y coordinates is close to the from; 

we are defining from the wall and then at the wall what is happening, how the velocity 

profile are being varied that we can easily calculate as per the analysis that we have 

discussed previously. So, that is the reason r we are representing in terms of y.  



So, how we have defined y we have defined as R - r. So, then in place of r we can write R 

- y. And then τrz should be replaced by τyz. Then, whatever that previous equation that we 

have τrz = (
𝜇

𝜌
+ 𝐸) 

𝑑𝑣𝑧

𝑑𝑦
 this expression here. 

So, now here what are we writing? This from here, we are writing this expression as τrz. 

From here, what we are writing? 𝜏𝑟𝑧 =
𝑟

𝑅
𝜏𝑤. So, that is 𝜏𝑤 and then r is nothing but 

𝑅−𝑦

𝑅
, 

right is equals to τrz that is nothing but τyz. So, τyz is nothing but what we get in the previous 

slides. We have written τyz = (
𝜇

𝑅
+ 𝐸) 

𝑑𝜌𝑣𝑧

𝑑𝑦
. This is what we have written. 

And then, we have also seen that this E is nothing but 𝑘2𝑦2 𝑑𝑣𝑧

𝑑𝑦
, r we have found this E is 

nothing but 𝑙2 𝑑𝑣𝑧

𝑑𝑦
, and then l is nothing but k x y and that is what we have seen. So, all that 

we substitute. So, then this is what we get. 

Now, in the laminar sub-layer this contribution is negligible. This contribution whatever, 

this multiplied by 𝜌 whatever is there, this multiplied by 𝜌 whatever is there this is nothing 

but eddy viscosity or turbulent viscosity contribution. So, that is very negligible if the if 

we are considering the laminar sub-layer which is the layers few fluid layers which are 

attached to the wall. 

So, we can strike out for we can take up this one for the case of laminar sub-layer. So, then 

we have E = 0 and then R - y approximately close to the R. Then τw = (
𝜇

𝜌
) 

𝑑𝜌𝑣𝑧

𝑑𝑦
 only, we 

are going to have for the laminar sub-layer. 

So, now here τw is a constant value. It is not changing. τrz or τyz, it is changing with the y 

or r directions, but τw is not changing, it is one constant value. 𝜇 is constant, 𝜌 is constant. 

So, now, from here what you can do? The 𝜌 is not changing with you know it is 

incompressible fluid. So, then 𝜌, if you cancel out so then what you get from here? τw by 

𝜇 =
𝑑𝑣𝑧

𝑑𝑦
. So, that means, 𝑣𝑧 =

𝑑𝑣𝑧

𝑑𝑦
=

𝜏𝑤

𝜇
 you are having. 

So, when you integrate it, you will get 𝑣𝑧 = (
𝜏𝑤

𝜇
) 𝑦 + 𝑐. But at y = 0, vz is 0. So, if you 

substitute y = 0 in this equation, right-hand side 0 + c and then at y = 0 that is at the wall 



vz is 0. So, left-hand side is also 0. That means, constant c is 0; that means, we get 𝑣𝑧 =

(
𝜏𝑤

𝜇
) 𝑦. 

So, what we understand here? As we discussed previously, if the change in shear stress 

within the laminar sub-layer is very very small or negligible, so then we can assign a one 

constant value of the shear stress. And then if we assign the wall shear stress is as that 

constant value of the shear stress, then velocity profile has to be linear and then that linear 

velocity profile you can get using this expression. 

Remember this is only for laminar sub-layer close to the wall. Very few fluid layers at the 

wall which are moving with very very small flow rate, even if we have a turbulent flow at 

the center of the pipe, ok. 
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Now, this equation what we do? We try to introduce frictional velocity or we are just trying 

to non-dimensionalize it. Usually, velocities are being non-dimensionalized using the free 

stream velocities or upcoming you know inlet velocity condition whatever in general, but 

here the velocity profile we are developing towards the wall, towards the wall only it is 

not for the entire cross section area of the pipe. It is towards the wall, close to the wall only 

we are developing. 

At the wall, whatever the wall shear stress is there or the frictional forces are there they 

are important. So, that is the reason, the velocity we are trying to non-dimensionalize using 



the frictional velocity or frictional velocity v star which we are defining as square root of 

tau w by rho, because it has to be known thing, right.  

For a given for a given 
∆𝑃

𝐿
value, tau w is known constant value, right. So, tau w is known, 

rho is known. So, frictional velocity we are defining or non-dimensionalizing of the 

velocity we are doing using friction velocity v* and that is defined as √
𝜏𝑤

𝜌
. 

We are not non-dimensionalizing the velocity using the free stream velocity or inlet 

velocity in general. Why are we not doing that one? Because all these velocity profile that 

we are going to develop whether it is laminar flow or turbulent zone, but that is all close 

to the wall only. And then at the wall, frictional forces at the wall shear stress is more 

important engineering parameter that is the reason. 

Now, in this equation what we can have? 𝑣𝑧 = (
𝑦

𝜇
) we can write as it is. In place of 𝜏𝑤, I 

can write rho 𝜌(𝑣∗)2. And then, next term 
𝑣𝑧

𝑣∗, I am taking from the, right-hand to the left-

hand to the left-hand side. So, then 
𝑣𝑧

𝑣∗ =
𝑦𝑣∗𝜌

𝜇
. This is what we have, right. 

So, now, this is dimensionless, and then right-hand side this is also dimensionless distance. 

So, let us designate them as 𝑣+ and then 𝑦+. This 𝑦+ may be seen as a kind of Reynolds 

number in terms of y values, y, in terms of y coordinates and then frictional velocity, ok.  

So, this is the velocity profile in terms of a dimensionless coordinates, dimension 

dimensionless velocity and then dimensionless distance if you have for a given condition. 

So, then velocity profile for the laminar or viscous sub-layer is nothing but 𝑣+ = 𝑦+. And 

then what are this 𝑣+? 𝑣+is nothing but 
𝑣𝑧

𝑣∗ and then 𝑦+ is nothing but 
𝑦𝑣∗𝜌

𝜇
. 
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Now in turbulent core, but close to the wall, still close to the wall. As I mention in the 

picture one of the previous slides, turbulent core also velocity profile we are developing, 

but that we are taking the region close to the wall that is just after the transition layer, ok. 

So, for that also we can take 
𝑦

𝑅
 is very very less than 1 because y is nothing but R - r. So, 

then 
𝑦

𝑅
=

𝑅−𝑟

𝑅
, so that is 1 −

𝑟

𝑅
. If it is closed to the wall, so then r should be close to the R 

value, so then it is coming approximately 0. So, that means, 
𝑦

𝑅
 is very very less than 1, we 

can write. 

And then 
𝜇

𝜌
 that is the viscous contribution in the shear stress is going to be very small 

compared to the E or you know E 𝜌 which is nothing but the turbulent contribution in the 

shear stress expression, right. 

So, this is what 𝜏𝑤 = 𝜏𝑟𝑧
𝑅

𝑟
 we are having 

𝑅

𝑟
, we keep as it is. 𝜏𝑟𝑧 in terms of 𝜏𝑦𝑧 expressions 

this is what we have already seen in the previous slides. We are substituting here. Now, 

this 
𝜇

𝑟
 is very very small, so then we can strike off in the first case. And in second case is 

that you know as y increasing, y increasing what happens velocity is increasing; that 

means, 
𝑑𝑣𝑧

𝑑𝑦
 is going to be positive close to the wall. 



So, then we can take of the modulus from this modulus of 
𝑑𝑣𝑧

𝑑𝑦
. So, then we can have (

𝑑𝑣𝑧

𝑑𝑦
)

2

 

by taking that 𝜌 as a constant, by taking that rho as a constant. So, then what we get? This 

expression 𝜏𝑤 =
𝑅

𝑟
[𝜌𝑘2𝑦2] (

𝑑𝑣𝑧

𝑑𝑦
)

2

right. 

So, now, close to the wall 
𝑅

𝑟
 is approximately 1, if it is close to the wall 

𝑅

𝑟
 approximately 

we can take close to the 1. Then, we have, 𝜏𝑤 this value. Now, we introduce frictional 

velocity 𝑣∗ = √
𝜏𝑤

𝜌
 or in place of 𝜏𝑤 we can write (𝑣∗)2𝜌. Right-hand side is as it is. So, 

now, this 𝜌 and then 𝜌 if you cancel out from both the sides, then all the terms are having 

square.  

So, then when you remove the square. So, then you have 𝑣∗ = 𝑘𝑦
𝑑𝑣𝑧

𝑑𝑦
, that if you take like 

𝑑𝑣𝑧

𝑑𝑦
=

𝑣∗

𝑘𝑦
, now you can integrate. So, then you get 𝑣𝑧 =

𝑣∗

𝑘
ln(𝑦) + 𝐵0. But this 𝐵0you know 

you cannot evaluate, you cannot evaluate, because you do not have the boundary condition.  

You have the boundary condition right at the wall, right; you have the boundary condition 

at the center of the wall. That is at r = R, you are having boundary condition vz = 0, at r = 

0, you know you have the vz = vz max boundary condition. 

But this relation is not at this location is not at this location. It is close to the wall, but not 

at the, right at the wall. So, then you do not have any boundary condition to get this 

constant. So, then what we have to do?  
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We introduce here again whatever the non-dimensionalization is there. 

So, that is  
𝑣𝑧

𝑣∗ we write as 𝑣+ and then wherever 
𝑦𝑣+𝜌

𝜇
 is there, we are going to write 𝑣+ in 

this equation, which is the last equation of the previous slide. So, first what we do? We 

divide both sides by 𝑣+. So, then we have 
𝑣𝑧

𝑣∗
=

1

𝑘
ln(𝑦) +

𝐵0

𝑣∗
, right.  

So, left-hand side is ok. In the right-hand side, what we do? We subtract 
1

𝑘
ln (

𝑣∗𝜌

𝜇
) and 

then we add 
1

𝑘
ln (

𝑣∗𝜌

𝜇
) and then whatever the added part is there, that is added with 

1

𝑘
ln(𝑦). 

So, then we can write 
1

𝑘
ln (

𝑦𝑣∗𝜌

𝜇
) right. And then last term 

𝑣0

𝑣∗
 is as it is. 

So, now, why we are writing? Because we wanted to write in terms of 𝑦+. We do not want 

to write in y. So, now, this term we can write as 𝑦+. So, 𝑣+ =
𝑣𝑧

𝑣∗ is nothing but 𝑣+ = 𝐴 

ln (
𝑦𝑣∗𝜌

𝜇
) is nothing but 𝑦+ + B. So, now, A is nothing but 

1

𝑘
 and then B is nothing but 

these two terms, 
𝐵0

𝑣∗ −
1

𝑘
ln (

𝑣∗𝜌

𝜇
) is nothing but B. 

Now, this is the velocity profile for the turbulent core, but close to the wall, but close to 

the wall. But still this A and B constants are not known. So, now, what we do? We compare 

with experimental results and then try to get this A and B constants, ok. So, from the 

experimental observation it has been found that A is nothing but close to the 2.5 and then 



B is nothing but close to the 5.5 value. A is independent of pipe roughness whereas, B is 

dependent on the pipe roughness, ok, right. 

So, that is for the turbulent core. But transition zone, there are no such analysis, because 

in the transition zone neither we can take off the viscous contribution and shear stress nor 

we can take off the eddy or the turbulent viscosity contribution in the shear stress 

expression. Both we have to include, when we include both we cannot do theoretical 

analysis, analytical analysis to get the velocity profile, ok. That is not possible. 
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However, based on the experimental results what people have found that laminar sub-layer 

extends up to 𝑦+ is approximately 5 and then turbulent core begins at 𝑦+approximately 

30. So, between 𝑦+values 5 to 30 whatever is there, so that region is taken as a transition 

zone and then in that zone 𝑣+ = 5 ln(𝑦+) + 3.05 is found to be suitable velocity profile. 

This is from the experimental results when they have represented in terms of empirical 

correlations. So, for the transition zone also velocity profile is having the same form as a 

turbulent core velocity profile, but only that constants A and B are different here, ok. 

So, the previous equation for turbulent core whatever is there that is 𝑣+ = 𝐴(𝑦) + 𝐵, does 

not predict expected 0 velocity gradient or maximum velocity at the center of the pipe. At 

the center of the pipe velocity has to the maximum, has to be maximum or its gradient has 

to be 0. But this all this analysis we are doing close to the wall. We are not doing at the 



center of the pipe. So, they are not predicting that 0 velocity gradient at the center of the 

pipe. However, this is not going to have any influence on volumetric flow rate versus 

pressure drop relationships anyway. 

So, now, that is for the turbulent flow of a Newtonian fluid flowing through pipe. If the 

fluid is power-law fluids, so then what we have to do? 

(Refer Slide Time: 54:56) 

 

So, many people, many researchers, what they have done? They have tried to modify the 

definitions of 𝑦+ and 𝑣+ Brodkey tried to provide polynomial approximation for velocity 

profile. But, however, we take a similar analysis whatever we have done for the case of 

Newtonian fluid still now, and then try to get the expressions for the power-law fluids also. 

So, within the laminar sub-layer velocity linearly varies with the distance from wall. So, 

then what we have seen 
𝑑𝑣𝑧

𝑑𝑦
=

𝜏𝑤

𝜇
 or that same we can write it as 

𝑣𝑧

𝑦
 or 𝑣𝑧 we got 

𝜏𝑤

𝜇
𝑦, right. 

So, for the power-law fluids what we have? This expression, 
𝜏𝑤

𝜏𝑟𝑧
=

𝑅

𝑟
.  

So, from here what we can write? 𝜏𝑟𝑧 = 𝜏𝑤
𝑅

𝑟
. So, 

𝑅

𝑟
 we can write 

1−𝑦

𝑅
 and then 𝜏𝑤 is as it 

is because we are writing in terms of y coordinates. And then right-hand side, 𝜏𝑟𝑧 we have 

to write in terms of 𝜏𝑦𝑧 for the power-law fluids. For the power-law fluids 𝜏𝑦𝑧 is nothing 

but the  m (
𝑑𝑣𝑧

𝑑𝑦
)

𝑛

, ok. 



So, now, here what we can write? Since, close to the wall 
𝑦

𝑅
 is very very smaller or close 

to the 0 value. So, then 
1−𝑦

𝑅
 is going to be approximately close to 1. So, then we can have 

𝜏𝑤 =  m (
𝑑𝑣𝑧

𝑑𝑦
)

𝑛

. 
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Now, again, we can do the integration and then apply the boundary condition y = 0, at y = 

0, vz = 0, then we get 𝑣𝑧 = (
𝜏𝑤

𝑚
)

1/𝑛

y. Now, here again if you apply frictional velocity 𝑣∗ =

√
𝜏𝑤

𝜌
 in order to non-dimensionalize this above equation and then do some simplification, 

what you get? You get 𝑣+ = (𝑦+)1/𝑛.  

Whereas, this v+ is nothing but 
𝑣𝑧

𝑣∗, but 𝑦+ is nothing but 
𝑦𝑛(𝑣∗)2−𝑛𝜌

𝑚
 which is again may be 

taken as a Reynolds number for the power-law fluids, but defined in terms of a friction 

velocity and then y coordinate, ok. So, now, here if you substitute n = 1. So, then we are 

going to get 𝑣+ = 𝑦+ which is nothing but same as a kind of you know Newtonian case. 

Previously we have done. 
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So, for turbulent core Dodge and Metzner used a similar approach that was used for the 

Newtonian fluids and then provided this correlation. In this correlation, when they 

substituted n = 1 they got this Newtonian case expression that is 𝑣+ = 𝐴 ln(𝑦) + 𝐵, but A 

they got 2.47, rather getting 2.5 and then B they got 5.7 rather getting 5.5. 

But, this small discrepancies are coming because they have used experimental Q versus 

−∆𝑝 information to get this correlation rather than using the velocity measurements, ok 

because of that small discrepancies are coming. 
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Then, Bogue and Metzner, they used velocity measurements to modify equation number 

16 because velocity measurement if you are going to use directly to get the velocity profile 

expressions empirically, so that is going to be more reliable rather than using Q versus 

−∆𝑝 expression. 

So, the same thing this Bogue and Metzner, they have done they have used the velocity 

measurements and then they modified the Dodge and Metzner equation, and then they got 

this expression. Whereas, here you know we have some C and then I. So, they are given 

as C is given by this expression. C function of y star f is given by this expression. Whereas, 

in this expression we have this f, so that f is given by this correlation that we have seen, 

this you know previous lecture, right. 

This is nothing but friction factor for power-law fluids flowing through pipes, if the flow 

is under transitional or turbulent flow conditions. Whereas, this I which is function of n 

and ReMR, they have given tabulated values like this. For different n values as ReMR 

changing how this I value is changing that is given here, right. 
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Finally, Bogue and Metzner also plotted this velocity distribution rather plotting them in 

terms of 𝑦+ versus, rather plotting the velocity distribution in terms of 𝑣+versus 𝑦+only. 

They have also plotted 𝑣𝑧/𝑣 versus y/R as well. And then, they found when they plotted 

𝑣𝑧/𝑣 versus y/R there is no distinguishable difference between Newtonian and power-law 

fluid velocity profiles, ok. 



But, however, both the analysis whatever Dodge and Metzner, and Bogue and Metzner 

have done, they have did not consider any transition layer at all. 
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So, for the transition zone finally, the Clapp combined Prandtl and von Karman 

approaches, and they reported following expression for the velocity distribution for the 

transition and turbulent regions. This is for the transition region and this is for the turbulent 

region, right, where 𝑦𝑇
+ in this equation you know you have to evaluate as intersection 

point of about two equations, ok. Most of them are empirical, ok. 
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So, finally, what we understand laminar sub-layer extended up to a value of 5n according 

to Clapp, and then these values numerical constants whatever are provided in their analysis 

they are valid between narrow range of n between 0.7 to between 0.7 and 0.81, for n = 1 

𝑦𝑇
+  they are getting approximately 22. But it has to be 30, if you are comparing with the 

Newtonian counterparts. So, then you know slightly lesser value, ok. 

However, any of this analysis whether Newtonian or the power-law cases that we have 

seen in today’s lecture, they are failed to report 
𝑑𝑣𝑧

𝑑𝑦
= 0 at r = R or at r = 0, r = 0 because 

these all this analysis are at R close to the wall region only. They are not valid towards the 

center of the pipe. 
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References; the entire lecture is prepared from this excellent book by Chhabra and 

Richardson. Other useful references are given here. 

Thank you. 


