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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of this lecture is Bingham Plastic Fluids Flow through Pipes. We have started discussing 

how to obtain the velocity profile, volumetric flow rate expressions and then friction factor 

equation etcetera when different types of generalized Newtonian fluids are time 

independent non-Newtonian fluids are flowing through pipes. 

So, in this process we have already seen what are the corresponding equations for the 

velocity profile, volumetric flow rate, friction factor etcetera when the fluid is power law 

type and Ellis model fluid ok. These two things for these two fluids we have already seen 

in the previous two lectures. 

So, now we have a kind of recapitulation of those equations before going in today’s lecture 

where we will be discussing about the flow of Bingham plastic fluids through circular 

pipes. 
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So, for the case of Power-law fluids we obtain the shear stress expression as this one 𝜏𝑟𝑧 =

(
−∆𝑝

𝐿
)

𝑟

2
 that is shear stress linearly varying with the radial coordinate r ok. If you wanted 

to know the maximum shear stress that is at wall. So, then you substitute r = R in this 

equation then you will get 𝜏𝑤 = (
−∆𝑝

𝐿
)

𝑅

2
. 

Now, in this equation in place of 𝜏𝑟𝑧 we substituted 𝑚 (
− 𝑑𝑣𝑧

𝑑𝑟
)

𝑛

and then we simplified to 

get the velocity profile that after simplification and then applying the boundary condition 

this is what we get. And then in this equation if you substitute r = 0 you will get maximum 

velocity equation ok. And then volumetric flow rate we got this expression for the case of 

power law fluids corresponding wall shear rate we found as 
4𝑄

𝜋𝑅3
{

3𝑛+1

4𝑛
}. 
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Then average velocity we obtain like this that is 
𝑄

𝜋𝑅2 when we did we got this expression. 

Maximum velocity we got this expression by substituting r = 0 in vz expression, then 

friction factor we got this expression we have written in a form 
16

𝑅𝑒
 form. So, that 

analogously we can define you know what is Reynolds number for power law fluids 

because 
16

𝑅𝑒
 is the friction factor for Newtonian fluids flowing through pipes. So, the 

analogously we have written here also. So, this RePL or ReMR is nothing, but this particular 

expression. 
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Similarly, for Ellis model fluid we obtain the velocity profile as this and then maximum 

velocity by substituting r = 0 in this equation we get this one. Then volumetric flow rate 

we got this expression, dividing this expression by 𝜋𝑅2 we got the average velocity this is 

𝜏𝑤𝑅

4𝜇0
{1 + (

𝜏𝑤

𝜏1
2⁄

)

𝛼−1

.
4

𝛼+3
} then friction factor we got this expression. And then we found 

that friction factor is not explicit. So, it has to be obtained by trial and error approach ok. 

Now, we will be having a generalized discussion, how would be the velocity profile 

looking like when a viscoplastic fluid flowing through pipe. Then we apply specific type 

of viscoplastic fluid like Bingham plastic and Herschel-Bulkley fluids and then obtain the 

corresponding volumetric flow rate expression once we are getting the velocity profile 

expressions. So that is what we are going to see now. 
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So, let us say we have the same situation where we have infinitely long cylinder ok. So, 

the flow is taking place because of the pressure. So, let us say if this is your center of the 

circular pipe. So, then if you take coordinate directions like this, this is r, this is z. So, vz 

is there any and it is function of r, vθ is 0, vr is 0 at z = 0 P = P0 at z = L P = PL right. 

Because of this pressure difference the flow is taking place and then we have taken a region 

where the flow is fully developed and then laminar flow right. 

So, now previously we have seen if it is a Newtonian fluid then we get the parabolic profile, 

if it is shear thinning fluid then we get flatter kind of profile and then if it is shear 

thickening fluid, then we get a sharper kind of profile that is what we have seen. However, 

irrespective of the type of fluid shear stress linearly increasing with increasing r that is 

what we have seen. 

But now how about this viscoplastic fluids? Because, this viscoplastic fluids we know the 

one of the major important characteristic of the material is yield shear stress. This yield 

shear stress is the characteristic of the material ok it is available right you know. So, for a 

given gamma dot range if the fluid is displaying a viscoplastic behavior. So, then 

corresponding yield stress for that particular fluid is available from rheological data. So, 

that is a characteristics of the material. 

And then what we know? If the applied stress τ is less than this yield stress what we have 

seen? There will not be any deformation there will not be any deformation that is whatever 



− 𝑑𝑣𝑧

𝑑𝑟
 is there or 𝛾 ̇ is there that would be 0 right. But however, if applied stress is gradually 

increases and then it crosses τ0 then there will be a kind of deformation and then we will 

be having τ versus 𝛾 ̇ relation.  

If it is Bingham plastic then we have a linear relation; if it is Herschel Bulkley fluid then 

we can have you know non-linear relation after crossing this τ0 ok. So, this is what we 

know, but what is this τ expression? τ expression we know if it is one dimensional laminar 

flow through pipes, then we know 𝜏𝑟𝑧 is nothing, but (
−∆𝑝

𝐿
)

𝑟

2
.  

Because this we know it is irrespective of the nature of the fluid because till this point or 

till getting this expression, we did not apply the rheology of the fluid. So; that means, for 

this case also we are going to have a same profile 𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑟

2
 that is 𝜏𝑟𝑧 is linearly 

increasing by increasing r right. So, then that we have like this expression. 

So, now this is our 𝜏𝑟𝑧 right. Now here at the wall 𝜏𝑟𝑧 is maximum that is τ wall at the 

center 𝜏𝑟𝑧is 0. So, as we moving towards the wall from the centre of the pipe from r = 0 to 

r = R right; that means, what happens? There would be certain location. So, now let us say 

here at certain level here if you measure the shear stress would be some value at this level 

it may be some further higher value like this you know it is gradually increasing. 

So, we have to identify a point where the shear stress is equals to the yield stress. Yield 

stress is having some value let us say 10 Pascal or 15 Pascal whatever the yield stress it is 

having. So, that value you are getting when r = rp let us say that is at this location, at this 

location when r = rp.  

So, at r = rp whatever this 𝜏𝑟𝑧 is there is equals τ0. And then we know when the 𝜏𝑟𝑧 < 𝜏0 

there will not be any deformation the material would be flowing as a kind of plug it does 

not deform. So, it move like a solid plug, it move like a solid plug until and unless that 

applied stress 𝜏𝑟𝑧 > τ0. 

So; that means, let us say between r = 0 to r = rp the material is moving with a constant 

velocity constant velocity let us say some constant velocity it is moving with right. So, 

what is that velocity that we come to know right. So, till this up to this point you know the 

material now is having two regions. One region where the material is moving like a plug 



like a solid that is between 0 to rp why because? Because in this region of r that is from r 

= 0 to r = Rp the shear stress applied shear stress is less than the yield stress. 

So, if the applied stress is less than the yield stress. So, then deformation will not be there. 

So, material will be moving like a solid without any deformation and then after crossing 

this rp value applied stress would be more than the τ0 yield stress. So, then deformation 

will start taking place and then as we move towards the wall what will happen?  

The velocity will gradually decrease and then it reaches the 0 velocity vz = 0 at this wall 

right vz = 0 at the wall. So, and then we know at the center the velocity is maximum that 

is vz is max at the center at r = 0 and then same velocity maximum velocity is maintained 

between these two limits of r = 0 to r = rp right. 

So, now this is the primary difference between the previous case and then this case. In the 

previous case where we had only viscous nature of the material there is no plastic nature 

in the materials. So, then material was deforming depending you know whatever the shear 

stress you give only small shear stress also you give start deforming and then there will be 

a kind of deformation.  

But now here deformation will not take place until and unless the applied stress is more 

than the yield stress. So, that reason is this one. So; that means, from 0 to rp from r = 0 to 

rp, the material is moving like a solid plug and then from rp to R value it is moving like a 

fluid deformed fluid with a deformation right. 

So, now whatever the velocity that we are going to get for this kind of viscoplastic fluids 

we are going to derive two equations. One equation for the solid plug region, where a 

constant maximum velocity we have to get another region where the velocity is decreasing 

with increasing the r value that is deformation region. 

So, between r = rp to R it is a deformation region and then between r = 0 to rp it is a solid 

plug like reason ok. So, this is deformation region and this is solid plug like region ok. So, 

that is what we are going to see. So, these two velocity profiles are you know it is not only 

one profile another one is constant value because between r = 0 to rp it is constant and then 

from r = rp to r = R it is decreasing gradually with increasing the r.  



So, these two equations we are going to develop now. So, this is true for any type of 

viscoplastic fluid whether it is Bingham plastic or Herschel-Bulkley fluid or any other type 

of a viscoplastic model fluid model that we use ok include in the Casson model etcetera. 

So, now for this is once you understand after this the mathematically doing simplifying 

the equations and getting the solutions are quite similar whatever we have done in the 

previous two cases of power law fluid and the Ellis model fluid. Only difference is that the 

velocity profile is being divided into two regions one solid plug like core region another 

deformation or deforming region where the velocity is decreasing gradually with 

increasing r. 
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So, viscoplastic fluids through circular pipes due to pressure difference the pictorially the 

same thing whatever I have explained is given here ok. Viscoplastic fluids flow only for 

applied stress exceeds the yield stress, at middle of pipe where 𝜏𝑟𝑧 is less than yield stress, 

solid plug like core flowing between r = 0 to r = Rp.  

And then radius of plug is Rp and it is dependent upon the magnitude of what is the value 

of 𝜏0
𝐵 and then what is the value of τw wall shear stress and then characteristic yield stress 

of the material ok. 
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So, now assumptions for this flow also exactly same as we have done for the previous two 

cases. Because geometry flow nature everything is same except the rheology of the 

material is changing. So, we have infinitely long cylindrical tube L/D is very large so, that 

fully developed flow is there.  

Flow is laminar and incompressible gravity is negligible isothermal conditions, steady 

state symmetric, fully developed flow and then only vz component is existing which is 

function of r whereas vθ vr 0 are very very small compared to the vz that we can neglect 

them. And then only component of shear stress is existing is 𝜏𝑟𝑧 right. 

So, applying these assumptions or constraints to the equations of continuity and then 

momentum, we get some simplified equations as we got in the previous cases. So, equation 

of continuity steady state. 
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So, this term is 0 vr is not existing, vθ is not existing and then fully developed flow. So, 
𝜕

𝜕𝑧
 

of any flow variable is 0. So, then continuity is maintained. Then equation of motion r 

component of equation of motion, it is given here. So, steady state this term is 0, vr is 0, vθ 

is 0 symmetry.  

So, 
𝜕

𝜕𝜃
 of anything is 0, vθ is 0 and then fully developed flow. So, 

𝜕

𝜕𝑧
 of any flow variable 

is 0, pressure we cannot say anything we do not have any generalized pressure conditions 

in most of the continuum flow problems, then only 𝜏𝑟𝑧 is existing. 

So, this is 0 symmetry. So, this term is 0 only 𝜏𝑟𝑧 is exiting. So, this is also 0 and then 

because of the fully developed flow 𝜕𝜏𝑟𝑧 is existing or 𝜏𝑟𝑧 is existing this item is also 0 

because of the fully developed flow. That is 
𝜕

𝜕𝑧
 of any flow variable is 0 and then we are 

not taking gravity into the consideration. So, we have 
𝜕𝑝

𝜕𝑟
= 0 that is p ≠ p(r). 
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So, θ component of momentum equation given here, here also we apply the constraints. 

So, steady state this term is 0, vr is not existing, vθ is not existing symmetry. So, this term 

is 0, vr vθ both are 0 and then fully developed flow. So, 
𝜕

𝜕𝑧
 of anything is 0, pressure we 

cannot say we do not have any generalized boundary conditions anything.  

So, only 𝜏𝑟𝑧 is existing. So, this 𝜏𝑟θ is 0, because of symmetry this term is 0, because of 

fully developed flow this term is 0 and then these two are equals to each other is at least 

for the case of a simple laminar flow. So, then the difference is 0 and then there is no 

gravity. 

So, what we get here? 
𝜕𝑝

𝜕θ
= 0; that means, pressure is not function of θ as well. So, but in 

the flow problem, it is given the flow is taking place because of the pressure difference 

only and then the pressure difference is in z direction. So, that way we understand it is 

varying only z direction and then whether this variation is linear or non-linear what it is 

that we can understand by simplifying this z component of momentum equation that is 

given here. 

So, steady state this term is 0, vr is not there, vθ is not there, symmetry this term is 0, vz is 

existing, but because of the fully developed flow the other term is 0. So, left hand side all 

terms are negligible 
𝜕𝑝

𝜕𝑧
 we cannot cancel out because of the fully developed flow condition. 

Because fully developed flow conditions is for the flow variables not for the scalers like 



temperature and pressure. So, 
𝜕𝑝

𝜕𝑧
 has to be like that and then 𝜏𝑟𝑧 is existing and then it is 

function of r. 

So, we cannot cancel out this term also because of symmetry this term is 0 because of the 

fully developed flow this term is 0, gravity we are not taking into the consideration. So, 

then we have only these two terms. So, 
𝜕𝑝

𝜕𝑧
=

1

𝑟
 

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) and then like previous cases here 

also we have seen left hand side term is only function of z whereas, the right hand side all 

terms are you know function of r. 

So, what we can do? We can treat them individually and independently and then we can 

do the integration to get the required expressions. 
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First we take 
𝜕𝑝

𝜕𝑧
 is equals to some constant and then we integrate. So, then we get p = c1 z 

+ c0 as expression. 
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Now we apply the boundary condition at z = 0, p = P0. So, c0 = P0 at z = L, p = PL. So, c1 

we get (
𝑃𝐿−𝑃0

𝐿
). So, when you substitute this c1 and c0 in this expression we get 𝑝 =

−
∆𝑃

𝐿
𝑧 + 𝑃0 where whereas, −∆𝑃 is nothing, but whatever this −𝑃0 − 𝑃𝐿 ok. 

So, or we can say 
𝜕𝑝

𝜕𝑧
 = c1; that means, you know c1; that means, what we can understand 

that pressure is dependent in the z direction, but the that is a linear dependence ok that is 

a linear dependence that is what we can understand. So; that means, 
𝜕𝑝

𝜕𝑧
 we can take it as a 

constant, so that we can write it as −
∆𝑝

𝐿
. 



(Refer Slide Time: 19:47) 

 

And the subsequent integration of this equation 
𝜕𝑝

𝜕𝑧
=

1

𝑟
 

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧). So, that can be written 

like this. So, r we have taken to the other side. So, then r
𝑑𝑝

𝑑𝑧
 we get right. So, then when 

you integrate you get this one for and then you bringing the r to the right hand side you get 

this expression. 

Now, shear stress cannot be infinite for any value of r. So, c2 has to be zero so; that means, 

shear stress you get (−
∆𝑝

𝐿
) 

𝑟

2
 this is what you get as a shear stress right. So, the same like 

you know previous case and until this point we have not incorporated anything about the 

rheology of the material.  

So, it is valid for Newtonian, non-Newtonian fluid anything provided that the flow 

conditions are you know same like whatever we have listed in the one of these previous 

slides ok. So, wall shear stress if you wanted to find out you substitute r =R. So, then you 

get 
−∆𝑝

𝐿
 
𝑅

2
. 
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So, now this is the expression that we have. So, when r = 0 what you get? 𝜏𝑟 = 0 ok. So, 

𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑟

2
. So, if r = 0, then 𝜏𝑟𝑧 = 0 that is at the centre shear stress is 0 when r = R 

then shear stress is maximum that is wall shear stress, when r = rp then shear stress is 

nothing, but equals to the yield stress; that is the intermediate point or connecting point 

between the two flow regions, solid plug region and then deforming fluid kind of region 

ok. 

So, that is. So, for the plug region 𝜏0
𝐵 = (

−∆𝑝

𝐿
)

𝑅𝑝

2
 for wall 𝜏𝑤 = (

−∆𝑝

𝐿
)

𝑅

2
 and then their ratio 

if you do 
𝜏0

𝐵

𝜏𝑤
 is nothing, but 

𝑅𝑝

𝑅
. This ratio will give you know fraction or portion of the 

cross section which is moving like a solid plug and then remaining portion moving like a 

viscous fluid ok. 

So, now first in we have to get the velocity profile. So, first what we do? We get for the 

deforming region between 
𝑅𝑝

𝑅
. Because that region is how to get the velocity profile is 

known to us and then it is straight forward because we have already done a few problems. 

So, in the annular area or in the deforming area in the or in the region where the fluid is 

deforming, what is the expression for the shear stress? If it is a Bingham plastic fluid 𝜏𝑟𝑧 =

𝜏0
𝐵 + 𝜇𝐵 (

− 𝑑𝑣𝑧

𝑑𝑟
) this is what we know right. 



So, now here in this case what we do? We can rearrange this equation and then get the vz 

expression which is valid between Rp to R that is only deforming region ok. So, this 

equation now if you rearrange 
𝜏𝑟𝑧−𝜏0

𝐵

𝜇𝐵
= (

− 𝑑𝑣𝑧

𝑑𝑟
) right. 

So, in this equation in place of 𝜏𝑟𝑧 we can write (
−∆𝑝

𝐿
)

𝑟

2
 in case of 𝜏0

𝐵 we can write (
−∆𝑝

𝐿
)

𝑅𝑝

2
 

if required otherwise we keep it as it is and then do the simplification. 

So, for 𝜏𝑟𝑧 you have to substitute (
−∆𝑝

𝐿
)

𝑟

2
 because it is varying because it is varying with r 

and then it has to be integrated accordingly with respect to r for the next step to get the 

velocity profile. For 𝜏0
𝐵 you do not need to substitute that equation number 2, here because 

it is constant anyway it is a characteristics of the material, rp is the region up to which it is 

moving like solid plug ok or the point up to which shear stress is not crossing that yield 

stress. 
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So, this expression now 𝜏𝑟𝑧 we can substitute (
−∆𝑝

𝐿
) − (

−∆𝑝

𝐿
)

𝑟

2
. So, then we have this 

expression right now you can integrate this equation. So, we get 
−1

𝜇𝐵
[(

−∆𝑝

𝐿
)

𝑟2

4
− 𝑟𝜏0

𝐵] + 𝑐0 

some constant right. 

So, if the r = R, then vz = 0 because of the no slip condition. So, that we substitute then we 

get c0 is equals to this expression. So, now, this you substitute here in place of c0 and then 



you join the terms 𝑟2 terms together and then r terms together then you get the velocity 

profile this one 𝑣𝑧 = (
−∆𝑝

𝐿
)

𝑅2

4

1

𝜇𝐵
[1 −

𝑟2

𝑅2] −
𝑅𝜏0

𝐵

𝜇𝐵
[1 −

𝑟

𝑅
]. 

Now, if you compare this one with the Newtonian case or before comparing with the 

Newtonian case if 𝜏0
𝐵 is 0 that means, what? In Bingham plastic fluids if you substitute if 

you substitute 𝜏0
𝐵 = 0; that means, you get Newtonian behavior with 𝜇 = 𝜇𝐵 right. So, 

under such conditions this term should be 0 because 𝜏0
𝐵 0. So, then second term in the right 

hand side should be 0 right. 

So, then what you have? You will be having vz is only this part that is (
−∆𝑝

𝐿
)

𝑅2

4𝜇
[1 −

𝑟2

𝑅2
] 

which is nothing, but parabolic profile and then which is for the Newtonian case which is 

for the Newtonian case ok. So, that kind of analysis we can do. 

So, if 𝜏0
𝐵 is very small or negligible. So, then whatever the velocity profile you get, you 

get almost like a parabolic profile almost like if it is completely 0 then; obviously, it is 

Newtonian. So, then you should get the parabolic profile that you are getting by consider 

only first term in the right hand side of this equation right. 

And now this equation is valid if it is having certain value of 𝜏0
𝐵, this is valid between Rp 

to R value of r only right where 𝜏𝑟𝑧 > 𝜏0
𝐵 that we know ok. So, now next point is what is 

vzp or plug like region or vz max because between r = 0 to Rp we know the material is moving 

with a constant maximum velocity right. So, what is that velocity if you wanted to find out 

in this equation you can substitute r = Rp. 

Then simplify. So, you get the plug velocity you cannot substitute r = 0 where all to get 

this expression to get the required expression. Because at the center also at r = 0 also the 

material is having maximum plug like velocity at r = Rp also it is having the same value 

maximum velocity value right. But you know this expression is valid only between Rp to 

r.  

So, you cannot substitute r = 0 in this equation number 6. So, you have to substitute r = Rp 

in this equation and then do the simplification to get the maximum plug velocity that you 

get like this right. 
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So, in this equation you substitute r = Rp here and then here. So, then you get this 

expression. So, further what we do? We can take these terms (
−∆𝑝

𝐿
)

𝑅2

4

1

𝜇
 we can take 

common and then remaining terms when we combined [1 −
𝑅𝑝

2

𝑅2]. So, from here 

−
2𝑅𝑝

𝑅
(1 −

𝑅𝑝

𝑅
). So, you get. So, −

2𝑅𝑝

𝑅
+

2𝑅𝑝
2

𝑅2
 you get next step right. 

So, now this 
2𝑅𝑝

2

𝑅2  and then this −
𝑅𝑝

2

𝑅2  when you do you get +
𝑅𝑝

2

𝑅2 −
2𝑅𝑝

𝑅
. So; that means, this 

term we can write [1 −
𝑅𝑝

𝑅
]

2

.  

So, maximum velocity or vz or vz plug velocity vzp is given by this equation and then it is 

constant for a given pressure drop, for a given pressure drop for a given material viscosity 

plastic viscosity it is a constant value, it does not change with r ok. Because its one constant 

maximum value right. 
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So, now what we do? Next step we find out the volumetric flow rate. So, volumetric flow 

rate is ∫ 2𝜋𝑟𝑣𝑧𝑑𝑟
𝑅

0
 this is what we know now, but this vz is having 2 fractions this vz having 

2 values one value or one expression between 0 to Rp and then another expression between 

Rp to R.  

So, then that is we are writing correspondingly 0 to Rp we call the velocity maximum 

velocity maximum constant value vzp and then vz it is varying with r. So, corresponding 

equations we already derived in the previous slide. So, this vz and this vzp. So, vzp we take 

this part of the equation and then we substitute here and then do the integration. 

So, in this part this first term 0 to Rp ∫ 2𝜋𝑟𝑑𝑟
𝑅𝑝

0
 as it is and this part is vz plus integral Rp 

to R then this part multiplied by 2𝜋𝑟𝑑𝑟 minus this part multiplied by 2𝜋𝑟𝑑𝑟 under 

integration. So, when you do the integration. So, this (
−∆𝑝

𝐿
)

𝑅2

4

1

𝜇𝐵
 all these are constant. So, 

then they treated as constant. 

So, now you take this r you know this [1 −
𝑅𝑝

𝑅
] is also constant here. So, here this entire 

thing is constant. So, integration of r is 
𝑟2

2
. So, here now r you have to bring inside the 

parenthesis integration of r dr is nothing, but 
𝑟2

2
 here 𝑟3 by here integration of 𝑟3𝑑𝑟 is 

𝑟4

4
 

that is what you get here again similarly you do the integration.  



So, then first term 
𝑟2

2
 corresponding to this one, second term 

𝑟2

2
−

𝑟4

4
 corresponding to this 

one and then corresponding to this one we have 
𝑟2

2
−

𝑟3

3
. Whereas, the constants R etcetera 

are kept as it is and then first term limits 0 to Rp second and third term limits Rp to r. 
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So, what we do? Now here we substitute in this case first case we substitute 0 to Rp limits, 

second case that is second and third terms we substitute the limits Rp to R. Then what we 

get? That is what we write and then further what we write? We also write 
𝑅𝑝

𝑅
. 

𝑅𝑝

𝑅
 is nothing 

but 
𝜏0

𝐵

𝜏𝑤
 that we can write as ϕ. Because what is 𝜏0

𝐵?  

It is nothing, but (
−∆𝑝

𝐿
)

𝑅𝑝

2
 and then what is 𝜏𝑤? It is nothing, but (

−∆𝑝

𝐿
)

𝑅

2
. So, that is 

nothing, but 
𝑅𝑝

𝑅
 and then that 

𝑅𝑝

𝑅
 I am just calling it v. So, we are substituting the limits and 

then same time we are wherever 
𝑅𝑝

𝑅
 is there we are writing ϕ.  

So, here for example, this term in place of 
𝑅𝑝

𝑅
 if I write ϕ I get (1 − 𝜙)2 and then upper 

limit of this r is Rp. So, 
𝑅𝑝

2

2
. So, that is what we get. So, (1 − 𝜙)2 𝑅𝑝

2

2
 you get here in the first 

term likewise all other terms you substitute the limits you get here. 



In the next step what you do you take 𝑅2 common from this second and third terms then 

what you have? You have these terms in the parenthesis because you get (
𝑅𝑝

𝑅
)

2

 or (
𝑅𝑝

𝑅
)

3

 

those kind of terms you get. So, in the next step not only writing 𝜙 =
𝑅𝑝

𝑅
 we also take 

common 
𝜋𝑟4

8𝜇𝐵
(

−∆𝑝

𝐿
). So, then remaining terms all the remaining terms have been written in 

the parenthesis like this. 

Now, what you can do? You can combine the terms which are having similar let us say 

this 
(1−𝜙)2

2
 these kind of terms are there. So, then you can combine them and then simplify 

them simple algebraic rearrangement will give you this expression; 𝑄 =
𝜋𝑅4

8𝜇𝐵
(

−∆𝑝

𝐿
) [1 −

4

3
𝜙 +

1

3
𝜙4]. So, this is the volumetric flow rate.  

So, we got the plug velocity, we got the velocity in the deforming region and then we got 

the volumetric flow rate as well. So, now if you divide this volumetric flow rate by cross 

section area of the pipe we will get the average velocity. So, that we are doing now here. 
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So, then you get this expression right. So, next what we do? We substitute in this equation 

𝜙 =
𝜏0

𝐵

𝜏𝑤
 because now we are going to derive expression for friction factor right. So, 𝜙 is 



nothing, but 
𝜏0

𝐵

𝜏𝑤
. So, that 𝜏0

𝐵 we are keeping as it is and then relation between friction factor 

and then wall shear stress is nothing, but 𝜏𝑤 =
𝑓𝜌𝑣𝑎𝑣𝑔

2

2
 that we are writing here. 

So, in this equation whenever phi is there we are going write this one when you write you 

have this expression in place of 𝜙 you have this one, in place of 𝜙4 we have this expression 

right. 

So, again here whatever the 𝑟2 is there. So, that r square term we are writing 
𝐷

2
 we are 

writing 
𝐷

2
. So, because everything we wanted to write in terms of 𝐷𝜌𝑣𝑎𝑣𝑔 and 𝜇𝐵 etcetera 

because so, that we can define the Reynolds number etcetera if required in the subsequent 

step. 

So, now in this equation after substituting 𝜙 = 𝜏0
𝐵 or  

2𝜏0
𝐵

𝑓𝜌𝑣𝑎𝑣𝑔
2. Then what you do? Both 

sides you multiply by 
𝜇𝐵

𝜌𝐷𝑣𝑎𝑣𝑔
2. So, that you know this 𝑣𝑎𝑣𝑔 and then this square can be 

cancelled out and left hand side we can have 
1

𝑅𝑒𝐵
 expression.  

So, likewise that we will be doing in the right hand side also, but simplification we will be 

doing further right. Because here you know rather writing so, many times we further 

simplify it. So, from here what we can see this D and then square of this one this 𝜇𝐵 this 

𝜇𝐵 cancelled out. So, then you have 
𝐷

32𝜌𝑣𝑎𝑣𝑔
2 (

−∆𝑝

𝐿
) right. 

So, now from the definition of friction factor we have 𝑓 =
𝜏𝑤

1

2
𝜌𝑣𝑎𝑣𝑔

2
 and then 𝜏𝑤 is nothing, 

but (
−∆𝑝

𝐿
)

𝑅

2
. So, that should be multiplied by 

2

𝜌𝑣𝑎𝑣𝑔
2. So, this 2 2 cancelled out then (

−∆𝑝

𝐿
) 

in place of r we can write 
𝐷

2𝜌𝑣𝑎𝑣𝑔
2. Why are we writing this one? Because here we have 

𝐷

𝜌𝑣𝑎𝑣𝑔
2

(
−∆𝑝

𝐿
) is there. 

So, in place of this one what I can write? 
𝑓

16
 because 𝑓 = (

−∆𝑝

𝐿
)

𝐷

𝜌𝑣𝑎𝑣𝑔
2. So, then here 32 is 

there; so, 
32

2
= 16. So, in place of this term I can write 

𝑓

16
 ReB that is what I can do or 

𝑓

16
 I 



can write for that moment. So, in place of this one I can write 
𝑓

16
. So, that I am going to do 

in the next step. 
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So, this is nothing, but your f. So, you have 
𝑓

16
 multiplied by whatever the terms are there 

as it is right and then left side left hand side term 
𝜇𝐵

𝜌𝐷𝑣𝑎𝑣𝑔
is nothing, but 

1

𝑅𝑒𝐵
. So, next step I 

am what I am doing? I am just taking this whatever 16 is there that to the other side and 

then bringing this f within the parenthesis. So, then I have this term here. 

So, if I keep one f one side and then take the other terms to the other side then we can have 

this expression for the friction factor. So, we are going to further simplify this equation, 

but this itself we can take it as a kind of final expression right. So, what we can see here? 

The friction factor for the case of Bingham plastic fluid is not explicit right. It includes 

some kind of trial and error approach because in the right hand side also we are having f 

terms ok. 

So, even if you know the geometrical information of the pipe like L D etcetera even if you 

know the material characteristics like 𝜇𝐵 𝜌 𝜏0
𝐵 etcetera then also you cannot calculate the 

friction factor directly because in the right hand side also there is f term ok. So, it is a trial 

and error best approach should be followed. So, that this equation is satisfied when we 

substitute all the values of 𝜏0
𝐵 𝜌 𝑣𝑎𝑣𝑔 𝜇𝐵 etcetera right. 



So, next what we do? We try to write this equation in a similar form like 
16

𝑅𝑒
 form. So, that 

we can have a kind of analogous to Newtonian form what correction factor are we going 

to have in the case of Bingham plastic fluid that is what we can have. 
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So, before that what we do? We write dimensionless numbers Bingham fluids 𝜌 𝑅𝑒𝐵 is 

nothing, but 
𝜌𝐷𝑣𝑎𝑣𝑔

𝜇𝐵
 and then Bingham number Bi is nothing but 

𝜏0
𝐵𝐷

𝜇𝐵𝑣𝑎𝑣𝑔
. Bingham number 

Bi =
𝜏0

𝐵𝐷

𝜇𝐵𝑣𝑎𝑣𝑔
this is what we have. 

So, now when you multiply these two ReB and then this Bingham number Bi, then again 

we will get another dimensionless number because both of them are dimensionless. So, 

that we call Hedstrom number and then when you do you get 
𝜌𝐷2𝜏0

𝐵

𝜇𝐵
2  you get. 

So, we make use of these numbers in that expression whatever we got this equation number 

11 this expression we got right. So, first we do 
16

𝑅𝑒𝐵
 taking common from the right hand 

side. So, then we have this term. 
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In the next step what we do? We write 𝑅𝑒𝐵 =
𝜌𝑣𝑎𝑣𝑔𝐷

𝜇𝐵
 here and then here also, then what 

you do? We combined these terms such a way that we have 
1

6
, here because 8 1’s are 8 1’s 

are 8 2’s are and then 3 2’s are 6 we get here. 

So, 
𝜇𝐵

𝐷𝜌𝑣𝑎𝑣𝑔
 one terms and then remaining terms when you have from this part then you get 

𝜏0
𝐵𝜌𝐷2

𝜇𝐵
2  which is nothing, but Hedstrom number same thing we do for the last term in the 

right hand side. So, then you get this one so; that means, this is nothing, but Hedstrom 

number this is nothing, but inverse of the Reynolds number.  

So, you get 𝑓 =
16

𝑅𝑒𝐵
[1 +

𝐻𝑒

6𝑅𝑒𝐵
−

1

3𝑓3

𝐻𝑒4

𝑅𝑒𝐵
7] right. The same expression in place of Hedstrom 

number if you write 𝑅𝑒𝐵𝑥𝐵𝑖 and then simplify you get 𝑓 =
16

𝑅𝑒𝐵
[1 +

𝐵𝑖

6
−

1

3𝑓3

𝐵𝑖4

𝑅𝑒𝐵
3] right. 

So, what we can say this Bi is nothing, but or Bingham number is nothing, but 

dimensionless yield stress dimensionless yield stress of that particular material Bingham 

plastic material ok. 

So, if the yield stress is small. So, then Bingham number will also be small. So, then let us 

say if Bingham number is less than 0.1 or 1 something like that. So, then altogether the 

second term onwards second third term you can neglect. So, then what you get? The 

behavior or friction factor would be close to the case of the Newtonian fluid ok. 



So, let us say Bingham number is 0.1 or something like that you can happily ignore the 

second and third term in the right hand side of this equation number 13 to get the friction 

factor and then that friction factor would be very much close to the corresponding 

Newtonian value of having viscosity same as 𝜇𝐵 viscosity or whatever the yield stress is 

there that is having very negligible effect in the flow phenomena ok. So, that is what we 

can understand. So, now before concluding today’s lecture we will take an example 

problem. 
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So, rheological properties of a material is given and then it has been found that either 

power law nature or Bingham plastic model can be you know used to represent that 

particular materials rheology when shear rate is between 10 to 100 second inverse. The 

rheological behaviour is such a way that you can use either power law model or Bingham 

model for that fluid if shear rate is 10 to 100 second inverse.  

So, then if the yield stress is 15 pascals the plastic viscosity 150 milipascals second. What 

will be the approximate values of the power law consistence index and then power law 

consistency coefficient? That is n and m this part of the problem I think we have done 

already in one of the lecture in the first or second week ok. So, anyway, but this is having 

continuation of the problem. 

So, estimate the pressure drop when the suspension is flowing under laminar condition in 

a pipe of D = 40 mm and then l is equals to 200 meters when the center line velocity is 0.6 



meter per second. Because the same material whatever the rheological information 

obtained from the rheometer, it shows that you can use a either power law or Bingham 

plastic behavior for that data. 

So, when you apply. So, then what are the corresponding center line velocity for the 

Bingham plastic model is given right. So, then from that you have to find out the pressure 

drop −∆𝑝 you have to find out ok. So, vzp expression we just derived. So, in that vzp 

expression vzp that is maximum velocity 0.6 meter per second is given.  

So, in the right hand side you have (
−∆𝑝

𝐿
)

𝑅2

4

1

𝜇𝐵
[1 −

𝑅𝑝

𝑅
]

2

−
𝑅𝜏0

𝐵

𝜇𝐵
[1 −

𝑟

𝑅
] that term is there. 

So, then you substitute all those values you get the required −∆𝑝, but that will also be 

required you know trial and error approach though it is a constant value because Rp value 

we do not know it is not given ok. So, that we do. 

Then after this let us say for this pressure drop whatever the pressure drop you obtain in 

the b part of the problem and then same pressure drop is applied for the power law model 

how much would be the center line velocity? Are you going to get the same point six meter 

per second or you get into higher get the higher maximum velocity or lower maximum 

velocity compared to the Bingham plastic model if the same pressure drop is applied. So, 

that is what we are going to see now ok. 
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So, first part for Bingham plastic model this is the expression that we know right. Now 

here when 𝛾̇ or (
− 𝑑𝑣𝑧

𝑑𝑟
) = 10 what is 𝜏𝑟𝑧 you have to find out. Similarly, when 𝛾̇ or 

(
− 𝑑𝑣𝑧

𝑑𝑟
) =100 what is 𝜏𝑟𝑧 you have to find out because 𝜏0

𝐵  and then 𝜇𝐵 are given.  

So, that when you do when 𝛾̇  is 10 second inverse 𝜏𝑟𝑧 = 𝜏0
𝐵 is 15; 𝜇𝐵 is 150 milli pascal 

second and then (
− 𝑑𝑣𝑧

𝑑𝑟
) = 10. So, 16.5 you are getting. Similarly, when this (

− 𝑑𝑣𝑧

𝑑𝑟
) = 100 

second inverse. So, then 𝜏𝑟𝑧 =  15 + 150 milli pascal second into or multiplied by 100 you 

get 30 pascal second right. 

So, corresponding to two limits of gamma dot what are the two limits of τ we know. So, 

for these two limits what we do now? We apply power law model. For the power law 

model now what happens here 𝜏𝑟𝑧 is known now two limits of 𝜏𝑟𝑧 are known from this 

calculations when we applying the Bingham plastic model. Because for the same data you 

can apply either Bingham plastic or power law model that is given in the problem 

statement. 

So, when you apply this one when 𝛾̇ is 10 second inverse what is 𝜏𝑟𝑧? 16.5. So, 16 point 

16.5 is equals to m multiplied by 10 power n and then when 𝛾̇ or (
− 𝑑𝑣𝑧

𝑑𝑟
) is 100 second 

inverse what is 𝜏𝑟𝑧? It is 30. So, 30 is equals to m multiplied by 100𝑛. So, now you have 

two equations and then two unknown m and n when you solve you get n is equals to 0.26 

and then m is equals to 9.08 pascal second power n. So, first part is done. 

Second part of the question. Finding the pressure drop −∆𝑝 if vzp or vz max is 0.6 meter per 

second in the case of Bingham model is applied. 
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So, for the Bingham model vzp we just found this expression right. So, now here vzp is 

given as 0.6 −∆𝑝 is not given we have to find out and then r is given or d is 40 mm. So, r 

is 20 mm that is given 𝜇𝐵 is given as 150 milli pascal second. So, that is 0.15 pascal second 

and then 
𝑅𝑝

𝑅
 is nothing, but 

𝜏0
𝐵

𝜏𝑤
 we just have seen in the derivation right. So, that we are 

writing. 

Then 𝜏0
𝐵 is given right it is given in the material as a kind of material characteristic in the 

problem. 𝜏𝑤 we can write it as (
−∆𝑝

𝐿
)

𝑅

2
 remaining we are keeping as it is in this step right. 

So, next step what we can have? In place of r here you can write 20 mm or 20 multiplied 

by 10 power minus 3 and then write the keep the remaining terms as it is. 

So, now you apply the trial and error approach and then get this (
−∆𝑝

𝐿
) you get 3200 pascals 

per meter approximately L is also given. So, L is given as 200 meters. So, then if you 

multiply this number by 200 you get 640 kilopascals. So, second problem is done second 

part of the problem is done. 

Now, third part is if this pressure drop is applied for the case of power law nature. Let us 

if you apply power law model for that rheological data and then you provide this much of 

pressure drop how much is vz max or vmax? Is it going to be same like 0.6 meter per second 

which is for the case of Bingham plastic fluid or is it going to be higher or lower that has 

that we have to see. 
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In one of the previous lectures what we have seen? For power law fluids vz max is nothing, 

but this expression. So, just now −∆𝑝 we found n and m values also we have already got 

in the part A of the problem right l is given, r is given. So, everything you substitute here 

and then substitute and then do the simplification you get vz max = 0.52 meter per second. 

So, what does it mean? When a material rheology for this problem when that particular 

whatever the china clay material is given, if that is rheology is such a way that either if 

you can apply power law or Bingham plastic fluids it is not going to be you know causing 

too much problem to your engineering solutions or process whatever. 

Then when you apply the Bingham plastic model you are going to get the maximum higher 

center line velocity or higher maximum velocity which is 0.6 meter per second, but if you 

change the model rheological model to power law behavior you are getting lower 

maximum velocity that is 0.52 meter per second ok; this kind of analysis we can do by 

solving this problem. 

Further corresponding wall shear stress which is not known. So, now, for the 

corresponding (
−∆𝑝

𝐿
) of 3200 you find out τw that comes out to be 32 pascals. So, which is 

very small value in general fine. 



So, 
𝑅𝑝

𝑅
 then you get 

𝑅𝑝

𝑅
 is nothing, but 

𝜏0
𝐵

𝜏𝑤
. 𝜏0

𝐵 is given as 15 τw just now you got 

corresponding to (
−∆𝑝

𝐿
)of 3200 you got τw as 32. So, 15/32 is 0.47 that is approximately 

half of the cross section is flowing like a plug this 
𝑅𝑝

𝑅
; 

𝑅𝑝

𝑅
fraction whatever is there you 

know you know what is it is? It is that is that much of fraction. 

Let us say if this is your pipe this center entire pipe and this is this center of the pipe. So, 

and then this is almost like you know half of the pipeline dimension. So, in this region the 

material is flowing like a solid plug and then after this it is moving like this decreasing like 

this. So, almost half of the cross section half of the pipe portion is moving like a solid plug 

with a maximum velocity of 0.6 meter per second that is what we can understand from this 

𝑅𝑝

𝑅
 value. 
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Reference the entire lecture is prepared from this excellent book by Chhabra and 

Richardson. Other useful references are provided here. 

Thank you. 


