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Welcome to the MOOCs Course Transport Phenomena of Non-Newtonian Fluids. The 

title of this lecture is Power-law and Ellis Model Fluids Flow through Pipes. So, before 

going into the details of today’s lecture what we will do? We will have a kind of 

recapitulation of what we have studied in the last class.  

In the last class what we have discussed? We have discussed you know how to develop 

the velocity profile for a time independent non-Newtonian fluid or specifically in the case 

of a power law fluids flowing through a pipes circular pipe that is what we have seen. 
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So, we have a recapitulation of that one in the previous class we have seen the flow of 

power law fluids through circular tubes due to pressure difference if it is taking place. So, 

how to obtain the velocity profile how to obtain the volumetric flow rate how to obtain the 

average and maximum velocity etcetera those things we have discussed right. 

So, that what we get we got first term by simplifying the equations of continuity and then 

momentum. What we got a few information about the pressure distribution and then 



relation between pressure and then shear stress etcetera then we realize that now for the 

case of flow through circular tubes due to the pressure difference the shear stress that we 

got it as 𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑟

2
.  

Remember till this point we did not incorporated any information regarding the rheology 

of the fluids right. So; that means, any fluid that is flowing through a pipe due to the 

pressure difference then shear stress can be related with this particular expression 

irrespective of the rheology of the fluid that is what we can understand. And remember all 

that the analysis whatever we have done in the previous class is for one dimensional motion 

where only vz component of velocity is existing and that vz is function of r right. 

So, for such conditions shear stress is a linear function of pressure gradient and then the 

shear stress is 0 at the center and then maximum at the wall. And then between these two 

limits of r = 0 and then r = R shear stress linearly increases. And then wall shear stress that 

is the maximum shear stress that you wanted to find out you have to substitute r = R that 

we get this one. 

Then after this in this equation what we have done we have substituted for 𝜏𝑟𝑧 power law 

fluid for power law fluid 𝜏𝑟𝑧 = 𝑚 (
− 𝑑𝑣𝑧

𝑑𝑟
)

𝑛

 that is what we know and in that we substituted 

in this expression and then simplified then applied boundary conditions to get the velocity 

profile like this. 

Once getting the velocity profile what we have done? We got the volumetric flow rate and 

then that is given by this expression. Then we got the wall shear rate is nothing but 
4𝑄

𝜋𝑅3

3𝑛+1

4𝑛
 

this is what we got. Then average and then maximum velocity expressions we got like this 

is what we have seen right. 

But whenever there is a fluid flowing through pipe. So, then what is that important 

engineering property that you would prefer to measure when especially there is only 

momentum transfer. And then; obviously, what is the property that you would prefer to 

have the information about is the pressure difference or pressure gradient versus 

volumetric flow rate information that is what you get. Also in addition you try to have the 

information what is the friction factor. 



This is one of the very important information required for the designing of this you know 

wherever this pipe information connecting pipe straight pipe etcetera are there. So, then 

this friction factor is very essential factor that one should have for the design as well as 

you know controlling the operational parameters. 

So, that friction factor will try to measure for the case of power law fluids flowing through 

circular pipes right. Friction factor when Newtonian fluid flowing through circular pipes 

and then flow is under the laminar flow condition. Then what we know? Friction factor 

𝑓 =
16

𝑅𝑒
 that we know. So, what is that we are going to have for the power law fluids case 

that we are going to do now in today’s class. 
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So friction factor how we can define? We can define like a dimensionalize wall shear stress 

that is wall shear stress non-dimensionalized using the kinetic energy 
1

2
𝜌𝑣2. Because this 

friction factor is essential when the fluid is under motion ok. So, this 𝑓 =
𝜏𝑤

1

2
𝜌𝑣2

 is the 

definition that we can have. So, then now this f friction factor we have to find out for the 

case of power law fluids.  

Here this v is nothing but the average velocity and then 𝜏𝑤 is nothing but the wall shear 

stress that is (
−∆𝑝

𝐿
) 

𝑅

2
 or (

−∆𝑝

𝐿
) 

𝐷

4
. Now, for Newtonian fluids we already know that this 𝑓 =



16

𝑅𝑒
 that we have derived in our basic fluid mechanics course or you know basic transport 

phenomena course right. 

Now, what is this if the fluid is non-Newtonian fluid especially if the fluid is power law 

fluid what is this f factor that we are going to see now. So, from this definition equation 

number 15 what we have 
𝜏𝑤

1

2
𝜌𝑣2

. Here in place of 𝜏𝑤 we can write (
−∆𝑝

𝐿
) 

𝐷

4
 and then divided 

by 
1

2
𝜌𝑣𝑎𝑣𝑔

2. This equation if you rearrange you can write 
−∆𝑝

𝐿
=

2𝑓𝑣𝑎𝑣𝑔
2

𝐷
 right.  

So, now if you like you know delta P that is applied pressure difference that you know D, 

L that is geometry of the pipe that length and then dimensions of the pipe that is length 

and diameter etcetera you know, density of the fluid also you know. If you know the 

average velocity then you can find out the friction factor right. So, in the previous lecture 

we obtain the average velocity for a power law fluid flowing through circular tube. So, 

that is nothing but this right 
𝑛

3𝑛+1
 [

−∆𝑃𝑅

2𝐿𝑚
]

1

𝑛
 R right.  

So, now what we do here? Whatever 
−∆𝑝

𝐿
 is there in this expression in place of 

−∆𝑝

𝐿
. We 

are going to write 
2𝑓𝑣𝑎𝑣𝑔

2

𝐷
 when you write it is this one this is what you get. So, this R 

also what I am trying to do I am trying to write it as 
𝐷

2
.  

So, 
𝐷

2
 and then there is already 2. So, 

𝐷

4𝑚
 and then in place of 

−∆𝑝

𝐿

2𝑓𝑣𝑎𝑣𝑔
2

𝐷
 and then this is all 

under whole power 1/n and then this R is also 
𝐷

2
 I am writing. So, this D this D is cancelled 

out these 2 and then 2 1’s are 2 2’s are. So, this is what we get. 
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So what we do? This expression further you simplify you get this equation right. What we 

have done? Whatever the f ρ that whole power 1/n is there then we expanded or 

individually we have written like 𝑓1/𝑛𝜌1/𝑛𝑣𝑎𝑣𝑔
2/𝑛. So, that is 

𝑣𝑎𝑣𝑔
2/𝑛

21/𝑛𝑚1/𝑛 we are having and 

then this 
𝐷

2
 as it is. 

Now out of this what I am trying to do? I am trying to take this constant
𝑛

3𝑛+1
 to the left 

hand side. So, that I have 
3𝑛+1

𝑛
 and then this 𝑣𝑎𝑣𝑔 I will bring in to the right hand side and 

then combined with this 𝑣𝑎𝑣𝑔. So, that I have 𝑣𝑎𝑣𝑔

2

𝑛
−1

 that is 𝑣𝑎𝑣𝑔

2−𝑛

𝑛  . 

What I am trying to do further? I am trying to join this 21/𝑛 and then 2, so that I can have 

2
𝑛+1

𝑛 . Now, if I keep only f power 1/n one side and then all other terms to the other side. 

Then I have this term right then next step both sides I am trying to do whole power n.  

So, then left side I have f that right side I have (
3𝑛+1

𝑛
)

𝑛 2𝑛+1𝑚

𝜌𝑣𝑎𝑣𝑔
2−𝑛𝐷𝑛 right. So, this 

3𝑛+1

4𝑛
 is a 

common factor that we get in general for shear rate expressions whatever we have seen 

previously also when we are talking about the capillary viscometer. 

So then what I am trying to do next step? I am trying to multiply this term by 4𝑛 and then 

divide the term right side by 4𝑛. So, that I can write this f = (
3𝑛+1

4𝑛
)

𝑛

4𝑛 and then remaining 



terms are as it is. Next step what I am trying to do? I am trying to write this 4 as 22. So, 

that 4𝑛 I can write 22𝑛. So, that 22𝑛 is combined with 2𝑛+1 I can how 23𝑛+1 and then all 

other terms are same as it is and then this m I am taking to the denominator here like this 

right. 

So now next step what I am trying to do? I am trying to multiply this expression by 16 and 

then divide by 16. So, that 16/16 and then all this as it is. So, now in the next step what I 

try to do? I keep the 16 as it is and wherever the denominator 16 is there that I will take to 

the numerator and then write it as 2−4.  
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When I write it then what I get? 2−4 and then 16 is here as it is. So, then this term is as it 

is. So, this term I can write it as when you join these 2 terms I can we can write it as 23𝑛−3 

that is 23(𝑛−1). So, 23 I can write as 8. So, then what I can have? This term 
16

𝜌(𝑣𝑎𝑣𝑔)
2−𝑛

𝐷𝑛

(8(𝑛−1))𝑚(
3𝑛+1

4𝑛
)

𝑛

.  

So, now this is in a forms 𝑓 =
16

𝑅𝑒
 form for Newtonian case friction factor 𝑓 =

16

𝑅𝑒
  that form 

we have written for the case of power law fluids. So, by analogy what we can write 

whatever this denominator this thing is that expression that entire thing we can write it as 

Re for power law fluids. So, then we are writing RePL. So, RePL is nothing but 

𝜌(𝑣𝑎𝑣𝑔)
2−𝑛

𝐷𝑛

(8(𝑛−1))𝑚(
3𝑛+1

4𝑛
)

𝑛. 



So, this RePL expression whatever is given is also same as given by the Metzger and Reed. 

So, it is also written as ReMR in some books. So then what we have? If you write this ReMR 

or RePL in the form like 
𝜌𝑣𝑎𝑣𝑔𝐷

𝜇𝑒𝑓𝑓
 in terms of 𝜇𝑒𝑓𝑓. Because we know that for non-Newtonian 

fluids the viscosity changes.  

So, which viscosity should you take? So, in that way if you think if you write it as in place 

of viscosity you simply writing viscosity because if viscosity changing Reynolds number 

would also be changing. So, rather writing changing viscosity with shear rate if you write 

effective viscosity in the definition of Reynolds number.  

Then what should be that effective viscosity? That should be nothing but 

𝑚 (
8𝑣𝑎𝑣𝑔

𝐷
)

𝑛−1

(
3𝑛+1

4𝑛
)

𝑛

 this 
8𝑣𝑎𝑣𝑔

𝐷
 is nothing but the nominal shear rate or true shear rate for 

the Newtonian case and then nominal or apparent share rate for the case of non-Newtonian 

fluids that we have already seen in the case of a capillary viscometers fine. 

So, this is what about the friction factor for a power law fluid flowing through circular 

tubes right. So, now what we do? We take a different type of fluid flowing through circular 

tubes, but again due to the pressure difference. 
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So; that means, whatever previous lecture that we have taken a circular tube infinitely long 

cylindrical tube right. So, that is L/D ratio is very large. So, then we have taken the only 



the fully developed region or we have taken L/D very large. So, that we have a fully 

developed flow. So, that if you have a fully developed flow the analysis would be easy for 

you that is in the flow direction the velocity profile will not change. 

Let us say if this is your r direction if this is z direction. So, then what you have the flow 

direction only vz you are having and then that is function of r. So, that velocity profile if it 

is Newtonian fluid then. So, if it is a Newtonian fluid the velocity profile is parabolic like 

this which we have already seen. We have already seen in the previous lecture and then 

depending on the non-Newtonian behavior or the power law index the profile changes. 

It becomes flatter for shear thinning fluids and then it become very steeper for sharp kind 

of thing for shear thinning fluid that we have seen right and then shear stress is linearly 

increases with r ok. So, that is what we have seen. So, all those conditions are same here 

again only thing that only change that we are going to have is that in place of power law 

fluid.  

Now we are taking Ellis model fluid right. So, the pressure at the inlet z = 0 is nothing but 

P0 at the pressure at z = L is nothing but PL and then because of this pressure difference 

the flow is taking place and then the all this analysis whatever we have done in the previous 

lecture. And then whatever we are going to do today’s lecture that is only for the fully 

developed region it is not valid for the entry region or exit region ok. So, fully developed 

flow you can have when you have L/D is very large right 

So, since compared to the previous lecture everything is same except the fluid. So, then 

what we have? We quickly go through the initial constrains assumptions etcetera 

simplifying of continuity equation momentum equations etcetera quickly. Because they 

are going to remain same they are not going to change. 

The change compared to the previous lecture for the case of a power law fluid will occur 

only from the point where you get this expression 𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑟

2
. So, till get getting this 

point you are going to have exactly the same thing whatever we have done for the case of 

power law fluids in the previous lecture right. 

So, but; however, since we are in the beginning of solving such kind of problem we will 

do once again ok. So how we do? We first list out all your assumptions or constraints of 

the problem then based on those constraints we are going to simplify the continuity and 



then momentum equations and then from those are simplified continuity and momentum 

equation you may be getting some relations using those relations you may get the velocity 

profile. 

So, that process is to the standard process. So, that we are going to follow here also. So, 

assumptions we have taken infinitely long cylindrical tube that is L/D is very large and 

then flow is laminar and incompressible. We are not considering gravity; we are not 

considering non isothermal conditions flow is isothermal. 

Then steady state and then symmetric in θ direction and then a fully developed flow that 

is what we have taken. And then in addition to that what we have we have only vz 

component of velocity and then that vz component of velocity is varying in the radial 

direction r direction right, vθ vz vθ vr may also be there some values.  

But their magnitude wise they are very much small, they are very much small compared 

to the vz and then especially in the radial direction they may be very very small ok. So, 

compared to the vz vθ vr are negligible that is what the basic bottom line ok. So, now, these 

are same as previous class. 
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So, then we are going to apply these constraints to continuity and then momentum 

equation. So, continuity equation steady state. So, this is 0 and then vr is not existing or it 

is 0 vθ is not existing or it is 0; r by symmetry also this term is 0 and then since fully 



developed flow 
𝜕

𝜕𝑧
 any flow variable is 0. So, then continuity is satisfied. So, continuity is 

satisfied. 

Then equation of motion r component of equation of motion is this one. So, steady state 

this term is 0; vr is 0; vθ is 0 and then because of the symmetry 
𝜕

𝜕θ
 of anything is 0 and then 

vθ is 0 vz is there, but vz is not function of z is function of r only and then vr is 0 and then 

because of fully developed flow also this term is 0. 

Pressure we cannot say pressures in general we do not have any generalized boundary 

conditions ok. So, we just leave it as it is this term τrr would be having only vr terms which 

is not there and then because of the symmetry this term is 0 this τθθ also would be having 

only vθ term. So, then it will be 0 and then because of the fully developed flow 
𝜕

𝜕𝑧
 of any 

flow variable is 0.  

So, this is 0 and then gravity we are not considering also only τrz is existing in the in the in 

the current flow conditions whatever we have taken. So, all other terms of shear stress are 

0. So, what we get here? We get 
𝜕𝑝

𝜕𝑟
= 0; that means, pressure is not function of r. 
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Similarly, θ component of momentum equation if you simplify steady state. So, this term 

is 0 vr is not existing vθ is not existing and then because of this symmetry this term is also 



0. So, vr vθ both of them are 0 vz is not 0, but because of the fully developed flow 
𝜕

𝜕𝑧
 of any 

flow variable is 0 fully developed flow in this case flow is in z direction.  

So, 
𝜕

𝜕𝑧
 of any flow variable is 0 that is only for the flow variables not for you know scale 

as like pressure and temperature right. So, the symmetry boundary conditions also in 

general only for you know flow conditions only not for the scale as temperature profile 

pressure profile we cannot generalized ok. So, let us keep it as it is. 

So, τrθ is having vr vθ terms or this τr shear stress τrθ component is not existing because of 

symmetry this term is 0, because of the fully developed flow 
𝜕

𝜕𝑧
  of any flow variable is 0. 

So, this is 0 and then for laminar flow these 2 are equal to each other. So, that is 0. 

So, gravity finally, we are not taking anyway then what we get here again we get 
𝜕𝑝

𝜕θ
= 0 

that means, p is also not function of θ. So; that means, till now what we understand p is 

not function of r and θ it is so, but the flow problem is taking place because of you know 

pressure difference. 

So, that what we can understand now from here itself without solving the problem further 

we can realize that p is function of z. What function? Is it a linear non-linear that we do 

not know that we can understand by simplifying z component of momentum equation. So, 

here steady state this is 0 vr is 0; vθ is 0 symmetry. So, this term is this term is also 0 vz is 

the existing, but it is fully developed flow.  

So, 
𝜕

𝜕𝑧
 of vz is 0 pressure you cannot say anything any generalized conditions we cannot 

have. So, 
𝜕𝑝

𝜕z
 we cannot cancel out. So, only shear stress is existing τrz. So, which is again 

function of r because in the radial direction only the shear stress variations are there 

because the flow direction we are taking the z direction. So, only τrz shear stress component 

is existing. So, we cannot cancel out this term and then because of the symmetry this term 

is 0.  

Because of the fully developed flow this term is 0 and we are not taking any gravity in this 

problem. So, what we have? We have only these 2 terms; that means, 
𝜕𝑝

𝜕z
  = 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) that 

is what we are having. Now, what we see here? So, left hand side 
𝜕𝑝

𝜕z
 is there. 



So, already we realized by simplifying r and θ component equations what we understand 

that pressure is not function of r and θ. So, whereas, the right hand side what we have its 

everything function of r right. So what we can say? This 
𝜕𝑝

𝜕z
 is independent of whatever 

this thing is there in the right hand side ok and then similarly the 𝜏𝑟𝑧 is function of r because 

vz component should be this.  

So, the vz is function of r only. So, it is not function of z. So, whatever the right hand side 

terms are there 𝜏𝑟𝑧 etcetera they are independent of z. So, then what we say? For the right 

hand side term whatever the left hand side terms are you know constants they are not going 

to affect it because left hand side term is only function of z and then right hand side terms 

are only function of r. 
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So, what we can do? We can individually integrate them when we integrate we get p = c1 

z + c0. 
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So, what are the boundary conditions? At z = 0 p = p0. So, c0 should be P0 and at z =L p is 

= PL. So, that PL = c1 L + c0 then c1 we get 
𝑃𝐿−𝑃0

𝐿
; that means, p = c1 is 

𝑃𝐿−𝑃0

𝐿
+ z + 𝑃0. So, 

the same thing we can write 𝑃𝐿 − 𝑃0 we can write 
−𝑃0−𝑃𝐿

𝐿
. So, that p =

−∆𝑝

𝐿
+ 𝑧 + 𝑃0. 
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So, 
𝜕𝑝

𝜕z
= 𝑐1 =

−∆𝑝

𝐿
 that is what we can write. Now what we can do? Whatever the 

𝜕𝑝

𝜕z
=

1

𝑟

𝜕

𝜕r
(𝑟𝜏𝑟𝑧 ) equation was this by simplifying the z component of momentum equation. So, 



we treat 
𝜕𝑝

𝜕z
 as a constant for integrating the right hand side term. So, then what we do r we 

take to the other side. So, then r 
𝑑𝑝

𝑑z
=

𝑑

𝑑r
𝑟𝜏𝑟𝑧. 

So, now if you integrate with respect to r. So, then what we have 𝑟𝜏𝑟𝑧 =
𝑟2

2

𝑑𝑝

𝑑z
+ 𝑐2 then; 

that means, 𝜏𝑟𝑧 =
𝑟

2

𝑑𝑝

𝑑z
+

𝑐2

𝑟
 right. And then shear stress cannot be infinite at any location 

between any value of r between 0 to R. 

So, but if you substitute r = 0; here this 𝜏𝑟𝑧 becoming infinite, but it is not possible. So, 

then 𝑐2 has to be 0 so; that means, 𝜏𝑟𝑧 is nothing but (
−∆𝑝

𝐿
)

𝑟

2
 this is what we get right. So, 

if you know you need to know the shear stress at wall you have to substitute r = L r = R 

you have to substitute then we get 𝜏𝑤 = (
−∆𝑝

𝐿
)

𝑅

2
. 

So what we do next? We try to obtain velocity profile for Ellis model fluid. Remember till 

this point before this slide you know we did not brought any information about the 

rheology of the fluid. So, till the point 𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑟

2
 that expression derivation you know 

the problem is same if the flow is taking place in circular tube under fully developed flow 

conditions right. 
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So, now after this point we are going to bring in the effect of the fluid rheology. So, for 

Ellis model fluid apparent viscosity is nothing but this is apparent viscosity. At the 



beginning itself, we have a you know made a you know generalization that if it is a non-

Newtonian fluid then whether you specifically write apparent viscosity or not it is apparent 

viscosity because viscosity changes with shear rate ok. 

So, now this apparent viscosity is nothing but 
𝜇0

1+(
𝜏𝑦𝑥

𝜏1
2⁄

)

𝛼−1 α is something like same like a 

power law behavior index for the case of power law fluid. But only thing that in the power 

law fluids power law behavior index n < 1 for the shear thinning fluids whereas, in the 

case of Ellis model fluid this α > 1 ok.  

So, that is a different, but the nature wise they are same ok. And this 𝜇0 is nothing but 0 

shear viscosity this 𝜏1
2⁄  is nothing but you know let us say if your 𝜇0 is 100 pascal second. 

So, what is the shear stress at which this viscosity is becoming 50 pascal seconds that shear 

stress we call it as 𝜏1
2⁄ ok.  

So, this is this we already know so; that means, you know if you plot this apparent viscosity 

𝜇𝑎𝑝𝑝 versus 𝜏𝑦𝑥. Then this usually you know high it is large at smaller shear stress and 

then gradually decreases something like this. So, this is nothing but your 𝜇0 right. So, this 

let us say if it is 100 at what shear stress it is becoming 50 then 𝜇0 is decreasing to 1 2⁄  of 

its value.  

So, that value is known as the corresponding shear stress value is known as the 𝜏1
2⁄ . And 

then we know we have already studied this Ellis model fluid is important when the 

deviation from the power law fluid is more at low shear rate range. At low shear rate range 

if the deviation from the power law behavior is more important. 

So, then it is better to use the Ellis model fluid for reliable information ok and then such 

cases occur in general in most of the dairy products. So, the same equation if you write for 

you know if you write in cylindrical coordinates then you have 
 𝜇0

1+(
𝜏𝑟𝑧

𝜏1
2⁄

)

𝛼−1. 



So, then 𝜏𝑟𝑧 τ is nothing but apparent viscosity multiplied by the shear rate right. Now 

shear rate is 
−𝑑𝑣𝑧

𝑑𝑟
 and then in case only 𝜏𝑟𝑧 shear stress component is existing. So, 𝜏𝑟𝑧 =

 𝜇0

1+(
𝜏𝑟𝑧

𝜏1
2⁄

)

𝛼−1 {
−𝑑𝑣𝑧

𝑑𝑟
}. 

So now what we do? We keep 
−𝑑𝑣𝑧

𝑑𝑟
 one side. So, then remaining terms to the other side 

what we have 𝜏𝑟𝑧 +
𝜏𝑟𝑧

𝛼

𝜏1
2⁄

𝛼−1
 and then this entire multiplied 

1

𝜇0
. So, this minus if you take to 

the right hand side −
1

𝜇0
 and then in case of 𝜏𝑟𝑧 you can write (

−∆𝑝

𝐿
)

𝑟

2
 because that is just 

now we derived. So, when you write you get this expression right. 

So, now if you integrate this equation vz = −
1

𝜇0
(

−∆𝑝

𝐿
)

𝑟2

2
 and then 1/2 is also already there. 

So, 
𝑟2

4
+

1

𝜏1
2⁄

𝛼−1 (
−∆𝑝

2𝐿
)

𝛼

 and then integration of 𝑟 𝛼 is nothing but 
𝑟 𝛼+1

𝛼+1
and then integration 

constant c. 

So, now that c constant if you wanted to find out the velocity vz is 0 at wall that is at r = R 

because of the no slip velocity is 0. So, that you substitute here in this equation. So, then 

you get this c constant and that c constant you back substitute here you will get this 

expression. 
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So, this c constant is this one when you substitute r = R in the previous equation then vz 

will become 0 and then corresponding c is this equation. And then that c we are substituting 

in this vz expression vz = −
1

𝜇0
 (

−∆𝑝

𝐿
)

𝑟2

4
+

1

𝜏1
2⁄

𝛼−1 (
−∆𝑝

2𝐿
)

𝛼 𝑟𝛼+1

𝛼+1
+ 𝑐 in place of c this is 

coming out. 

So what we do? r powers whatever the similarities are there those terms we combine 

together that is 𝑟2 terms we combine together and then 𝑟𝛼+1 terms we combine together 

then we get vz is equals to this expression this is nothing but the velocity profile right. 

So, now this same expression what we can write (
−∆𝑝

𝐿
)

𝑅

2
 you can write it as τw; so τw. So, 

1 r is remaining r and then divided by in place of 4 we 2 is combined with τw so, 2 is 

remaining. So, 
𝑟

2𝜇0
(1 −

𝑟2

𝑅2). Similarly, here also if you do this is what we get wherever 

(
−∆𝑝

𝐿
)

𝑅

2
 is there we are writing τw here also. So, this is the velocity profile you get right. 

Now, if you wanted to find out the maximum velocity vzmax. What you do? You can get by 

substituting r = 0 at the center the velocity is going to maximum. So, when you substitute 

r = 0 then vz = vzmax and then that is given by this expression. So, we got the velocity profile 

we also got the maximum velocity now. 
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Next what we try to do? We try to get the volumetric flow rate. So, volumetric flow rate 

is 𝑄 = ∫ ∫ 𝑣𝑧𝑟𝑑𝑟𝑑𝜃
𝑅

0

2𝜋

0
. So, volumetric flow rate 𝑄 = ∫ ∫ 𝑣𝑧𝑟𝑑𝑟𝑑𝜃

𝑅

0

2𝜋

0
, but in θ direction 

we have the symmetric flow.  

So then what we can have? 2𝜋 ∫ 𝑣𝑧𝑟𝑑𝑟
𝑅

0
 and then this vz is nothing but this expression just 

now we got it. I have written the expression before converting that expression vz 

expression in terms of τw ok. So, that vz we are going to substitute here. So, then we have 

this expression. 

Now what we can do? We can bring this r within the parenthesis here and then here also 

and then do the integration. So, then we have this expression. So, here for the first case 2 

1’s are 2 2’s are and rest 
𝑟2

2
−

𝑟4

4𝑅2
. And then here again 

𝑟2

2
− 𝑟𝛼+2 is there integration 

of 𝑟𝛼+2 will be 
𝑟𝛼+3

𝛼+3
will be having right.  

Now this lower limit is anyway 0. So, then you do not need to worry I am substituting it 

because all the terms are having r value r’s ok. So, now upper limit when you substitute R 

then you get this one. So, if you do further simplification then what you get Q is equals to 

this expression.  

In the next step what we can do? You can do LCM of this one. So, then you get 
𝛼+3−2

2(𝛼+3)
. So, 

that is 𝛼 + 1 you get. So, that 𝛼 + 1  and this 𝛼 + 1  will be cancelled out right. 
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Then you have this term right this 𝛼 + 1 that 𝛼 + 1 is cancelled out and divided by 

2(𝛼 + 3) is this. So, that 2 and then this 2 π 2 we can cancelled out ok. So, this is what we 

get this expression. Now, again in place of (
−∆𝑝

𝐿
)

𝑅

2
 you can write τw right when you write 

it you get this expression 𝑄 =
𝜋𝑅3

4𝜇0
𝜏𝑤 {1 + (

𝜏𝑤

𝜏1
2⁄

)

𝛼−1

.
4

𝛼+3
} this is what you have right. 

So, if volumetric flow rate is known average velocity can be find out by dividing the 

volumetric flow rate by cross section area of the π. So, 
𝜋𝑅2𝑄

𝜋𝑅2  if you do you get 

𝜏𝑤𝑅

4𝜇0
{1 + (

𝜏𝑤

𝜏1
2⁄

)

𝛼−1

.
4

𝛼+3
} this is what the average velocity. 

So, now we got the volumetric flow rate average velocity as well in addition to the velocity 

distribution and then maximum velocity. So, everything we all almost everything we got 

except the friction factor. So, we try to do some simplification to get the friction factor as 

well. 
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So, friction factor we know that 𝑓 =
𝜏𝑤

1

2
𝜌𝑣2

. So, now, 𝜏𝑤 =
𝑓

2
𝜌𝑣2. So then what we do? In 

place of τw in the average velocity expression we are going to write 
𝑓

2
𝜌𝑣2 from here. Then 



we get 𝑣 =
𝑅

4𝜇0
𝜏𝑤 that is 

𝑅

4𝜇0
(

𝑓𝜌𝑣2 

2
) +

4𝑅

4𝜇0(𝛼+3)𝜏1/2
𝛼−1 (𝜏𝑤)𝛼−1𝜏𝑤 that is 𝜏𝑤

𝛼  and then 𝜏𝑤 is 

nothing but (
𝑓𝜌𝑣2 

2
)

𝛼

 is as it is right. 

So now next step what I am trying to do? I am trying to write these expression R also I am 

writing in terms of D/2. So, that we can define Reynolds number. So, then we have here 

first term in the right hand side 
𝐷𝑣𝜌

𝜇0

𝑓𝑣

16
+ second term 𝑓𝛼𝜌𝛼𝑣2𝛼 etcetera are there. 

So then how I am writing? 𝜌𝛼, 𝑣𝛼, 𝐷𝛼 and then remaining 𝑣𝛼 whatever is there. So, that I 

am writing separately because here what you have you have only 1 D. So, 𝐷𝛼 you have 

written here. So, 𝐷1−𝛼 I am writing here and then divided by 2 𝜇0
1−𝛼 I am writing and 

then whatever the 𝜇0 is there I am writing 𝜇0
1−𝛼 and then 𝜇0

𝛼 remaining constants are as 

it is right.  

So, this 2𝛼 is as it is right. So, next step what I am trying to write? 
𝐷𝑣𝜌

𝜇0
 within parenthesis 

here and then in the second terms also (
𝐷𝑣𝜌

𝜇0
)

𝛼

here in the as a parenthesis within the 

parenthesis I am writing. So, that I can write 
𝐷𝑣𝜌

𝜇0
 I can write it as Re that I can write. 
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So, first term 
𝑓𝑅𝑒

16
 you I can have second term 𝑓𝛼 𝑅𝑒𝛼 and then remaining terms whatever 

are there 𝑣𝛼−1𝐷1−𝛼𝜇0
1−𝛼 𝜏1/2

𝛼−1 I can write it as (
𝑣𝜇0

𝐷𝜏1/2
)

𝛼−1

. And then remaining 

constants 
1

(𝛼+3)2𝛼+1
 right. 

Next step what we are going to do? We are going to multiply 
16

𝑅𝑒
 both sides because just 

wanted to write this also in the Newtonian case like in the Newtonian case f =
16

𝑅𝑒
  form is 

there. So, that way we are trying to write. So, that is the reason I am writing I am 

multiplying this equation both sides by 
16

𝑅𝑒
. So, right hand side first term is f and then second 

term 
16

𝑅𝑒
; 16 I am writing as 24 and then 

𝑅𝑒𝛼

𝑅𝑒
 I am writing 𝑅𝑒𝛼−1 this all terms as it is. 

In the next step you know what I am trying to do? I am taking f common from the 2 terms 

in the right hand side. So, then I have this expression. So, that is f = 
16

𝑅𝑒
 divided by this 

particular expression. Now here what I can write? 
𝐷𝜏1/2

𝑣𝜇0
 I am writing some dimensionless 

number El. So, then this is what we have. 

So, what you understand here you know like you know Newtonian or power law fluids the 

friction factor is not explicit it is not explicit. So, you cannot get directly by substituting 

Reynolds number etcetera or power law index power law behavior index etcetera ok. So, 

it is a trial and error basis ok that is what we understand here. So, this El is nothing but 

𝐷𝜏1/2

𝑣𝜇0
 this is what we have. 



(Refer Slide Time: 40:07) 

 

So, 
𝑓.𝑅𝑒 

𝐸𝑙
 if you further try to substitute and then try to write in terms of τw something like 

that f is nothing but 
𝜏𝑤

1

2
𝜌𝑣2

 and then Re is nothing but 
𝐷𝑣𝜌

𝜇0
 and then 𝐸𝑙 is nothing but 

𝐷𝜏1/2

𝑣𝜇0
. 

So, now here what we can see? This 𝑣2 and then this v this v is cancelled out this D this D 

is cancelled out ρ and ρ cancelled out.  

So, what you have? 
2𝜏𝑤

𝜏1/2
 because this 𝜇0 this 𝜇0 is also cancelled out. So, 

𝑓.𝑅𝑒 

𝐸𝑙
 we can write 

in the previous equation as 
2𝜏𝑤

𝜏1/2
. So, then f we can also write like this right. Anyway τw 

again we cannot say that now equation for fiction now again we cannot say that the friction 

factor is explicit.  

Because now we brought right side in form of τw etcetera no because τw is again related to 

f it is just you know writing in a simplified form only we are writing this one ok. So, still 

the f is not explicit it is based on the trial and error approach only you can get the solution. 
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So, now before concluding today’s lecture we will have example problem. So, one fluid 

rheology is expressed by Ellis model fluid with 𝜇0 is equals to this value τ½ this value and 

then α 2.8. What we are asking? The pressure drop required to maintain a volumetric flow 

rate of 4 centimeter cube per second through 50 mm diameter and then 20 meter long pipe; 

L is given, D is given, Q is given, and then it was told that flow assume the flow to be 

laminar right. 
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So, everything is given except 
−∆𝑝

𝐿
 in the case of you know you know volumetric flow rate 

in the case of volumetric flow rate expression. Now here you know it is in terms of τw is 

again (
−∆𝑝

𝐿
)

𝑅

2
 or 

𝐷

4
. So, this equation except the τw everything is given. 

So, you substitute all those numbers here and then get the τw information and then from 

there τw information used this equation to get the −∆𝑝 value ok. So, but solving this 

equation when you substitute all these values you will not get straight forward this will 

also include trial and error approach when you do this one you get τw = 3412 pascal’s right. 

And then when you apply τw = (
−∆𝑝

𝐿
)

𝑟

2
 expression here and then substitute for τw r and 

then L etcetera here in this equation what you get remaining minus delta p you can get it 

as 5.4 mega pascal’s ok. In the next class what we try to do? We will be trying to obtain 

the similar expression if the fluid is viscoplastic fluid that is what we are going to do in 

the next class. 
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The references for this lecture the entire lecture is prepared from this reference book. 

However, other reference books are also given which may be useful. 

Thank you. 


