Transport Phenomena of Non-Newtonian Fluids
Prof. Nanda Kishore
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Lecture - 15
Power-law and Ellis Model Fluids Flow through Pipes

Welcome to the MOOCs Course Transport Phenomena of Non-Newtonian Fluids. The
title of this lecture is Power-law and Ellis Model Fluids Flow through Pipes. So, before
going into the details of today’s lecture what we will do? We will have a kind of
recapitulation of what we have studied in the last class.

In the last class what we have discussed? We have discussed you know how to develop
the velocity profile for a time independent non-Newtonian fluid or specifically in the case

of a power law fluids flowing through a pipes circular pipe that is what we have seen.
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Recapitulation

* Flow of Power-Law Fluids Through Circular Tubes Due to Pressure Difference:
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So, we have a recapitulation of that one in the previous class we have seen the flow of
power law fluids through circular tubes due to pressure difference if it is taking place. So,
how to obtain the velocity profile how to obtain the volumetric flow rate how to obtain the

average and maximum velocity etcetera those things we have discussed right.

So, that what we get we got first term by simplifying the equations of continuity and then

momentum. What we got a few information about the pressure distribution and then



relation between pressure and then shear stress etcetera then we realize that now for the

case of flow through circular tubes due to the pressure difference the shear stress that we
T

gotitas t,, = (_—Ap) >

L

Remember till this point we did not incorporated any information regarding the rheology
of the fluids right. So; that means, any fluid that is flowing through a pipe due to the
pressure difference then shear stress can be related with this particular expression
irrespective of the rheology of the fluid that is what we can understand. And remember all
that the analysis whatever we have done in the previous class is for one dimensional motion

where only v; component of velocity is existing and that v; is function of r right.

So, for such conditions shear stress is a linear function of pressure gradient and then the
shear stress is 0 at the center and then maximum at the wall. And then between these two
limits of r = 0 and then r = R shear stress linearly increases. And then wall shear stress that
is the maximum shear stress that you wanted to find out you have to substitute r = R that

we get this one.

Then after this in this equation what we have done we have substituted for z,., power law

—dvy,

n
fluid for power law fluid 7,, = m (d—r) that is what we know and in that we substituted

in this expression and then simplified then applied boundary conditions to get the velocity

profile like this.

Once getting the velocity profile what we have done? We got the volumetric flow rate and
£3n+1
7R3 4n

this is what we got. Then average and then maximum velocity expressions we got like this

then that is given by this expression. Then we got the wall shear rate is nothing but

is what we have seen right.

But whenever there is a fluid flowing through pipe. So, then what is that important
engineering property that you would prefer to measure when especially there is only
momentum transfer. And then; obviously, what is the property that you would prefer to
have the information about is the pressure difference or pressure gradient versus
volumetric flow rate information that is what you get. Also in addition you try to have the

information what is the friction factor.



This is one of the very important information required for the designing of this you know
wherever this pipe information connecting pipe straight pipe etcetera are there. So, then
this friction factor is very essential factor that one should have for the design as well as
you know controlling the operational parameters.

So, that friction factor will try to measure for the case of power law fluids flowing through
circular pipes right. Friction factor when Newtonian fluid flowing through circular pipes

and then flow is under the laminar flow condition. Then what we know? Friction factor
f= 5 that we know. So, what is that we are going to have for the power law fluids case

that we are going to do now in today’s class.
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Friction Factor For Power-Law Fluid Flow in Pipes (Laminar Flow)

* Friction factor:  f=12% K (16)
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So friction factor how we can define? We can define like a dimensionalize wall shear stress

that is wall shear stress non-dimensionalized using the kinetic energy %pvz. Because this

Tw

friction factor is essential when the fluid is under motion ok. So, this f = is the

12
2PY
definition that we can have. So, then now this f friction factor we have to find out for the

case of power law fluids.

Here this v is nothing but the average velocity and then t,, is nothing but the wall shear

stress that is (_TAP) g or (_TA”) %. Now, for Newtonian fluids we already know that this f =



16 . . . . . .
- that we have derived in our basic fluid mechanics course or you know basic transport

phenomena course right.

Now, what is this if the fluid is non-Newtonian fluid especially if the fluid is power law

fluid what is this f factor that we are going to see now. So, from this definition equation

number 15 what we have 1p . Here in place of t,, we can write ( ) ) and then divided

2

Ap f avg

by %pva,,gz. This equation if you rearrange you can write _L right.

So, now if you like you know delta P that is applied pressure difference that you know D,
L that is geometry of the pipe that length and then dimensions of the pipe that is length
and diameter etcetera you know, density of the fluid also you know. If you know the
average velocity then you can find out the friction factor right. So, in the previous lecture

we obtain the average velocity for a power law fluid flowing through circular tube. So,

—APR|n

that is nothing but this rlght—[ ] R right.

So, now what we do here? Whatever —= is there in this expression in place of —= p . We

f avg

are going to write when you write it is this one this is what you get. So, this R

also what I am trymg to do | am trying to write it as g.

AP 2fv avg

So, - and then there is already 2. So — and then in place of — and then this is all

under whole power 1/n and then this R is also 2 2 I am writing. So, this D this D is cancelled

out these 2 and then 2 1°s are 2 2’s are. So, this is what we get.
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* Multiply and divide by 16 in the above eq.
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So what we do? This expression further you simplify you get this equation right. What we
have done? Whatever the f p that whole power 1/n is there then we expanded or

Vapg®/"
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individually we have written like f1/"p/"v,,,,%/". So, that is we are having and

then this g as it is.

Now out of this what | am trying to do? | am trying to take this constant%+1 to the left

3n+1

hand side. So, that | have and then this vg,,, | will bring in to the right hand side and

n

2-n

n .

2
then combined with this v,,,4. So, that | have vavgﬁ"l that is vy,

What | am trying to do further? | am trying to join this 21/™ and then 2, so that | can have

n+1

2"n . Now, if I keep only f power 1/n one side and then all other terms to the other side.

Then | have this term right then next step both sides | am trying to do whole power n.

.

common factor that we get in general for shear rate expressions whatever we have seen

3n+1 2+ 1m

So, then left side | have f that right side | have ( right. So, this % is a

n pvavgz_nDn

previously also when we are talking about the capillary viscometer.

So then what | am trying to do next step? | am trying to multiply this term by 4™ and then

divide the term right side by 4™. So, that | can write this f = (%)n 4™ and then remaining



terms are as it is. Next step what | am trying to do? | am trying to write this 4 as 22. So,
that 4™ | can write 22™, So, that 22" is combined with 2**1 | can how 23™*1 and then all
other terms are same as it is and then this m | am taking to the denominator here like this

right.

So now next step what | am trying to do? | am trying to multiply this expression by 16 and
then divide by 16. So, that 16/16 and then all this as it is. So, now in the next step what |
try to do? | keep the 16 as it is and wherever the denominator 16 is there that | will take to

the numerator and then write it as 274.
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When | write it then what | get? 27* and then 16 is here as it is. So, then this term is as it

is. So, this term | can write it as when you join these 2 terms | can we can write it as 23773

16
-1,
p(vavg) D

(s(n=D)m(3E2)"

that is 23(~1_ S, 23 | can write as 8. So, then what | can have? This term

So, now thisisinaforms f = ;—iform for Newtonian case friction factor f = ;—2 that form

we have written for the case of power law fluids. So, by analogy what we can write
whatever this denominator this thing is that expression that entire thing we can write it as

Re for power law fluids. So, then we are writing Rep.. So, Rep_ is nothing but

p(vavg)z_nDn
(S(n—l))m(ﬁ)"'

an




So, this RepL expression whatever is given is also same as given by the Metzger and Reed.

So, it is also written as Remr in some books. So then what we have? If you write this Rewvr

or RepL in the form like p’;‘lﬂ in terms of u, ¢ . Because we know that for non-Newtonian
eff

fluids the viscosity changes.

So, which viscosity should you take? So, in that way if you think if you write it as in place
of viscosity you simply writing viscosity because if viscosity changing Reynolds number
would also be changing. So, rather writing changing viscosity with shear rate if you write

effective viscosity in the definition of Reynolds number.

Then what should be that effective viscosity? That should be nothing but

n-1 n
m (Sv“”g) (3”+1) this 2% js nothing but the nominal shear rate or true shear rate for
D 4n D

the Newtonian case and then nominal or apparent share rate for the case of non-Newtonian

fluids that we have already seen in the case of a capillary viscometers fine.

So, this is what about the friction factor for a power law fluid flowing through circular
tubes right. So, now what we do? We take a different type of fluid flowing through circular
tubes, but again due to the pressure difference.
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Ellis Model Fluid Flow through Pipes due to Pressure Difference

* Assumptions

* Infinitely long cylindrical tube (L/D very large)

* Flow is laminar and incompressible; Gravity is negligible; Isothermal
condition

. Sl
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* Symmetric in 0-direction: 6—2 =0
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So; that means, whatever previous lecture that we have taken a circular tube infinitely long

cylindrical tube right. So, that is L/D ratio is very large. So, then we have taken the only



the fully developed region or we have taken L/D very large. So, that we have a fully
developed flow. So, that if you have a fully developed flow the analysis would be easy for

you that is in the flow direction the velocity profile will not change.

Let us say if this is your r direction if this is z direction. So, then what you have the flow
direction only v, you are having and then that is function of r. So, that velocity profile if it
is Newtonian fluid then. So, if it is a Newtonian fluid the velocity profile is parabolic like
this which we have already seen. We have already seen in the previous lecture and then
depending on the non-Newtonian behavior or the power law index the profile changes.

It becomes flatter for shear thinning fluids and then it become very steeper for sharp kind
of thing for shear thinning fluid that we have seen right and then shear stress is linearly
increases with r ok. So, that is what we have seen. So, all those conditions are same here
again only thing that only change that we are going to have is that in place of power law
fluid.

Now we are taking Ellis model fluid right. So, the pressure at the inlet z = 0 is nothing but
Po at the pressure at z = L is nothing but P and then because of this pressure difference
the flow is taking place and then the all this analysis whatever we have done in the previous
lecture. And then whatever we are going to do today’s lecture that is only for the fully
developed region it is not valid for the entry region or exit region ok. So, fully developed

flow you can have when you have L/D is very large right

So, since compared to the previous lecture everything is same except the fluid. So, then
what we have? We quickly go through the initial constrains assumptions etcetera
simplifying of continuity equation momentum equations etcetera quickly. Because they

are going to remain same they are not going to change.

The change compared to the previous lecture for the case of a power law fluid will occur
only from the point where you get this expression t,., = (_TAP) g So, till get getting this

point you are going to have exactly the same thing whatever we have done for the case of

power law fluids in the previous lecture right.

So, but; however, since we are in the beginning of solving such kind of problem we will
do once again ok. So how we do? We first list out all your assumptions or constraints of

the problem then based on those constraints we are going to simplify the continuity and



then momentum equations and then from those are simplified continuity and momentum
equation you may be getting some relations using those relations you may get the velocity

profile.

So, that process is to the standard process. So, that we are going to follow here also. So,
assumptions we have taken infinitely long cylindrical tube that is L/D is very large and
then flow is laminar and incompressible. We are not considering gravity; we are not

considering non isothermal conditions flow is isothermal.

Then steady state and then symmetric in 6 direction and then a fully developed flow that
is what we have taken. And then in addition to that what we have we have only v,
component of velocity and then that v, component of velocity is varying in the radial

direction r direction right, ve vz Vo Vr may also be there some values.

But their magnitude wise they are very much small, they are very much small compared
to the v, and then especially in the radial direction they may be very very small ok. So,
compared to the v, vp v; are negligible that is what the basic bottom line ok. So, now, these

are same as previous class.

(Refer Slide Time: 17:45)
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So, then we are going to apply these constraints to continuity and then momentum
equation. So, continuity equation steady state. So, this is 0 and then vy is not existing or it

is 0 vg is not existing or it is O; r by symmetry also this term is O and then since fully



developed flow % any flow variable is 0. So, then continuity is satisfied. So, continuity is

satisfied.

Then equation of motion r component of equation of motion is this one. So, steady state
this term is O; vy is 0; vg is 0 and then because of the symmetry aa_e of anything is 0 and then

Ve is 0 v; is there, but v; is not function of z is function of r only and then v; is 0 and then

because of fully developed flow also this term is 0.

Pressure we cannot say pressures in general we do not have any generalized boundary
conditions ok. So, we just leave it as it is this term t» would be having only v, terms which

is not there and then because of the symmetry this term is 0 this tee also would be having
only ve term. So, then it will be 0 and then because of the fully developed flow % of any

flow variable is O.

So, this is 0 and then gravity we are not considering also only 1, is existing in the in the in

the current flow conditions whatever we have taken. So, all other terms of shear stress are

0. So, what we get here? We get Z—f = 0; that means, pressure is not function of r.

(Refer Slide Time: 19:25)
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Similarly, 6 component of momentum equation if you simplify steady state. So, this term

is 0 vy is not existing ve is not existing and then because of this symmetry this term is also



0. So, Vv vp both of them are 0 v is not 0, but because of the fully developed flow % of any

flow variable is O fully developed flow in this case flow is in z direction.

So, % of any flow variable is 0 that is only for the flow variables not for you know scale

as like pressure and temperature right. So, the symmetry boundary conditions also in
general only for you know flow conditions only not for the scale as temperature profile

pressure profile we cannot generalized ok. So, let us keep it as it is.

So, 10 IS having vr Ve terms or this 1, shear stress s component is not existing because of
symmetry this term is 0, because of the fully developed flow % of any flow variable is 0.

So, this is 0 and then for laminar flow these 2 are equal to each other. So, that is 0.

So, gravity finally, we are not taking anyway then what we get here again we get Z—Z =0

that means, p is also not function of 6. So; that means, till now what we understand p is
not function of r and 6 it is so, but the flow problem is taking place because of you know

pressure difference.

So, that what we can understand now from here itself without solving the problem further
we can realize that p is function of z. What function? Is it a linear non-linear that we do
not know that we can understand by simplifying z component of momentum equation. So,
here steady state this is 0 vr is 0; ve is 0 symmetry. So, this term is this term is also 0 v; is

the existing, but it is fully developed flow.

d . : : .
So, o of v, is O pressure you cannot say anything any generalized conditions we cannot

have. So, Z—: we cannot cancel out. So, only shear stress is existing tr.. So, which is again
function of r because in the radial direction only the shear stress variations are there
because the flow direction we are taking the z direction. So, only tr; shear stress component
is existing. So, we cannot cancel out this term and then because of the symmetry this term
is 0.

Because of the fully developed flow this term is 0 and we are not taking any gravity in this

problem. So, what we have? We have only these 2 terms; that means, ?9_: = %% (rt,,) that

is what we are having. Now, what we see here? So, left hand side Z—Z is there.



So, already we realized by simplifying r and 6 component equations what we understand

that pressure is not function of r and 6. So, whereas, the right hand side what we have its
everything function of r right. So what we can say? This ‘;—Z IS independent of whatever

this thing is there in the right hand side ok and then similarly the ,., is function of r because

vz component should be this.

So, the v; is function of r only. So, it is not function of z. So, whatever the right hand side
terms are there t,., etcetera they are independent of z. So, then what we say? For the right
hand side term whatever the left hand side terms are you know constants they are not going
to affect it because left hand side term is only function of z and then right hand side terms

are only function of r.

(Refer Slide Time: 23:13)
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* Thus we can write ordinary derivatives:

* Since p = p(2) only and RHS is independent of z

: d :
* We can mtegrated—’;to obtain: p = ¢z + ¢,
N R

r

So, what we can do? We can individually integrate them when we integrate we get p = c:

Z + Co.
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So, what are the boundary conditions? Atz = 0 p = po. S0, Co should be Poand at z =L p is

=PL. So, that PL = c1 L + co then c1 we get %o that means, p=ci is 2o 4 74 P,. So,

the same thing we can write P, — P, we can write ——= L 3o, that p -_— +z+P,.
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So, Z—’Z’ =c; = _TA” that is what we can write. Now what we can do? Whatever the g—’Z’ =

1% (rt,, ) equation was this by simplifying the z component of momentum equation. So,



we treat ‘3—: as a constant for integrating the right hand side term. So, then what we do r we

take to the other side. So, then 2 = irrrz.
dz dr

2
So, now if you integrate with respect to r. So, then what we have rt,, = %3—: + ¢, then;

that means, t,, = EZ—: + 672 right. And then shear stress cannot be infinite at any location

between any value of r between 0 to R.

So, but if you substitute r = 0; here this t,, becoming infinite, but it is not possible. So,
then c, has to be 0 so; that means, t,., is nothing but ( - ) this is what we get right. So,
if you know you need to know the shear stress at wall you have to substitute r= L r=R

you have to substitute then we get 7, = (_TA") g.

So what we do next? We try to obtain velocity profile for Ellis model fluid. Remember till
this point before this slide you know we did not brought any information about the

rheology of the fluid. So, till the point 7,., = (_TA”) g that expression derivation you know

the problem is same if the flow is taking place in circular tube under fully developed flow

conditions right.
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So, now after this point we are going to bring in the effect of the fluid rheology. So, for
Ellis model fluid apparent viscosity is nothing but this is apparent viscosity. At the



beginning itself, we have a you know made a you know generalization that if it is a non-
Newtonian fluid then whether you specifically write apparent viscosity or not it is apparent

viscosity because viscosity changes with shear rate ok.

So, now this apparent viscosity is nothing but —%—— « is something like same like a
1+(Ty—x>
"y
power law behavior index for the case of power law fluid. But only thing that in the power
law fluids power law behavior index n < 1 for the shear thinning fluids whereas, in the

case of Ellis model fluid this a > 1 ok.

So, that is a different, but the nature wise they are same ok. And this p, is nothing but 0
shear viscosity this 71 /, is nothing but you know let us say if your p, is 100 pascal second.

So, what is the shear stress at which this viscosity is becoming 50 pascal seconds that shear

stress we call it as 71 /20k'

So, this is this we already know so; that means, you know if you plot this apparent viscosity

Happ VEIsUS T,,. Then this usually you know high it is large at smaller shear stress and
then gradually decreases something like this. So, this is nothing but your y, right. So, this
let us say if it is 100 at what shear stress it is becoming 50 then y, is decreasing to 1/2 of

its value.

So, that value is known as the corresponding shear stress value is known as the 71 /y And

then we know we have already studied this Ellis model fluid is important when the
deviation from the power law fluid is more at low shear rate range. At low shear rate range

if the deviation from the power law behavior is more important.

So, then it is better to use the Ellis model fluid for reliable information ok and then such

cases occur in general in most of the dairy products. So, the same equation if you write for

Ho

a—-1-
14| 22
1/,

you know if you write in cylindrical coordinates then you have



So, then t,, T is nothing but apparent viscosity multiplied by the shear rate right. Now

. —=d . . .-
shear rate is d:Z and then in case only t,, shear stress component is existing. So, t,, =
Ho —dvg

“_1{ dr }
Trz

1/,

1o 22

So now what we do? We keep % one side. So, then remaining terms to the other side

what we have t,., + % and then this entire multiplied #i So, this minus if you take to
Yy 0

_Ap

the right hand side — 2 and then in case of T, YOU can write (T)g because that is just

Ho

now we derived. So, when you write you get this expression right.

= ()

So, now if you integrate this equation v; = ——
—Ap a i i i i roatl . )
(7) and then integration of r ¢ is nothing but mand then integration

r2

—Ap
2

) and then 1/2 is also already there.

(]

1
a—-1
2

constant c.

So, now that ¢ constant if you wanted to find out the velocity v, is 0 at wall that isatr =R
because of the no slip velocity is 0. So, that you substitute here in this equation. So, then
you get this ¢ constant and that ¢ constant you back substitute here you will get this

expression.
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So, this ¢ constant is this one when you substitute r = R in the previous equation then v;

will become 0 and then corresponding c is this equation. And then that ¢ we are substituting

; ) . 1 —A 2 1 —A a .a+1 ) ) ;
in this v, expression v; = —— (—p)r—+ — (—p) — 4+ ¢ in place of c this is
Uo L 4 11/2“ 2L a+1

coming out.

So what we do? r powers whatever the similarities are there those terms we combine
together that is 2 terms we combine together and then r%*1 terms we combine together

then we get v; is equals to this expression this is nothing but the velocity profile right.

So, now this same expression what we can write ( ) you can write it as tw; SO tw. SO,

1 r is remaining r and then divided by in place of 4 we 2 is combined with tw so, 2 is

remaining. So, —(1 - —) Similarly, here also if you do this is what we get wherever

( fp) is there we are writing tw here also. So, this is the velocity profile you get right.

Now, if you wanted to find out the maximum velocity vzmax. What you do? You can get by
substituting r = 0 at the center the velocity is going to maximum. So, when you substitute
r =0 then v; = vzmax and then that is given by this expression. So, we got the velocity profile

we also got the maximum velocity now.
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Next what we try to do? We try to get the volumetric flow rate. So, volumetric flow rate
isQ = [ [ v,rdrd®. So, volumetric flow rate Q = [ [." v,rdrd®, but in 0 direction

we have the symmetric flow.

So then what we can have? 2m fOR v, rdr and then this v; is nothing but this expression just
now we got it. | have written the expression before converting that expression v;
expression in terms of tw oOk. So, that v, we are going to substitute here. So, then we have

this expression.

Now what we can do? We can bring this r within the parenthesis here and then here also
and then do the integration. So, then we have this expression. So, here for the first case 2

2 4 2
1’s are 2 2’s are and rest % - 4%. And then here again % —r%*2 s there integration

a+3
of r%*2 will be Z?Will be having right.

Now this lower limit is anyway 0. So, then you do not need to worry | am substituting it
because all the terms are having r value r’s ok. So, now upper limit when you substitute R
then you get this one. So, if you do further simplification then what you get Q is equals to
this expression.

a+3-2

2(a+3)" So,

In the next step what we can do? You can do LCM of this one. So, then you get

that is @ + 1 you get. So, that « + 1 and this « + 1 will be cancelled out right.

(Refer Slide Time: 34:29)

( Ap)R @z( Ap R) R oot
T Mﬁ/“ Bla+3)

B nR3( Ap R>4-nR3( Ap R) 1
T\ L2 L2 (oz+3)r1/2a-1

T R

Tk? a1 4

1,\%1 4
‘a+3




Then you have this term right this « + 1 that a + 1 is cancelled out and divided by

2(a + 3) is this. So, that 2 and then this 2 = 2 we can cancelled out ok. So, this is what we

get this expression. Now, again in place of (_TAP) g you can write tw right when you write

a—1
3
it you get this expression Q = ﬂrw {1 + (T—W> .i} this is what you have right.
4Uo 11/2 a+3
So, if volumetric flow rate is known average velocity can be find out by dividing the

. . R?
volumetric flow rate by cross section area of the m. So, Ik’

TR2

if you do you get

a—1
ﬁ{l + <T—W> .i} this is what the average velocity.
4[10 T1/2 a+3

So, now we got the volumetric flow rate average velocity as well in addition to the velocity
distribution and then maximum velocity. So, everything we all almost everything we got
except the friction factor. So, we try to do some simplification to get the friction factor as

well.
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So, friction factor we know that f = 1

So, now, t,, = gpvz. So then what we do? In
2PV

P

place of 1w in the average velocity expression we are going to write g pv? from here. Then



2
fpv ) n 4R
2 4Uo (a+3)‘r

we get v = Lrw that is i( 7 (t,)% 11, thatis 2 and then t,, is
4po 4po

2\
nothing but (f’%) is as it is right.

So now next step what | am trying to do? | am trying to write these expression R also | am

writing in terms of D/2. So, that we can define Reynolds number. So, then we have here

first term in the right hand S|de + second term f%p%v2® etcetera are there.

So then how | am writing? p%, v*, D* and then remaining v* whatever is there. So, that |
am writing separately because here what you have you have only 1 D. So, D* you have
written here. So, D1~% | am writing here and then divided by 2 u,~% | am writing and
then whatever the u, is there I am writing uo1~% and then u,* remaining constants are as

itis right.
So, this 2% is as it is right. So, next step what | am trying to write? Dﬂ within parenthesis

here and then in the second terms also ( ) here in the as a parenthesis within the

Ho

parenthesis | am writing. So, that I can write DY | can write it as Re that | can write.

Ho
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So, first term % you | can have second term f* Re® and then remaining terms whatever

Vlo

a—1
are there v~ 1D %y~ 1, ,%71 | can write it as (D ) . And then remaining

T1/2

1

constants ————c= right.

Next step what we are going to do? We are going to multiply g both sides because just

wanted to write this also in the Newtonian case like in the Newtonian case f :g form is
there. So, that way we are trying to write. So, that is the reason | am writing | am

multiplying this equation both sides by ;—i So, right hand side first term is f and then second

term ;—2; 16 I am writing as 2 and then RRLZ | am writing Re*~1 this all terms as it is.

In the next step you know what | am trying to do? | am taking f common from the 2 terms

in the right hand side. So, then | have this expression. So, that is f = g divided by this

. . . Dt .- . .
particular expression. Now here what | can write? #/2 | am writing some dimensionless
0

number El. So, then this is what we have.

So, what you understand here you know like you know Newtonian or power law fluids the
friction factor is not explicit it is not explicit. So, you cannot get directly by substituting
Reynolds number etcetera or power law index power law behavior index etcetera ok. So,

it is a trial and error basis ok that is what we understand here. So, this El is nothing but

Dt ..
ﬁ/z this is what we have.
0
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So, % if you further try to substitute and then try to write in terms of 1w something like

Tl/z

and then El is nothing but

So, now here what we can see? This v? and then this v this v is cancelled out this D this D

is cancelled out p and p cancelled out.

So, what you have? 22 - ™ hecause this , this p is also cancelled out. So L=2 \we can write
1/2

in the previous equation as 2 ~. So, then f we can also write like this right. Anyway tw

T1/2
again we cannot say that now equation for fiction now again we cannot say that the friction

factor is explicit.

Because now we brought right side in form of 1w etcetera no because tw is again related to
f it is just you know writing in a simplified form only we are writing this one ok. So, still

the f is not explicit it is based on the trial and error approach only you can get the solution.
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Example Problem

* Shear-dependent viscosity of a commercial grade of
polypropylene at 403K can satisfactorily be described
using the three constant Ellis fluid model with the
values of iy =1.25x10* Pas, 71/ = 6900Pa and « =
2.8. Estimate the mto maintain
“a volumetric flow rate of 4cm?/s through a 50mm
diameter and 20m long pipe. Assume the flow to be
laminar. '

So, now before concluding today’s lecture we will have example problem. So, one fluid
rheology is expressed by Ellis model fluid with y, is equals to this value v, this value and
then o 2.8. What we are asking? The pressure drop required to maintain a volumetric flow
rate of 4 centimeter cube per second through 50 mm diameter and then 20 meter long pipe;
L is given, D is given, Q is given, and then it was told that flow assume the flow to be

laminar right.
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* Ellis fluid model: 7,, = ——— =+
14

¢ Volumetric flow rate:

3 28-1
o 4x1076 = 20, {1+(—'“—) 4 ]

T ax125x10* @ 6900 '2843

* By rialand error approach: 7, = 3412Pa

1, =22 23412 =."“;ﬁ: —~Ap =5.46 x 105Pa = 5.46MPa

—




. . . —-Ap . .
So, everything is given except Tp in the case of you know you know volumetric flow rate
in the case of volumetric flow rate expression. Now here you know it is in terms of tw is

again (_TA”)g or %. So, this equation except the tw everything is given.

So, you substitute all those numbers here and then get the tw information and then from
there tw information used this equation to get the —Ap value ok. So, but solving this
equation when you substitute all these values you will not get straight forward this will
also include trial and error approach when you do this one you get tw = 3412 pascal’s right.

And then when you apply tw = (_TAP)% expression here and then substitute for tw r and

then L etcetera here in this equation what you get remaining minus delta p you can get it
as 5.4 mega pascal’s ok. In the next class what we try to do? We will be trying to obtain
the similar expression if the fluid is viscoplastic fluid that is what we are going to do in

the next class.
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