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Welcome to the MOOC’s course Transport Phenomenon of Non-Newtonian Fluids. The 

title of this lecture is Time Independent Fluids Flow through Pipes. Till now what we have 

seen? We have seen different aspects of non-Newtonian behavior and then how to measure 

the rheology of unknown fluid those things we have seen. Then also we have seen a few 

basics of transport phenomena and then we also derived conservation equations of mass, 

momentum and energy in previous lecture till now right. 

So, now what we are going to do from this lecture onwards? We are going to apply those 

principles and then trying to obtain the transport phenomena of different types of non-

Newtonian fluids. 

So, what we are going to start with? We are going to start with transport phenomena of 

time independent non Newtonian fluids when they are flowing through pipes. So, within 

the category of time independent non Newtonian fluids or generalized Newtonian fluids 

we take a few cases of power law fluids and then Bingham plastic fluids, Herschel Bulkley 

fluids or even Ellis model fluids also we take. And then we are going to take a different 

geometries like flow these non-Newtonian fluids flowing through pipes and then they are 

sliding down through inclined plates etcetera or between two infinite parallel plates 

etcetera different types of geometries we are going to take.  

And then subsequent course we are going to handle the heat and mass transfer phenomena 

associated with this non-Newtonian fluids as well. So, we start with the case of flow of a 

power law fluid through circular tubes due to pressure difference. 
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That is we have a circular tube we are having which is having a very large you know 𝐿 𝐷⁄  

ratio that is you know a length is very large compared to the diameter; compared to the 

diameter of the circular tube right. 

So, 𝐿 𝐷⁄  is very large we are taking so that we can have the fully developed flow. So, at 

one end you know we have you know fluid coming in and then at the other end fluid going 

out. So, what is the velocity distribution for this case that we have to see and then what is 

the volumetric flow rate. 

And then what is the friction factor because now fluid has changed. So, then friction factor 

will also be changing. So, then what is the friction factor? So, under what range of 

Reynolds number the flow is going to be laminar, under what range it is going to be 

turbulent all those things we are going to see one by one in you know coming lectures as 

well right. 

So, let us say this is the center of the circular tube alright. Now, the coordinate system if 

you consider. So, this is your z direction and then this is your r direction. The radius of 

this circular tube is R our diameter is D. So, now, the fluid is flowing through this one 

because of the pressure difference. 

So, at z = 0 what we do? We take pressure is equals to P0 and then at z = L we are going 

to take pressure = PL and then the L is nothing, but the length of the circular tube that we 



have taken right. So, any fluid that is flowing. So, now, we are taking a case where there 

is no slip existing. 

So, at the wall the velocity is going to be 0 and then at the center the velocity is going to 

be maximum, we are taking one dimensional motion only ok under laminar conditions. 

So, those assumptions we are listing out anyway. So, then what happens you know at the 

center you are expecting to have a kind of maximum velocity right. 

So, let us say you have a Newtonian fluid. So, then what will be the velocity? Maximum 

velocity at the center would be 2 times to the average velocity that is flowing through. So, 

then as we move up what happens? The velocity gradually decreases the velocity gradually 

decreases as we move towards the wall like this and then we have a kind of parabolic 

profile something like this ok right. 

So, now the velocity profile something like this right gradually as you move from center 

to the wall the velocity decreases ok then shear stress also we have seen till now, the shear 

stress is 0 at the center right. And then as we move towards the wall, it increases and then 

it increases linearly for one dimensional flow in the case of a flow through circular tube 

like this. 

So, then this is you know distribution of the shear stress and then this is the distribution of 

the velocity. Now, the velocity here only vz velocity is existing one dimensional motion 

we are taking, the flow is pre-dominating in the z direction. So, vz is dominating vr and 

then vθ are you know they are very small compared to vz. So, then we can take them 0. 

So, then this vz velocity is function of now what we understand it? It changes with r it is 

maximum at r = 0 and then it is 0 at r = R that is at the wall right. So, this what is the shear 

stress that we are expecting here in this case because one dimensional motion. So, then τrz 

we are going to have and then that is also function of r and then that function is a linear 

function that we understand through our you know in a capillary viscometer case also 

indeed this is completely same like capillary viscometer, but the context that we are seeing 

is different there the context was to obtain the shear stress shear rate expression.  

So, that to get the rheological behavior and then make required adjustments because of the 

any sources of errors etcetera those things were the contents there. Now, here we are purely 

trying to find out what is the volumetric flow rate how it is changing with respect to the 



pressure drop, what is the velocity distribution, how it is changing with a radial position 

all those things we are going to see now in this lecture right. 

So, this is the physically the problem. So, then what we are going to see? We have to have 

a kind of enlist of a restrictions of the flow because now here we are saying the laminar 

flow what are the other assumptions that we are taking. So, let us say we have taken 

horizontal pipes. So, then gravity we cannot take and then we are taking isothermal 

conditions. So, all these kind of several restrictions may also be there. So, then we are 

going to enlist all those things right. So, first we do that one. 

So, assumptions involved in this derivation that is derivation for the volumetric flow rate 

for the power law fluid flowing through a pipe and then how that volumetric flow rate is 

changing with respect to the pressure difference that is what we are going to see. So, for 

this derivation the assumptions are like this. So, first most important that infinitely long 

cylindrical tube that we are taking.  

So, that 𝐿 𝐷⁄  is very large, it is more than 150 or something like that so that end effects are 

not there; so that end effects etcetera would not be there right. So, then flow is laminar and 

incompressible, gravity is negligible, isothermal conditions we are taking because we are 

not considering heat or mass transfer simultaneously along with this momentum transfer 

problem we are taking only momentum transfer part. 

So, this isothermal conditions we are taking, then steady state we are taking steady state 

because of the steady state 
𝜕

𝜕𝑡
 of anything should be 0 and then what we are taking? The 

velocity profile is going to be symmetric. So, now this is the two dimensional view of you 

know cylindrical tube. If you have a kind of a complete picture so then θ d whatever the θ 

is there in the θ direction the flow is symmetric that is what we are going to say the other 

one.  

The symmetric in θ direction so that is whatever the flow, nature, behavior or distribution 

flow distribution or velocity distribution is there between θ = 0 to 180, the same that one 

is taking place between 180 to 360 degrees ok. 

So, whatever the flow is there in the θ direction or the distribution that is there velocity 

distribution from θ direction point of view, 
𝜕

𝜕𝜃
 of anything is 0; that means, whatever the 



flow or velocity distribution is there between 0 to 180 degrees the same thing is there 

between 180 to 360 degrees right. Then fully developed flow 𝐿 𝐷⁄  we have taken very 

large. So, that fully developed flow is taking place. What does mean by fully developed 

flow? 

So, let us say at this location we have a, let us say this location we are calling l1. So, this 

is the velocity profile, let us say you take this location is l2. Again, you draw the velocity 

profile it would be exactly same thing whatever it was at l1 and then let us say if you draw 

the velocity profile other location l3. So, then at that position also velocity profile would 

be exactly same like at locations l1, l2 that means, along the flow direction the velocity 

profile does not change; does not change. So, that is the reason along the direction flow 

direction; flow direction is z. So, here. 

So, that is the reason 
𝜕

𝜕𝑧
 of anything any flow variable is 0 not kind of thing scalars or 

temperature pressure kind of thing or concentration kind of thing this is valid for only flow 

properties like velocity, shear stress etcetera for those things only it is valid right fully 

developed flow that where 
𝜕

𝜕𝑧
 of anything is 0 that is what we are having. 

That is in the flow direction velocity distribution is not going to change ok right, that is 

another assumption. And then this fully developed flow assumption is valid in the region 

away from the entry and then away from the exit because entry and exit effects are there. 

So, then we are not taking the domain to get the velocity profile within this range of entry 

and exit, we are taking far away from entry far away from the exit. So, somewhere in 

between so, that fully developed flow region is developed in which at any location if you 

measure the velocity profile you are going to get the same profile that is what mean by 
𝜕

𝜕𝑧
 

of any flow variable is 0 ok. 

That is the other constraint and then flow is predominating in z direction and then it is 

changing as function of r; obviously, that is clear from the physics of the problem. So, vz 

is function of r whereas, vθ and then vr very small compared to the vz. So, then we can 

strike off them, we do not need to consider right. So, now, these are the assumptions. 

So, now what are we going to do by list enlisting these assumptions? We are trying to 

actually what we have to do? The you have to find out the so called the stress distribution 

and then velocity distribution etcetera for a power law fluids, whatever they have drawn 



in the previous slide that is only for the you know the velocity profile is only for the 

Newtonian fluid right. 

So, it is going to be different for power law fluids. So, how it is going to be different that 

depends on the value of n power law index. So, that we have to develop that relation that 

vz as a function of r that we have to develop which is again dependent on the value of n 

right. So, how it is dependent that if you wanted to find out you have to do the momentum 

balance right? 

So, now what we do? Since this course is at advanced level course rather doing 

fundamental shell balance for every problem what we are going to do? We are going to 

use the conservation equation if you solving for the momentum transfer. So, then equation 

of motion we use and then we apply the constraints of the problem to some to simplify 

those conservation equations of motion so that you know you can get some kind of a 

simplified equation.  

Those equations you can solve to get the velocity profile and then shear stress distribution 

etcetera that is what we are going to do. Similar kind of approach we are going to follow 

for the heat transfer and then mass transfer problems also in the later course, in the due 

course of the semester ok. 

So, that is what we are going to do. We are not going to do the shell balance every time as 

we have done in the UG course right because whatever the momentum equations are there, 

they are nothing but the momentum balance equation for control volumes specified control 

volume right. 

So, such momentum equations are already generalized momentum equations are already 

available. So, those things we are going to use and then we are going to apply the 

constraints of each and every problem that we are going to consider. So, the constraints of 

this problem we have enlisted in the previous slide. So, now, what we are going to do? We 

are going to simplify the continuity equation and then momentum equations so that to get 

the required velocity profile. Once you have the velocity profile you can get any way 

volumetric flow rate. 
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So, equation of continuity in cylindrical coordinates because we have taken circular 

tubes so which is a cylindrical geometry. So, then what happens? The continuity 

equation that we have already seen in one of the previous lecture is 
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟�⃗�𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌�⃗�𝜃) +

𝜕

𝜕𝑧
(𝜌�⃗�𝑧) = 0. If you know the solution what I said that importance of the 

continuity equation is that whatever the distribution velocity distribution that you get that 

must satisfy the continuity equation right otherwise the solution is not reliable ok. 

So, now we apply the constraints, what are the constraints? We have the steady state. So, 

then the first term we can cancel out and then compared to vz, vr and vθ are 0. So, then 

second, third terms are also 0 because of the symmetry also this third term is 0 anyway 

you can cancel out. And then because of the fully developed flow 
𝜕

𝜕𝑧
 of any flow variable 

is 0 so; that means, the constraints are also consistent and then we are getting that 

continuity is being satisfied here. 

So, this is one point of simplifying continuity equations. In some problems what happens 

you may not able have a conclusions like whether the flow is symmetric or whether the 

flow is fully developed something like that. So, then in such conditions you can simplify 

the continuity equation to get one of the conditions right ok. 

So, let us say you know the flow is only symmetric, but you do not know whether the flow 

is fully developed or not. So, then if you simplify this equation, then whatever the 



condition that you get from that you can understand ok. So, that is the other point of 

simplifying the equation of continuity, but anyway that we will do later course anyway for 

this problem it is not required. 

Then equation of motion cylindrical coordinates r, θ, z components all of them we are 

going to simplify. So, r component of equation of motion this is what we have. By the way 

you do not need to remember all these equations these equations are available in standard 

textbooks if at all you need to solve this problem for your assignments or for your you 

know exams these equations would be provided ok. 

So, now for r component of momentum equation steady state you cancel out the first term 

vr = 0, vθ = 0, vθ = 0. So, these all these stems are 0 first 4 times now cancelled out vz is 

not 0 it is function of r, but vr = 0. So, then that way also it is 0 can last term in the LHS 

cancelled out and then because of the fully developed flow also we can cancel out the last 

term right. 

And then pressure in general we do not know any information about the you know pressure 

boundary conditions, limitations on the pressure in general for most of the fluid flow or 

momentum transfer problems. So, we cannot make any judgment whether that particular 

term should be included or not right. So, then we will not say anything about it, we just 

retain it as it is then only τrz is existing here for this case or here τrr would function of vr 

only. 

So, that way also it is cancelled out then because of symmetry this one is cancelled out or 

τθ is r also not there. So, that way also it is cancelled out τθθ would be having the terms of 

only vθ. So, which is 0. So, that is cancelled out similarly here you know because of the 

fully developed flow 
𝜕𝑝

𝜕𝑟
 of anything is 0. So, that is also cancelled out. And then we have 

taken a horizontal tube. So, this term is also 0 gravity we are not considering. 

So, what are we finding out by simplifying this r component of momentum equation? We 

are finding that 
𝜕

𝜕𝑧
 is 0; that means, pressure is not function of r pressure is not function of 

r this is what we understand by simplifying the r component equation. It depends on 

problem to problem you know some other geometry, some other problem when you 

simplify the r component of equation. 



So, then you may not you may be having additional terms also right. It is not like that every 

time whenever you simplify the r component of momentum equation you are going to get 

𝜕𝑝

𝜕𝑟
= 0 no it is not like that, this is only for this problem because all this canceling out of 

these terms we have done based on the constraints of this particular problem that we have 

taken which is nothing but the flow of a power law liquid through circular tubes because 

of the pressure difference. 
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Then θ component of momentum equation this is what we have. So, here steady state. So, 

this time is 0, vr is 0, vθ is 0, then vr vθ both are 0, vz is not 0, but vθ is 0 as well as the fully 

developed flow 
𝜕

𝜕𝑧
 of anything is 0 and then this thing we cannot say anything whether it 

is because pressure we do not know conditions whether it is independent of θ or not, how 

it is dependent on the θ that we do not know right and also as I mentioned symmetric flow 

conditions etcetera they are for the vectors not vectors or tensors only that is not for the 

scalars. So, we cannot say this one ok. 

So, just retain it as it is and then only τrz is existing, τrθ is not existing for this flow problem 

it is one dimensional flow that we have taken. So, now, this is cancelled out or this τrθ 

would be having the terms related to the vθ and then vr, vθ function of r, vr function of vθ 

maybe we are having right vr and vθ terms maybe there vr function of θ and then vθ function 

of r maybe there. So, both vr vθ 0. So, then this should also be 0.  



And then the same way this is also 0 because you know otherwise you know because of 

the symmetry also this is 0. This is not there, τθz is not existing or because of fully 

developed flow also 
𝜕

𝜕𝑧
 of anything is 0 and then for symmetric laminar flow these two 

quantities are going to be same. So, then their difference is going to be 0 anyway. 

We are not considering gravity in this problem. So, then what we understand from here? 

𝜕𝑝

𝜕𝜃
= 0; that means, pressure is not function of θ also. So, now, by solving this r and θ 

components of momentum equation what we understand? Pressure is not function of r and 

θ. In fact, we do not need to worry about this one also because it is already given in the 

problem statement, the flow is because of the pressure difference and then pressure 

difference is in the z direction at z = 0 pressure is equals to p0, at z = l the pressure = pl ok. 

So, that is what we have anyway.  

Then z component of momentum equation if you simplify. So, this is the equation. So, 

steady state this term is 0, vr is 0, vθ is 0, vz is not 0, but 
𝜕

𝜕𝑧
 of any flow variable is 0 because 

of the fully developed flow. So, left hand side all the terms are cancelled out, 
𝜕𝑝

𝜕𝑧
 we cannot 

say the pressure right. So, whatever the fully developed flow condition etcetera is there 

that is also for flow variables not for the scalars like temperature and pressure. 

So, then we cannot cancel out this one right and then τrz is existing because it is having vz 

and then vz is function of r. So, we cannot cancel out. So, then this term would be there 

and then τθz is not existing because it will be having vθ vz, vz is function of r only it is not 

function of θ so that way also this term is cancelled out or it will be 0 or because of the 

symmetry also this term is 0. Then because of the fully developed flow 
𝜕

𝜕𝑧
 of any flow 

variable τzz is flow variable it is not scalar. So, then that is cancelled out and then we are 

not taking gravity. So, that is cancelled out. 

So, only these two terms are remaining; that means, 
𝜕𝑝

𝜕𝑧
=

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧). So, this equation we 

can solve. So, now, what we understand now here? Pressure is function of z; pressure is 

function of z it is already clear from the previous two simplifications also, but now the 

same thing is realized here also pressure is function of z right. So, now, further you know 

these momentum equations we are simplifying for a Cauchy’s momentum equations we 

are simplifying. 



We are not simplifying Navier Stokes equations; Navier Stokes equations are explicitly 

for Newtonian fluids right. Cauchy’s momentum equations are generalized for any fluid 

Newtonian or non-Newtonian fluid. Only that in the place of τ if you substitute respect to 

equation for you know nature of the fluid or rheology of fluid. So, then that equation would 

be for that fluid ok right.  

So, now, this equation if you solve then you can get expression for 𝜏𝑟𝑧 and then after that 

you further simplify this one depending on the nature of the fluid Newtonian or power law 

or Bingham plastic anything, then from here we can get the velocity profile vz ok. How? 

That we are going to see now. 
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So, this is what we get. What we understand by simplifying r and θ momentum equation 

p is not function of r and θ right. 

So, left hand side it is 
𝜕𝑝

𝜕𝑧
 it is function of z only, but right hand side we are having all you 

know out of r, θ, z only r coordinates are there here right. So, only r coordinates are there. 

So, then for left hand side term the right hand side term is nothing, but is a constant term 

kind of thing because left hand side term the pressure term is there that we already realized 

that it is independent of r. 

So, that is the point of you know simplifying all equations of motion. So, you get certain 

information definitely which is going to be useful right. So, now, we understand only it is 



only function of z from this z component of momentum equation. So, right hand side term 

it is all function of r. So, then for left hand side term the right hand side term is a constant. 

Similarly right hand side term it is all function of r and then τrz it is having vz and then it 

is function of r only it is not function of z. 

So, for the right hand side term the left hand side term whatever 
𝜕𝑝

𝜕𝑧
 term or 

𝜕𝑝

𝜕𝑧
 is there that 

is constant; that means, we can integrate this equation independent of each other and then 

get the solution ok. So, that is what we are going to do right. So, because of this nature we 

can also write this equation in ordinary derivatives like this 
𝑑𝑝

𝑑𝑧
=

1

𝑟
 

𝑑

𝑑𝑟
(𝑟𝜏𝑟𝑧). Now, we can 

integrate this 
𝑑𝑝

𝑑𝑧
 because it is function of z only and then RHS is independent of z. 

So, then when you solve this 
𝑑𝑝

𝑑𝑧
 is equals to some constant c0, then you when you saw take 

this 
𝑑𝑝

𝑑𝑧
 is equals to some constant c1. So, then you get p = c1 z + c0. So, that is what you 

have. What is this constant c1 let us not worry about it ok right. So, that is what we have. 

So, now for this you apply the boundary condition and get the pressure distribution 

whether it is linear or non-linear in the z direction that is what you get. 
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So, at z = 0, we got p = P0. So, that if you substitute you get c0 = P0 one constant you got 

at z = L pressure is nothing, but PL that is given schematically that in the first slide we had 



so; that means, PL = c1 L + c0. So, c0 you already got P0 then c1 is nothing, but from this 

equation 
𝑃𝐿−𝑃0

𝐿
. 

So, now you got both c0 and then c1 expression. So, that you substitute here in this equation. 

So, that you get this expression 𝑝 = − (
𝑃0−𝑃𝐿

𝐿
) 𝑧 + 𝑃0 this is what you get. This is nothing, 

but you can take it at 
−∆𝑃

𝐿
 ok. So, what you understand from here? You understand that 

pressure is a linear function of z. 

It is function of z, but this function is a linear function that is what you understand ok or 

𝜕𝑝

𝜕𝑧
=

−∆𝑃

𝐿
 that is what you get from this equation. So, this is going to be useful anyway 

right. So, now, in the equation number 1 what we have? 
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1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) =

𝜕𝑝

𝜕𝑧
. Now, 

𝜕𝑝

𝜕𝑧
 is nothing, but c1 that we already got which is nothing, but 

−∆𝑃

𝐿
 

right. So, this is 
−∆𝑃

𝐿
. So, now, this equation you can integrate you can integrate. 

So, when that you do it you get 
𝑑

𝑑𝑟
(𝑟𝜏𝑟𝑧) = 𝑟

𝑑𝑝

𝑑𝑧
; that means, 𝑟𝜏𝑟𝑧 =

𝑟2

2

𝑑𝑝

𝑑𝑧
; 

𝑑𝑝

𝑑𝑧
 we are not 

substituting we can substitute later on there is no issue at all plus integration constant c2. 

So, then what you get? τrz = 
𝑟

2

𝑑𝑝

𝑑𝑧
+

𝑐2

𝑟
 right. 



Now, this r is varying between 0 to R right. So, if r = 0. So, then what happens? This 

constant by 0 it is going it is not going to be defined it is going to be infinite right. So, that 

is not possible shear stress that cannot be infinite because of the continuum hypothesis no 

flow variable or physical properties can be infinite or undefined at any location that is what 

we have seen one of the previous lectures so; that means, this c2 has to be 0. 

Then what you get? τrz = 
𝑟

2

𝑑𝑝

𝑑𝑧
 and then 

𝑑𝑝

𝑑𝑧
 is nothing, but 

−∆𝑃

𝐿
 that is τrz =−

−∆𝑃

𝐿

𝑟

2
 this is what 

you get right. So, the same thing you can write τrz = 
−∆𝑃

𝐿

𝑟

2
  right this is the shear stress 

distribution. And then what we understand? 
∆𝑃

𝐿
 is constant. 

So, what we understand? The shear stress is linearly changing with r location it is 0 at the 

center and then it is maximum at r = R that is what we can understand from this equation 

number 3. So, what is that maximum value of shear stress? If you substitute r = R, then 

you get that maximum value of shear stress that is nothing, but the wall shear stress right. 

So, that is τw = 
−∆𝑃

𝐿

𝑅

2
 right. 

So, you got the shear stress distribution, but your interest is not just a shear stress 

distribution, it is also to get the velocity distribution and then subsequently finding out the 

volumetric flow rate. 
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So, for power law fluids what is τrz? Is nothing, but 𝑚 (−
𝑑𝑣𝑧

𝑑𝑟
)

𝑛

we have −
𝑑𝑣𝑧

𝑑𝑟
 we have 

taken because what happens the pipe circular tube whatever we have taken the velocity is 

maximum at the center right. 

And then it is decreasing as we move towards the wall at from r = 0 to r = R so; that means, 

as r increasing the velocity is decreasing. So, then this gradient velocity gradient is going 

to be negative that is the reason we have to take minus here, this whether should you take 

minus or plus that depends on the flow geometry like this ok. So, τrz = 𝑚 (−
𝑑𝑣𝑧

𝑑𝑟
)

𝑛

 is the 

expression for power law fluids ok. The relation between shear stress and shear rate for 

power law fluids is given by this equation this we have seen in the introduction of non-

Newtonian fluids right. 

So, then this equation τrz just now you got it as 
−∆𝑃

𝐿

𝑟

2
. So, then that we have written here. 

So, next step what we are going to do? We are taking this m to the right hand side and then 

both sides we are taking power 
1

𝑛
 so, that we get −

𝑑𝑣𝑧

𝑑𝑟
= [

−∆𝑃

2𝐿𝑚
]

1

𝑛
𝑟

1

𝑛 this is what you are 

going to have. 

So, this expression also we are this is nothing, but the variation of the shear rate. How the 

shear rate is varying with r because this now this parenthesis whatever the term is there 

this entire thing is constant for a given fluid, for a given power law fluid of known m and 

n value this is a constant. 

So, it is a shear rate is changing as 𝑟
1

𝑛; 𝑟
1

𝑛it is changing ok. So, now, this is we are going 

to use later also for other purpose of simplifications right; however, first what we have to 

do now? We have to integrate this equation to get the vz; to get the vz that we can do it 

when you do -vz is equals to this is all constant and then integration of 𝑟
1

𝑛 is nothing but 

𝑟
1
𝑛

+1

1

𝑛
+1

+ plus integration constant c3. Now, the velocity at r = R is 0 alright. So, that boundary 

condition if you use then you get c3. So, at r = R vz is 0. 

So, c3 should be you know whatever this term is there minus of this term 
𝑅

1
𝑛

+1

1

𝑛
+1

 that is what 

you get. 
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So, this is the c3. Now, this c3 you are going to substitute in the minus vz is equals to this 

particular term and then plus c3 was there in place of plus c3 this is the term that we got 

right. 

So, now here what we do? Except this equation we rearrange such a way that we have -vz 

one side and then minus whatever these square parenthesis terms are there that we are 

taking common and then also we are taking 𝑅𝑛+
1

𝑛 also common from the both the terms, 

from these two terms. 

So, out of that 𝑅
1

𝑛 we are combining with this [
−∆𝑃

2𝐿𝑚
]

1

𝑛
 term. So, that we can have [

−∆𝑃

2𝐿𝑚
𝑅]

1

𝑛
 

and then remaining R we are right here. So, that this is what we are having. So, this is -vz. 

So, then +vz would be this particular term here. So, this would be 1 − (
𝑟

𝑅
)

𝑛+1

𝑛
it will be 

there what we have seen 
−∆𝑃

𝐿

𝑅

2
 is nothing but τw it is nothing, but τw in the previous slide 

only we have seen right.  

So, that is what we have seen. So, in place of 
−∆𝑃

𝐿

𝑅

2
 I have written [

𝜏𝑤

𝑚
]

1

𝑛
 and then 

𝑛𝑅

𝑛+1
{1 − (

𝑟

𝑅
)

𝑛+1

𝑛
}. 



So, for shear thinning fluids if you substitute n < 1 whatever the n value is there. So, then 

you get the velocity profile for a shear thinning fluids flowing through pipes right circular 

tubes or pipes right. If you have shear thickening fluids if you substitute n > 1. So, then 

you get the velocity profile for that fluid flowing through a pipe. 

So, that you can understand you can calculate from this one. So, you can use this equation 

either in terms of 
−∆𝑃

𝐿
 or you can use the τw terms as well anyway you can write ok. 
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So, now volumetric flow rate if you wanted to find out you can do it ∫ ∫ 𝑣𝑧𝑟𝑑𝑟𝑑𝜃
𝑅

0

2𝜋

0
 

simply because vz is not is now known vz as function of r is known yeah. So, it is not 

function of θ. So, then that we can write 2𝜋 ∫ 𝑣𝑧𝑟𝑑𝑟
𝑅

0
 we can write right. So, that we have 

written here and then further what we are doing? We this we are r we are writing 
𝑟

𝑅
. So, 

that d also we can write 𝑑 (
𝑟

𝑅
).  

So, we are dividing by R2 here. So, then we have to multiply by R2 here why are we 

doing because vz is having something like you know terms 
𝑟

𝑅
. So, then if you do the 

integration with respect to 
𝑟

𝑅
 it will be easier otherwise there is no particular reason that 

writing in this form. So, vz just now we have seen [
𝜏𝑤

𝑚
]

1

𝑛 𝑛𝑅

𝑛+1
{1 − (

𝑟

𝑅
)

𝑛+1

𝑛
}

𝑟

𝑅
𝑑 (

𝑟

𝑅
) is as it 

is here ok. So, this term is nothing, but your vz terms integration you are taking changing 

from r to 
𝑟

𝑅
. 



So, then; obviously, this limits also will change from 0 to 1 because at r = 0 
𝑟

𝑅
 is also going 

to be 0 at r = R 
𝑟

𝑅
 is going to be 1 right. So, now, what we do? We multiply this 

𝑟

𝑅
 or bring 

this 
𝑟

𝑅
 inside this parenthesis and then we are going to do the integration. So, when you do 

it? So, because all these things are constant. So, then we can take out as a common outside 

of the integration. 

So, we have the integration 
(

𝑟

𝑅
)

2

2
−

(
𝑟

𝑅
)

3𝑛+1
𝑛

3𝑛+1

𝑛

 and then 0 to 1 are the limits; when you 

substitute 0 to 1 when you substitute when 
𝑟

𝑅
 is 0. So, then lower limit both the both these 

terms are 0 upper limits when you substitute 
1

2
−

1
3𝑛+1

𝑛

 that is 
𝑛

3𝑛+1
 that is what you get. 
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So, 
1

2
−

𝑛

3𝑛+1
you get remaining all other terms are constant. Now, this you can do LCM 

further simplify to get this Q value as this one. 

So, this n + 1, n + 1 also you can cancel out. So, this is the final volumetric flow rate this 

you can write in terms of τw as well as you can write in place of τw you can write 
−∆𝑃

𝐿

𝑅

2
  so 

that you can write this equation as like this fine. So, now, here we are combining all the 

terms. 



So, then we have (
𝑛𝜋𝑅3

3𝑛+1
) [

−∆𝑃𝑅

2𝐿𝑚
]

1

𝑛
 is volumetric flow rate right. So, now, you have a vz 

expression you have a Q expression you have a τrz expression also you got it right. So, 

further what we are going to do? We are getting (−
𝑑𝑣𝑧

𝑑𝑟
) how much it is. So, that to get 

you know shear rate also and then shear rate also we will be representing in terms of Q 

and then after that we will be doing the simplification what is the maximum velocity, 

average velocity etcetera. 
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So, as I already mentioned at the beginning this equation that we have already derived that 

is we are going to reuse somewhere later. 

So, this is the point we wanted to find out the shear rate as function of Q. So, now, this is 

what we have already seen one of the previous slides. Now, in this just now previous side 

Q we got this expression equation number 6 right. So, now, here what you do? Wherever 

this [
−∆𝑃𝑅

2𝐿𝑚
]

1

𝑛
 is there in that place in this equation you can write 

Q (3n + 1) 

𝑛𝜋𝑅3
 that is what you 

can write and then divided by this whatever this R is there you know this 𝑅
1

𝑛 that is here 

and then 𝑟
1

𝑛 is as it is here. 

So, that is what we are doing. So, simply this equation number 6 we are using in this above 

equation here. So, that (−
𝑑𝑣𝑧

𝑑𝑟
)we can represent in terms of volumetric flow rate that is 



the; that is the thing that we are doing because in general you know the volumetric flow 

rate. So, then that directly you can substitute and get the shear rate information. 

So, at the wall if you wanted to know the shear rate what you have to substitute? You have 

to substitute r = R. So, that you substitute. So, then 
𝑅

1
𝑛

𝑅
1
𝑛 

 you get. So, then both are same. So, 

you have wall shear rate is nothing but 
(3n + 1)Q 

𝑛𝜋𝑅3 . 

So, then this equation what you do? You multiply by 4 and divide by 4 so that you can 

write 
4Q 

𝜋𝑅3

3𝑛+1

4𝑛
 this is how you can write the wall shear rate ok. So, now, you got this shear 

rate expression also in addition to the shear stress. 
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Now, what we got till now? We got the velocity distribution, volumetric flow rate 

expiration, shear stress distribution, shear rate distribution etcetera all those things we have 

seen. So, now, what we are going to do here? We are going to plot the velocity distribution 

because if a Newtonian fluid is flowing through infinitely long circular cylinder we know 

that the velocity profile in the fully developed flow region is a parabolic profile; is it the 

same for a fluids like you know a shear thinning fluids or the different flow rate or the 

different distribution is going to be there that is what we are going to see now here right. 



So, this vz we have already derived where τw is nothing, but 
−∆𝑃

𝐿

𝑅

2
. So, in terms of 

−∆𝑃

𝐿
 if 

you wanted to write the same expression you can write like this ok. Now, average velocity 

if you wanted to find out you have to divide the volumetric flow rate by cross section area 

of the pipe through which the fluid is flowing. So, then 
Q 

𝜋𝑅2 if you do you get the vavg. 

So, that is Q just now we got this expression equation number 6, if you divide this 
1

𝜋𝑅2
 and 

then do the simplification vavg you get (
𝑛𝑅

3𝑛+1
) [

−∆𝑃𝑅

2𝐿𝑚
]

1

𝑛
 this is what we have right. 
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So, rewriting that equation number 8 that is for velocity distribution in terms of 
−∆𝑃

𝐿
 and R 

then vavg just now we got this expression. So, then when we do 
𝑣𝑧

𝑣𝑎𝑣𝑔
. So, then what will 

happen? So, this term this term are same alright. So, then remaining terms if you rearrange 

you get 
𝑣𝑧

𝑣𝑎𝑣𝑔
 is nothing, but 

3𝑛+1

𝑛+1
{1 − (

𝑟

𝑅
)

1+𝑛

𝑛
} that is what you get right. So, this expression 

we are going to use it. 
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Now, anyway and that is average velocity. If you wanted to find out the maximum velocity; 

velocity is going to be maximum at the center of the circular pipe that we have taken. So, 

then we have to substitute in the velocity profile distribution r = 0 in the velocity profile 

distribution equation whatever we derived that is equation number 8 if you substitute r = 

0 then you get maximum velocity. 

If r = 0. So, then this term is 0 right so; that means, vmax you are going to have 

[
−∆𝑃𝑅

2𝐿𝑚
]

1

𝑛
(

𝑛𝑅

𝑛+1
) that is what you are going to have. So, now, 

𝑣𝑧

𝑣𝑎𝑣𝑔
 we already got it in the 

previous slide this is what we got. Now, if you wanted to find out 
𝑣𝑚𝑎𝑥

𝑣𝑎𝑣𝑔
 what you have to 

do? 
𝑣𝑚𝑎𝑥

𝑣𝑎𝑣𝑔
 if you wanted to find out in this equation number 10. 

If you substitute it r = 0, then you get 
𝑣𝑚𝑎𝑥

𝑣𝑎𝑣𝑔
 right then you get 

𝑣𝑚𝑎𝑥

𝑣𝑎𝑣𝑔
 is nothing, but 

3𝑛+1

𝑛+1
. So, 

let us say if it is Newtonian fluids n should be equals to 1; that means, 
𝑣𝑚𝑎𝑥

𝑣𝑎𝑣𝑔
= 2 that we 

already know right. So, that is what we get 
𝑣𝑚𝑎𝑥

𝑣𝑎𝑣𝑔
= 2 for the Newtonian fluid, but it is ≠ 2 

for shear thinning or shear thickening fluid it is different depends on the n value. 

So; that means, velocity profile is going to be different for shear thinning or shear 

thickening fluid. We are not going to get parabolic profile as well for the shear thinning 



and shear thickening fluid flowing through pipes that we get parabolic profile we get only 

for Newtonian fluids. 

So, how do the profile look like for shear thinning and share thickening fluid that is what 

we have to see now. 
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So, this is what we are taking. So, for that we are plotting 
𝑟

𝑅
 versus 

𝑣𝑧

𝑣𝑎𝑣𝑔
. So, 

𝑣𝑧

𝑣𝑎𝑣𝑔
that 

equation number 10 the just now we had, that is 
𝑣𝑧

𝑣𝑎𝑣𝑔
 we had 

3𝑛+1

𝑛+1
{1 − (

𝑟

𝑅
)

1+𝑛

𝑛
}. 

Now, what you do? You take different values of n different values of n you take; you take 

n = 1, you take n = 3, then you take n = 
1

3
 also. So, this is shear thinning, this is Newtonian, 

this is shear thickening and then you take different 
𝑟

𝑅
 values between 0 and 1 because 

𝑟

𝑅
 it 

is the radial coordinate is divided by the radius of the tubes. So, then maximum value 
𝑟

𝑅
  is 

going to be 1 only. 

So, between 0 and 1 you take different values of 
𝑟

𝑅
 for each n value and then you find out 

the values and then tabulate them then you plot them. So, what you get you get here. Let 

us say if r = 0, or if 
𝑟

𝑅
 = 0 and then n = 1, 

𝑟

𝑅
 = 0; that means, this 

𝑣𝑧

𝑣𝑎𝑣𝑔
 here you know if it is 

0. So, then we are going to get 
3𝑛+1

𝑛+1
 only n = 1. So, then 

4

2
 is 2. So, n = 1 when 

𝑟

𝑅
 = 0, 

𝑣𝑧

𝑣𝑎𝑣𝑔
 

is 2. So, that data points is here fine. 



So, now what you do? You take 
𝑟

𝑅
= 0.4, then 

𝑣𝑧

𝑣𝑎𝑣𝑔
 you find out how much it is. It will be 

roughly 1.75. So, that data point is here right. So, next what you do? Like that you keep 

changing the data points let us say you take you know the 
𝑟

𝑅
= 0.7 or something like that 

then. So, when 
𝑟

𝑅
= 0.4 

𝑣𝑧

𝑣𝑎𝑣𝑔
 for Newtonian case we are getting something roughly like you 

know 1.75 or 1.8 something like that roughly. 

So, that point is this one similarly if you take our 
𝑟

𝑅
 = something around 0.7, then 

𝑣𝑧

𝑣𝑎𝑣𝑔
 you 

will get approximately value of 1. So, these are approximate values that I am saying. So, 

then that data point would be here. So, like that you take different data points and you plot. 

So, then what you find? You find for the Newtonian case you are going to get a parabolic 

profile like this right. 

So, let us say if you have n = 
1

3
, then 

𝑟

𝑅
= 0. Then what is your 

𝑣𝑧

𝑣𝑎𝑣𝑔
? So, 

𝑟

𝑅
 is 0. So, then this 

term is 0 if 
𝑛

3
 if n = 

1

3
. So, this is you know how much? 

1

3
 * 3 that is 1 + 1 that is 2; 2 divided 

by you know this is 
4

3
 that is 4 8; 8 divided by. So, that is you get roughly you are going to 

get that value close to 1.5. So, that is the data point here right. 

Likewise, if you change the 
𝑟

𝑅
 value to 0.4 here in next level, then this 

𝑣𝑧

𝑣𝑎𝑣𝑔
 you are going 

to get roughly something like 1.4 or something like that. So, that data point is here. So, 

like that if you plot. So, for n = 
1

3
 you are going to get a flatter profile like this the second 

this curve; that means, for Newtonian fluids it is a parabolic profile, but for shear thinning 

fluid it is a flatter kind of profile you can get here this profile you can see there is a flatter 

kind of profile you can get. 

And then similarly if you do for shear thickening fluid let us say if you take n = 3, then at 

𝑟

𝑅
 = 0, 

𝑣𝑧

𝑣𝑎𝑣𝑔
 you are going to get 2.5 that data point is here. So, likewise other cases also 

𝑟

𝑅
 if 

you take and then for n = 3, if you obtain the data points and then plot them together here. 

So, you are going to get a steeper profile like this. 

So, shear thickening fluid profile is sharper and then as n increases it becomes very sharper. 

So, the velocity profile of a shear thinning fluid flowing through a pipe and the if the flow 

is fully developed flow, the velocity profile is going to be flatter one and then as n increases 



it flatness gradually decreases and then for n = 1 the profile becomes parabolic and then 

further if you increase n value where shear thickening behavior started n > 1. Then the 

profile becomes gradually sharper and then n = infinity it becomes a straight lines like this, 

straight line profile like this you can get here as shown here ok. 

So, now we realize that if the fluid rheology changes the velocity profile is going to be 

very different. So, then; obviously, the volumetric flow rates are also going to be different 

or for a fixed of volumetric flow rate of Newtonian fluid whatever the pressure drop is 

there, the same pressure drop may not be giving the same volumetric flow rate if the fluid 

is a non-Newtonian shear thinning or shear thickening fluid. We are going to see with an 

example problem also. 

So, from equation number 12, this is what we get 
𝑣𝑚𝑎𝑥

𝑣𝑎𝑣𝑔
 = 

3𝑛+1

𝑛+1
; that means, maximum 

velocity n as n decreases from 2 to 0.1 the maximum velocity drops from 2.33 average to 

1.18 𝑣𝑎𝑣𝑔 velocity. 

So, when n decreases from 2 to 0.1 v max velocity decreases from 2.33 times 𝑣𝑎𝑣𝑔 to 118 

times 𝑣𝑎𝑣𝑔 velocity ok. So, that much important is the rheological nature of the fluid to be 

consider while designing any unit operation where the non-Newtonian fluids are being 

handled or even for you know tuning the operational parameter as well ok. 

So, central line velocity for Newtonian fluids is nothing, but 2 times the average velocity 

that we have seen anyway. 
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So, now we see a few more details because whatever the volumetric flow rate versus ∆ p 

that is important from a engineering applications point of view, that information now we 

are going to analyze for a power law fluids here in this case. 

Volumetric flow rate we got this expression previously in one of these slides we have 

derived it, this equation rearranging this way that is it doing nothing we are just rearranging 

so, that all the r terms are grouped together. So, that for a fixed value of r how the Q is 

changing for a change in ∆p that is what we are going to see how it is changing Q is 

proportional to [−∆𝑝]
1

𝑛 or −∆𝑝 is proportional to Qn that is what we are getting here right. 

So, for a given power law fluid and fixed pipe radius minus delta p is proportional to Qn; 

that means, for a shear thinning fluid the pressure gradient is less sensitive than for 

Newtonian fluid to changes in flow rate that is what we can understand because n < 1. So, 

then this sensors the pressure drop would be less sensitive compared to the case when n = 

1 that is what we can understand. 
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The same equation 13 again. So, now, let us say for a fixed pressure drop for if the pressure 

drop if you are keeping fixed then Q is proportional to 𝑅
3𝑛+1

𝑛 ; that means, flow rate shows 

a strong dependence on radius of pipe for shear thinning fluid. For shear thinning fluid the 

flow rate shows a less dependence on the pressure drop, but it shows a strong dependence 

on the radius of the pipe because it is for a fixed pressure drop Q is proportional to 𝑅
3𝑛+1

𝑛  

whereas, for a fixed R value Q is just ∆p is just proportional to Qn only. 

So, the flow rate is strongly dependent on the radius of pipe for shear thinning fluid rather 

than the pressure drop that is what we can understand here. So, for n = 1 that is Q is 

proportional to Rn whereas, for n = 0.5 Q is proportional to R5 that is what we have here. 

So, the radius of pipe is going to have more influence on the flow rate for the case of shear 

thinning fluids. 
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So, before winding up this class we will take a simple example problem. So, there is a 

polymer solution of certain density is being pumped at a certain mass rate through a pipe 

of certain diameter and then flow is known to be laminar and power law and the power 

law constant for this fluid whatever the power law fluid is there that rheology is you know 

represented by the power law of nature. 

So, then m is 3 Pa sn and n is 0.5. So, the question is estimate the pressure drop over a 10 

meter length of straight pipe and the center line velocity for these condition that is -∆ p 

and vmax we have to find out? The second part of the question how does the value of 

pressure drop change if pipe of a 37 mm diameter is used to maintain the same flow rate? 

If you maintain Q same and then you increase the diameter of the pipe how much pressure 

drop is going to change that is the second part. Very simple straightforward calculations; 

actually Q versus minus delta p that relation we have already developed. So, Q is given 

actually �̇� is given density is also given. So, �̇� by density if you do you get the Q value 

that Q is nothing, but this value. 
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2500 kg per hour. So, per hour we have written 3600 seconds and then dividing by density 

1075 kg per meter cube. So, then volumetric flow rate you get 6.46 multiplied by 10-4 cube 

per second. 

And then R is given as 25 by 2 mm that is 0.0125 meters and this equation 13 we derive 

this equation just now in one of the previous slides. So, in this equation except the minus 

delta p everything is known. So, you substitute all the values R, n, m, L, Q in above 

equation because n and m also given in the problem then you simplify. So, you get minus 

delta p is nothing but 110 kilopascals right.  

And then average velocity Q is already obtained. So, this Q is if you divide by 𝜋𝑅2 then 

you get the average velocity 1.32 meter per second, it is not part of the question, but we 

can do anyway. Then maximum velocity is nothing, but 
3𝑛+1

𝑛+1
 times the average velocity 

that we have already seen. So, that you substitute n here, vavg you got 1.32 meter per second 

here. So, then 2.2 meter per second. So, the pressure drop as well as the central line velocity 

or the maximum velocity we got the first part is done right. 
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Now, second part is that, you know if you change the diameter of the pipe it is rather 

increased. So, then how the pressure drop is going to change. So, then same equation 

number 13 we are using it here. So, between Q versus R what is the relation? Q is 

proportional to 𝑅
3𝑛+1

𝑛  that is what we have right we are having constant flow rate ok. 

So, otherwise what we get from here [−∆𝑝]
1

𝑛 is proportional to 𝑅−3𝑛+1 this is what you 

have r - ∆p is proportional to 𝑅
3𝑛+1

𝑛  you are having. 

Why are we getting this relation? It is because if your radius is changing you know how 

much pressure drop is changing that is what you wanted to find out. Though the same 

equation you can use as it is by substituting R = 
37

2
 * 10-3 meters directly, but we do this 

way. 

So, for pipe diameter of 37 mm - ∆pnew that is for D = 37 mm divided by that should be 

equals to whatever the - ∆pold which is nothing for the D = 25 mm and then that should be 

multiplied by (
𝑅𝑛𝑒𝑤

𝑅𝑜𝑙𝑑
)

−3𝑛+1

. New stands for the case of 37 mm diameter old stands for the 

case of 25 mm diameter. 

So, 25 mm diameter ∆pold we already calculated previous slide 110 kilopascals that you 

substitute 𝑅𝑛𝑒𝑤 𝑅𝑜𝑙𝑑 are known right then ∆pnew. So, that is for the case of when you that 

is for the case of diameter of 37 mm pipe - ∆p is going to be 41.3 kilopascals. 



So, it has decreased substantially by increasing the radius of the pipe. This is the second 

part of the problem one last addition let us say if the fluid is Newtonian then n = 1 and 

then whatever the m value is there that should be taken as mu right. Then you get minus 

delta p new you are going to get if you use the same equation this equation just n = 1 you 

substitute and then m is equals to you substitute 3 and then do this simplification you get 

23 kilopascals which is almost half of this value right.  

That means, higher pump energy is required to maintain. So, to maintain same flow rate 

of shear thinning fluid as compared to the case of Newtonian fluid. So, whatever the 

volumetric flow rate that 6.46* 10-4 meter cube per second that volumetric flow rate that 

is given here; that means, you are using 37 mm diameter pipe. 

And then in order to maintain 2500 kg per hour of mass rate, what is the pressure drop for 

a Newtonian fluid is just 41, is just 23 kilopascals, but if you maintain the same flow rate 

for the shear thinning fluid of n = 0.5 and then m = 3 pascal second, then it increases to 41 

roughly 41 kilopascals right. 

So, that is what to maintain the same flow rate you need to provide the higher pump energy 

in the case of shear thinning fluids compared to the case of a Newtonian fluids. 

(Refer Slide Time: 63:21) 

 

So, the references for this lecture the entire lecture is prepared from this reference book by 

Chhabra Richardson, other reference books are provided here. 



Thank you. 


