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Equations of Change for Non-Isothermal Systems 

 

Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of this lecture is Equations of Change for Non-Isothermal Systems. Before going into the 

details of equations of change for non isothermal system and then derivation of respective 

conservation equations etcetera, what we do? 
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We are going to have a kind of recapitulation of what we have seen in last two lectures. In 

last two lectures we have seen a few basics of continuum hypothesis. Then we also 

recapitulated transport mechanisms and out of which we have seen the details of molecular 

transport mechanism concerned with the momentum transfer, heat transfer and mass 

transfer.  

Then we have also seen analogy amongst the momentum transfer, heat transfer and then 

mass transfer especially when the transport mechanism is governed by the molecular 

transport. Then we also seen a few basic details of partial time derivative, total time 

derivative and substantial time derivative. And what are the difference amongst these thing 

we have seen with an example of a fish concentration in a river stream ok.  



Then we have also derived equation of continuity that is nothing but conservation of mass 

and then that we got (
𝜕𝜌

𝜕𝑡
) = −(∇. 𝜌𝑣⃗). This equation we have written rectangular 

coordinates, cylindrical coordinates and spherical coordinates.  

If the same equation if we write in substantial time derivative form then 
𝐷𝜌

𝐷𝑡
= −𝜌(∇. 𝑣⃗) 

that is what we get. Then we also derive the equation of motion that is nothing but 

conservation of momentum for a very generalized system irrespective of the nature of the 

fluid, irrespective of the nature of the flow region we have derived the equation of motion.  

That is nothing but 
𝜕

𝜕𝑡
(𝜌𝑣⃗) = −[∇. 𝜌𝑣⃗𝑣⃗] − ∇p − [∇. 𝜏] + 𝜌𝑔 this is what we have seen. If 

additional forces or you know additional terms are also causing momentum transfer, so, 

then those term should also be added in the right hand side that is what we have seen.  

Then the same equation if you write in a substantial time derivative form then we got this 

𝜌
𝐷𝑣

𝐷𝑡
= −∇p − [∇. 𝜏] + 𝜌𝑔, this is what we have seen in last two lectures. 
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Now, in this lecture we are going to derive equation of change for non isothermal systems. 

So, that is nothing but conservation of energy that is what we are going to derive. So, now 

when we talk about the conservation of energy, what we try to include? We try to include 

all the forms of energy and then we also include the transport of energy because of all 

possible mechanism + in addition we also include energy because of any additional work 



done because of the molecular stresses or because of the external forces like gravity 

etcetera all those terms we include.  

And then very generalized energy equation we are going to develop that is what we are 

going to do in this lecture. Then subsequently what we are going to do? We are going to 

simplify this equation so that to get the final energy equation in a very simplified form 

where we can have this energy equation in the form of temperature. Why in the form of 

the temperature? Because you know temperature is a measurable quantity. 

So, then application of energy equation would be more appropriate if you write that energy 

equation in the form of temperature. So, what are the types of different possible energies 

that may be associated with the system? So, we may have the kinetic energy, we may have 

the potential energy, we may have the internal energy, we may have the work done on the 

system because of you know molecular stresses or because of the external force like 

gravity etcetera.  

Or because of the reaction, all those things may be causing some kind of work done on the 

system and then that may be including some energy. So, that all those terms may be there 

ok. Then like that you know these different possible energies let us say reaction energy or 

you know if you have a electrical energy associated with the electrical you know electric 

gradient electrical potential gradient etcetera.  

If you have the energy associated with the electrical potential gradient etcetera those 

things, different forms of energies are all possible right. So, we are going to see how 

generalized way we can include most of these terms, if not all that is what we are going to 

see.  

And then this energy may be transporting because of the different mechanism both by the 

convective transport mechanism as well as the molecular transport mechanism. So, that is 

what we are going to have. So, then we are going to make a balance for you know energy 

of the system which includes most of the which includes all forms of the energy majority 

of the energy.  

Because you know let us say electrical energy associated with the reaction and our energy 

associated with the electromagnetic potential etcetera those terms may be added up in the 

right hand side of the equation. So, then we are not going to include them in a kind of 



generalized equation of conservation for energy. Because, we are developing a kind of a 

generalized equation not specific to any problem any one particular problem, ok. However, 

what we are going to have?  

We can we are going to have a kind of a simplification where we can use this equation for 

any specific problem as well, so, which we are going to see in subsequent lectures. 
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So, when it comes to the conservation of energy the, what we do? We consider a stationary 

volume element which is fixed in space and through which a fluid is flowing, so, that 

because we should also able to include the convective transport. So, that is the reason we 

are taking the fluid element volume element in a moving fluid and then that volume 

element is fixed in space right. 

So, that is the reason we are considering a stationary volume element fixed in space 

through which the fluid is moving so, that the generalized energy equation can be 

developed. Then kinetic energy and internal energy may be entering and then leaving the 

system by convective transport and there may be energy entering and leaving the system 

by heat conduction. 

And there may be work done on a moving fluid by stresses something like because of the 

molecular stresses that is like you know work done because of the pressure or work done 

due to the pressure or the work done because of the viscous forces etcetera those terms 



may also be included as already mentioned. And then there may be work done on system 

by virtue of external forces. 

So, external forces we are taking only gravity as of now. Let us suppose if you have 

additional terms like you know energy associated with a reaction or energy because of the 

electromagnetic potential etcetera. So, those terms may be added up in the right hand side 

of the balance equation that we are going to develop ok.  

So, but here now as an external force we are taking only gravity only because there is one 

reason for this. So, when we include the gravity or the work done on the system by virtue 

of the gravity, so, then that will also take care whatever the potential energy part is there. 

So, that is the reason we are taking only the gravity as the part.  

Because we have to if you are developing an equation conservation of energy equation 

then we should also include the not only kinetic energy and then we should include not 

only the kinetic energy and internal energy, but also we should include the potential energy 

right. So, let us say we have enlisted all this possible energy associated with a given system 

in a very generalized form. So, then we are also enlisted what are you know modes of 

transport possible. 

So, now for a moving system and then in that moving system in a fixed location, if you 

take a volume element in which the fluid is moving, for that if you make a balance equation 

for conservation of energy, what you have? 
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You will be having rate of increase of kinetic and internal energy should be balanced by 

the net rate of kinetic and internal energy addition by convective transport + net rate of 

heat addition by molecular transport that is by conduction + rate of work done on system 

by molecular mechanism something like stresses + rate of work done on system by external 

force like something like gravity right. So, now, this includes almost every possible way 

of energy associated with a given system except the reaction. 

So, then that can also be added if we want as a kind of additional term in the right hand 

side right. So, now, this is what we are having. For any specific problem you have taken 

any if you are solving any specific problem or you are developing an energy balance 

equation for a specific problem, so, then some of them involved and some of these terms 

may not be involved. 

So, but we are developing a very generalized conservation of energy equation, so that that 

is the reason we are including all the terms here ok. Now, what we do? Next part of the 

lecture is that we write a mathematical form of each and every term that has been written 

in this equation number 1. What is how it how do you represent mathematically that left 

hand side term and then how do you represent mathematically the right hand side terms 

those that is what we are going to do individually.  

And then after doing them we are substituting them here in this equation so that we can 

have a generalized conservation of energy equation ok. 
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So now, the definition of individual terms that we are going to see. The kinetic energy is 

the energy associated with the observable motion of the fluid which is given by 
1

2
𝜌𝑣2 ≡

1

2
𝜌(𝑣⃗. 𝑣⃗) ok. Whereas, the internal energy is the kinetic energy of the constituent molecules 

in; whatever the molecules constituting that fluid whatever the moving fluid is there that 

molecules whatever the molecules are there, they may be constituting some kinetic energy. 

So, that internal energy of that system is nothing but the kinetic energy of constituent 

molecules calculated in a frame moving with velocity plus energies associated with the 

vibrational and rotational motion along with the intermolecular interactions of all 

molecules. So, all these things are included in the internal energy part ok. 

However, we are not going to you know write individual part, what is the contribution of 

vibrational energy in the internal energy, what is the contribution of the rotational motion 

in the internal energy, what is the you know contribution of inter molecular interactions in 

the internal energy part, all those individual things we are not going to see anyway right. 

So, let us not worry about that part. 
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So, now, we are not writing that potential energy explicitly in the conservation equation 

number 1 that we have written in a previous slide. Because you know we are preferring to 

consider the work done on the system by gravity which will also take care of the potential 

energy part, subsequently we are going to see in coming slides, right. In addition, in most 

of the chemical engineering problems viscous dissipation or you know viscous heating a 

kind of important physical process right.  

So, then that should also be included, but that also we have not written separately in 

equation number 1. Why because viscous heating part has already been taken care in the 

term rate of work done on system by molecular mechanism. How it is taken care that we 

are going to do when we write a mathematical form of this individual terms of equation 

number 1 ok.  

Further, any additional energy source terms like a (Refer Time: 13:06) because of the 

chemical, electrical and then nuclear sources they all can be added in the RHS of the 

equation number 1, ok. 
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So, now what we are going to do? We are defining a energy vector 𝑒 which includes first 

three terms in RHS of equation number 1. What are the first three terms in the RHS of 

equation number 1 are that is except the work done due to the external forces that is except 

the terms which are having gravity, reaction etcetera. All other terms in the RHS of 

equation number 1 should be added or you know together and then we have written them 

as a kind of a vector 𝑒. 

So, that is whatever the internal energy plus kinetic energy that part right. Or whatever the 

net rate of heat addition, net rate of an addition of internal energy and then kinetic energy 

because of the convection that part plus net rate of heat addition because of conduction 

then rate of work done because of the molecular transport mechanisms something like 

molecular stresses. These are the three terms all these three terms are now included here 

ok. So, why are we writing?  

Because we are going to do your balance, when we are doing going to do a balance, if you 

have you know three dimensional like you know all three directions we are considering 

the balance, so, then what happens? Let us say if you take the conduction whatever the 

rate of heat in at x because of the conduction and then whatever the rate of heat out at x + 

∆ x because of the conduction likewise rate of heat in at x because of the convection. 

Similarly, rate of heat out at x + ∆ x because of the convection like that if you write 

individual terms there may be so many terms and then that balance equation will become 



very clumsy. So, that is the reason what we are writing. We are defining an energy vector 

which includes all these three contributions; the conduction, the molecular stresses or the 

energy associated with the molecular stresses and then internal energy and then kinetic 

energy. 

All these parts you know we have added together and then defined a one energy vector so 

that we write energy whatever the energy entering at x whatever the energy leaving at x 

+∆x like that we write a balance and then do the simplification right. After doing that 

simplified equation in terms of 𝑒 then, what we do? We substitute this equation further to 

expand so that all these terms will appear in that equation. 

It will be very easy process or you know simpler process rather writing individual terms 

entering in leaving out in all three directions that becomes very complicated and then so 

many terms would be there. If you miss out any term and then anywhere in place of plus 

if you write minus or in place of minus, plus if you write, so, things may become very 

complicated and confusing. So, then that is the reason we can have an energy vector 

defined like this ok. 

Now, here this pi dot v that because of the viscous stresses or molecular stresses that we 

already know that it is having 9 components. So, those 9 components you know 

individually you can write 3-3 components combination that is (𝜋𝑥. 𝑣⃗)𝛿𝑥 + (𝜋𝑦. 𝑣⃗)𝛿𝑦 +

(𝜋𝑧 . 𝑣⃗)𝛿𝑧 right. This is how we can have this 𝜋. 𝑣⃗. Then again an individual 𝜋𝑥. 𝑣⃗, 𝜋𝑦. 𝑣⃗, 

𝜋𝑧 . 𝑣⃗ we can write as like this. 

So, that you know we have all 9 components; 1, 2, 3, 4, 5, 6, 7, 8, 9. So, this particular 

term is having all 9 components. Now, imagine these 9 components you are writing you 

know in all three direction leaving entering and leaving. So, many terms will become very 

complicated ok. Further, we also know that this molecular stresses total molecular stress 

tensor pi whatever is there that is having two contributions, two parts that is τ and then p 

𝛿 right.  

So, that is if i = j then 𝛿𝑖𝑗 = 1. If i ≠ j then 𝛿𝑖𝑗 = 0 and then this part is nothing but the 

viscous stress ok. So, now what we do? We substitute this 𝜋 = 𝑝𝛿 +  τ in this equation 

number 2, so, that we can now in place of 𝜋. 𝑣⃗ we can write 𝑝𝑣⃗ +  τ. 𝑣⃗ we can write 𝑝𝑣⃗ +

 τ. 𝑣⃗ we can write ok. 
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So, that when you do this one so in place of this is equation number 2 in place of 𝜋. 𝑣⃗ if 

you write a 𝑝𝑣⃗ +  τ. 𝑣⃗, so, then what we have? So, these two terms are there right. So, 

what; we are going to do some kind of rearrangement. So, then what we do? This 𝜌𝑢̂𝑣⃗ and 

then this 𝑝𝑣⃗ ok, we combined together we write as a one term right and then remaining 

terms like you know τ. 𝑣⃗  and then q these things are separately we are going to write as a 

kind of one term ok. 

So, now here from 𝜌𝑢̂𝑣⃗ + 𝑝𝑣⃗ what I am trying to do? I separated out 𝑣⃗ which is common 

and then from 𝜌𝑢̂ and then p terms I am taking 𝜌 common. So, then 𝑢̂ +
𝑝

𝜌
  I am going to 

have and then 
1

𝜌
 I can write 𝑉̂. So, this 𝑢̂ and then 𝑉̂ are nothing but the internal energy per 

unit mass and then volume of the system per unit mass. 

So, u + p v we can write it as 𝐻̂. So, that is enthalpy per unit mass that is what we can 

write. So, that this equation number 2 after combining with equation number 4, we get this 

equation. In place of 𝜌𝑢̂𝑣⃗ + 𝑝𝑣⃗ we can write 𝜌𝐻̂𝑣⃗. So, that is this part that is 𝜌𝐻̂𝑣⃗ and 

then remaining terms τ. 𝑣⃗ + q and then 
1

2
𝜌𝑣2 as it is ok. 

So, in a balance equation after doing the simplification you know we are we have not 

written the balance shell balance equation we have not written. So, after writing that shell 

balance equation for in place of 𝑒 we can use either this equation or we may use this 



equation subsequent subsequently. Where, here 𝑢̂, 𝑉̂ and 𝐻̂ are nothing but internal energy, 

volume and enthalpy of the system per unit mass. 
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Now, what we are going to do? Converting equation 1 in mathematical form. In the first 

part in the left hand side of equation number 1, what we have? Rate of increase of kinetic 

+ internal energy within volume element ∆x ∆y ∆z. So, that if you write that is nothing but 

𝜕

𝜕𝑡
(

1

2
𝜌𝑣2 + 𝜌𝑢̂) ∆x ∆y ∆z. 

Here 𝑢̂ is internal energy per unit mass, sometimes it is also referred as the specific internal 

energy and then 𝜌𝑢̂ is nothing but internal energy per unit volume. Whereas, the 
1

2
𝜌𝑣2 

with this which is nothing but when you expand 
1

2
𝜌(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2), which is nothing but 

the kinetic energy per unit volume. 

So, all these quantities we are writing per unit volume. Remember v this is vector 𝑣⃗. Many 

times here it is clearly written as specifically like vector kind of thing right. So, if it is not 

written, so, then v it is explicitly; that means v is standing for the v vector here. 
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Now, what we do? We take this control volume like in derivation of equation of continuity 

and then equation of motion that we have done. So, we have taken a control volume of 

size ∆x ∆y ∆z. So, the same way we have taken here. So, let us say horizontal direction is 

x direction, vertical direction is z direction and the third direction is the y direction. 

So, now in the horizontal direction at x location the control volume is having ∆x ∆y ∆z ok 

that is the size of the control volume. So, in the x direction, the size of the control this face 

is the size of the face is nothing but ∆x right.  

So, now at x location at x = x whatever the energy that is entering by all means, by all 

means like you know by convection and then you know molecular transport is nothing but 

e x entering at x multiply by the area through area of the face through which it is entering.  

Area of the face through which it is entering is nothing but this is nothing but ∆z and then 

this is nothing but ∆y. So, that is ∆z ∆y. So, in the x direction at location x +∆x how much 

energy is leaving out? And the rate of energy leaving out at x +∆x is nothing but 𝑒𝑥|𝑥+∆x 

multiplied by the area of the face through which it is living that is ∆z ∆y.  

Likewise in the z direction, if you take the energy that is entering at z is nothing but 𝑒𝑧|𝑧 

multiplied by the area of the face through which it is entering that is ∆x ∆y. And then 

energy that is leaving at location z+∆z is nothing but 𝑒𝑧|𝑧+∆z  multiplied by the area of the 



face through which it is living that is nothing but this is ∆z this is ∆y that is this is ∆x this 

is ∆y. So, that is ∆x ∆y.  

Likewise in the y direction also we can write. So, that is amount of energy enters and 

leaves across the faces of ∆x ∆y ∆z control volume in all three direction if you write 

(𝑒𝑥|𝑥 − 𝑒𝑥|𝑥+∆x) ∆y ∆z + (𝑒𝑦|𝑦 − 𝑒𝑦|𝑦+∆y) ∆x ∆z +(𝑒𝑧|𝑧 − 𝑒𝑧|𝑧+∆z) ∆x ∆y right.  

So, now in the conservation equation that we have written in equation number 1 left hand 

side term we have written that is equation number 6 in the previous equation that is 

𝜕

𝜕𝑡
(

1

2
𝜌𝑣2 + 𝜌𝑢̂) ∆x ∆y ∆z that is the left hand side term. In the right hand side term there 

were four terms we have written in equation number 1. 

So, that is the net rate of heat addition, net rate of addition of internal energy + kinetic 

energy because of the convection + net rate of heat addition because of the conduction + 

rate of work done on system because of the molecular stresses. All those three terms are 

included in the energy vector e and then in the form of e that how much what is the net 

rate that we are writing here in the form of equation number 7. 

So, in the RHS of equation number 1 first, second, third term whatever are there, so, those 

terms are represented by this equation number 7. And then last term in the equation number 

1 is nothing but the rate of work done on fluid by external force. In the external force here 

we are taking gravity that you can get by taking the dot product of 𝑣⃗ and (𝜌 ∆x ∆y ∆z)𝑔⃗. 

So, that if you do you get 𝜌 ∆x ∆y ∆z (𝑣𝑥𝑔𝑥 + 𝑣𝑦𝑔𝑦 + 𝑣𝑧𝑔𝑧). 

So, now, this equation numbers whatever 6, 7, 8 are there, so, they are representing the 

mathematical form of different terms that are appearing in equation number 1 that is the 

basic conservation energy equation. 
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So, if we substitute this equation number 6, 7, 8 in equation number 1 then we have this 

equation. This part is nothing but your equation number 6 and then this part this, three 

terms these are nothing but the equation number 7 and this is nothing but equation number 

8, ok. Now, what you do? Both sides you divide by ∆x ∆y ∆z and then you take limit ∆x 

→ 0, limit ∆y → 0, limit ∆z → 0. Then what you have?  

You have 
𝜕

𝜕𝑡
(

1

2
𝜌𝑣2 + 𝜌𝑢̂) = − (

𝜕𝑒𝑥

𝜕𝑥
+

𝜕𝑒𝑦

𝜕𝑦
+

𝜕𝑒𝑧

𝜕𝑧
) + 𝜌(𝑣𝑥𝑔𝑥 + 𝑣𝑦𝑔𝑦 + 𝑣𝑧𝑔𝑧) right. So, 

the same equation if you write in vectorial form how you can write? You can write 

𝜕

𝜕𝑡
(

1

2
𝜌𝑣2 + 𝜌𝑢̂) = −(∇. 𝑒) + 𝜌(𝑣⃗. 𝑔⃗)right.  

So, now, in this equation this e we are going to substitute from equation number 2, from 

equation number 2 whatever e that we have written because this e includes three terms 

right. Rate of addition of internal energy and kinetic energy because of the convection and 

then net rate of heat addition by your conduction and then rate of work done on the system 

by molecular stresses all three terms are there in this e.  

So, those three terms we have written in the form of equation number 2. So, from equation 

number 2 we are going to substitute here in this equation. 
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So, in this equation in place of e if you substitute e is equals to this form from equation 

number 2, what we will have? Left hand side as it is, right hand side − (∇. (
1

2
𝜌𝑣2 + 𝜌𝑢̂) 𝑣⃗) 

one term and then −∇. 𝑝𝑣⃗ another term second term −∇. [𝜏. 𝑣⃗] is a third term and then 

−∇. 𝑞 is the fourth term. 

So, all four terms 1, 2, 3, 4 terms have come into the picture in the form of ∇. as a kind of 

dot product and then whatever last term 𝜌(𝑣⃗. 𝑔⃗) is as it is right. So, now, what this term 

indicates? This term indicates rate of increase of energy per unit volume. What is this term 

indicates? This term indicates rate of addition of energy per unit volume by convection. 

What is this term indicates? This term indicates rate of addition of energy per unit volume 

by conduction and then this term indicates rate of work done on fluid per unit volume by 

pressure forces. And then this term indicates rate of work done on fluid per unit volume 

by viscous stresses. Last term is nothing but a rate of work done on fluid per unit volume 

by external forces right. 

So, now you can see this equation whatever is there the energy we are writing per unit 

volume everything per unit volume ok that should be carefully observed ok fine. So, now, 

this above equation we can also include the potential energy because if you include the 

potential energy part then only it will become like you know complete conservation of 



energy equation right. Because now only the kinetic energy and internal energy have been 

included here, but the potential energy has not been included. 

So, but that is already included actually, it is not explicitly shown that is already included 

here you know in the form of this external force by gravity. So, now, what we do? We are 

going to simplify this term further so that the potential energy will also come into the 

picture. So, what we do? Let us say if 𝑔⃗ = −𝛿𝑧𝑔 is a vector of magnitude g in the negative 

z direction then this potential energy per unit mass 𝜙̂ we can write it as g z. 

That means, we can write 𝑔⃗ = −∇. 𝜙̂. This tilde indicates per unit mass, ϕ indicates the 

potential energy. So, now, this in play in the equation number 1 in place of 𝑔⃗ we are writing 

−∇𝜙̂ and then doing some simplification. What simplification are we doing? 
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So, in equation number 𝜌(𝑣⃗. 𝑔⃗)term is this. So, here this in place of g we are writing −∇𝜙̂, 

so that the potential energy part can also come into the final conservation energy equation 

ok. So, that now we have. So, the 𝜌(𝑣⃗. 𝑔⃗)we can write −(𝜌𝑣⃗. ∇𝜙̂). This is how we can 

write. 

So, now what we do? We take a vector identity formula that is (∇. S𝑣⃗) that is the dot 

product of ∇ and then multiplication of a vector scalar. So, then we what this we can 

represent as (∇S. 𝑣⃗) + 𝑆(∇. 𝑣⃗) this is how we can write. So, let S = 𝜙̂ and then 𝑣⃗ = 𝜌𝑣⃗. So, 

that we can write (∇. 𝜙̂𝜌𝑣⃗) = (∇𝜙̂. 𝜌𝑣⃗) + 𝜙̂(∇. 𝜌𝑣⃗). 



So, now what I am trying to do? Next step I am trying to take this term to the left hand 

sides and then this term to the right hand side term to the right hand side. So, that I can 

write, so that I can write −(∇𝜙̂. 𝜌𝑣⃗) = −(∇. 𝜙̂𝜌𝑣⃗) + 𝜙̂(∇. 𝜌𝑣⃗), this is what I can write ok. 

So, now because, why I am writing?  

Because I need this term, minus of this term is required and now this is a dot product. So, 

then I can write whether it is a.b or b.a it is same because it is a dot product. So, then left 

hand side I am what I am writing? −
1

2
𝜌𝑣⃗. ∇𝜙̂ and then right hand side it is going to be as 

it is like here. In this next step what I am doing? Rather writing ∇. 𝜙̂𝜌𝑣⃗, I am just writing 

∇. 𝜌𝑣⃗𝜙̂ that is what I am writing ok. In the next step what we have?  

This ∇. 𝜌𝑣⃗ from continuity equation we can have it is nothing but it is nothing but −
𝜕𝜌

𝜕𝑡
 

that is 
𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝑣⃗𝜙̂ = 0 from the equation of continuity that we know. So, in place of ∇. 𝜌𝑣⃗, 

I am writing −
𝜕𝜌

𝜕𝑡
 right, 𝜙̂ is as it is.  

So, then in place of 𝜌(𝑣⃗. 𝑔⃗) we can write we can write it as −∇. 𝜌𝑣⃗𝜙̂ −
𝜕𝜌𝜙̂

𝜕𝑡
 that is what 

we can write. So, in equation number 11, this is what we are going to substitute. 
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So, what is your equation number 11? So, this is your equation number 11 that we have 

already derived in the previous slide. So, now, in place of 𝜌(𝑣⃗. 𝑔⃗) we can add these two 

terms −∇. 𝜌𝑣⃗𝜙̂ −
𝜕𝜌𝜙̂

𝜕𝑡
 right. So, this what I am doing?  

This 
𝜕

𝜕𝑡
 of this term these two terms comes here in place of 𝜌(𝑣⃗. 𝑔⃗). Out of these two terms 

−
𝜕𝜌𝜙̂

𝜕𝑡
 I am taking to the left hand side, so that can be added with the along with the kinetic 

energy and then internal energy ok.  

And whereas, this part is there whatever ∇. 𝜌𝑣⃗𝜙̂ that I am adding to the first term in the 

RHS of this equation number 11. So, then what I can have? 
𝜕

𝜕𝑡
(

1

2
𝜌𝑣2 + 𝜌𝑢̂ + 𝜌𝜙̂) =

− (∇. (
1

2
𝜌𝑣2 + 𝜌𝑢̂ + 𝜌𝜙̂) 𝑣⃗) − remaining terms three terms as it is that is −∇. q −

(∇. 𝜌𝑣⃗) − (∇. [𝜏. 𝑣⃗]) right. 

So, now all three forms of energy are coming into the picture; internal energy, kinetic 

energy and potential energy. So, this is the final general form of energy equation. So, if 

you are asked what is the energy equation, so, this is what you have to write because it is 

generalized equation right. So, now, what we see? It is in the form of you know potential 

energy kinetic energy and internal energy and then rate of heat addition or any work done 

on the system etcetera those additional terms are there right. 

So, the problem is that it is not in final usable form. The equation there any equation 

mathematical form of any physical system should be such a way that it should be in a 

measurable quantity or you know it should be in measurable property form that is how it 

should be ok. So, but you know you can measure temperature, pressure, concentration, 

density etcetera directly of a system without any difficulty.  

But if you wanted to measure internal energy, potential energy, kinetic energy then you 

have to use some of these measurable quantities either temperature, pressure, density, 

viscosity, velocity etcetera and then you calculate these things. So, it becomes very you 

know lengthy process. So, then what we try to do now? This equation we further simplify. 

How do we simplify you know, we now included all the terms in the energy like internal 

energy, potential energy and kinetic energy.  



Now, we are going to simplify this equation, so that we can have a equation of change for 

a enthalpy equation of change for internal energy, equation of change for enthalpy and 

then equation of change for temperature. The, equation of change for temperature that form 

is going to be final useable form, easy form for the engineering applications, so, that is 

what we are going to do. How are we going to do? First we are going to write you know 

equation for you know internal energy. So, for that what you have to do? 

From this equation number 1, so, you subtract the equation of change for kinetic energy 

that is possible if we use the equation number 11. If we use the equation number 12 from 

this equation, if you subtract the equation of change for a kinetic energy + potential energy 

then the only term would be remaining is equation of change for an internal energy. 

So, either of two ways we can do. So, then what we are going to do? We are going to make 

use of this equation number of this equation number 11 and then from this equation number 

11 we are going to subtract equation of change for a kinetic energy. 
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So, that equation of change for kinetic energy that takes into consideration all mechanical 

aspects of the you know in the motion whatever the because of the motion because of the 

mechanical aspects whatever the energy is there that part is nothing but this one right. So, 

this we can obtain by dot product of velocity vector with equation of motion and then 

followed by some rearrangement. So, then what you get? This one you get, so this is we 

are not going to do, we are just adapting it. This how you get?  



Equation of motion whatever we have derived in the previous lecture that equation of 

motion you take and then velocity vector u and then you take velocity vector 𝑣⃗. You do 

the dot product of these two and then do some simply simpler, but lengthier the 

rearrangement, you get this equation ok. This equation indicates nothing but the equation 

of change for kinetic energy. So, now we are writing this equation as equation number 13. 

Equation number 11 already we are having this one.  

So, then what we are going to do? We are going to subtract the equation number 13 from 

equation number 11 so that similar terms may be cancelled out and then finally, you have 

an equation of change for an internal energy. So, here that if you do then this 
1

2
𝜌𝑣2 this 

1

2
𝜌𝑣2 may be cancelled out. From here also 

1

2
𝜌𝑣2 

1

2
𝜌𝑣2of ∇.; ∇.

1

2
𝜌𝑣2  ∇.

1

2
𝜌𝑣2 are same.  

So, then they will be cancelled out. ∇. q is already there, so −∇. 𝜌𝑣⃗ here and then −∇. 𝜌𝑣⃗ 

here also there. And then −(∇. [𝜏. 𝑣⃗]) is here and then −(∇. [𝜏. 𝑣⃗]) is here also and then 

𝜌(𝑣⃗. 𝑔⃗) & 𝜌(𝑣⃗. 𝑔⃗) here also. So, then it will be cancelled out.  

So, then remaining terms in the left hand side you have 
𝜕

𝜕𝑡
𝜌𝑢̂ only, right hand side you 

have minus of this term then + of this term and then + of this term right. So, that you write; 

𝜕

𝜕𝑡
𝜌𝑢̂ = −∇. 𝜌𝑢̂𝑣 this term is also there −∇. q. 

And then here minus of minus + is there and then minus of this term is −𝑝(∇. 𝑣) and then 

here also minus of minus +. So, then +, but minus of this entire term is −𝜏: ∇v. This term 

is nothing but it indicates the viscous dissipation. So, the finally, equation of change for 

internal energy you get this equation. So, now, this particular part if you take to the left 

hand side, so, and then added up with the 
𝜕

𝜕𝑡
𝜌𝑢̂.  

Then you can make use of a substantial time derivative and then you can write this equation 

as 𝜌
𝐷𝑢

𝐷𝑡
= −∇. q − 𝑝(∇. 𝑣) − 𝜏: ∇v ok. So, this is nothing but an equation of change for 

internal energy ok. So, initially we have written for an equation of change including all 

three energies; internal energy, potential energy and kinetic energy. Now, we are writing 

equation of change only for internal energy.  

This is what we have derived. Now, we further simplify this equation, so, that we can write 

the same equation for an equation of change in the form of an enthalpy. So, that is we are 



going to derive equation of change for enthalpy of the system, so that we can get. So, this 

tau dot 𝜏: ∇v whatever is there, this indicates the viscous dissipation part and then it is 

having 9 terms. It is not 9, 1 term it is having 9 terms and in all those 9 terms in a vectorial 

form in vector summation form it is represented it here like here. 

It indicates the sum of order of quantities, quantities like vectors and tensors being 

multiplied. So, all those terms are here. So, then when you expand these terms you will 

get 9 terms that are available in any standard textbooks. We do not need to worry about 

them as of now. 
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Now, switching from internal energy to enthalpy, so, we know that 𝑢̂ = 𝐻̂ − 𝑝𝑉̂ or 𝐻̂ =

𝑢̂ + 𝑝𝑉̂. So, that 𝑢̂ = 𝐻̂ − 𝑝𝑉̂. 𝑉̂ we can write 
1

𝜌
. So, equation 14 what you have? 𝜌

𝐷𝑢

𝐷𝑡
= 

right hand side this term as it is. So, now in place of 𝑢̂ you are going to write 𝐻̂ −
𝑝

𝜌
. So, 

that is what you are having.  

So that means, you are going to do the substantial time derivative of 𝐻̂ −
𝑝

𝜌
. Substantial 

time derivative has to be done similar way as the total derivative being done in general. 

So, that is what we are going to do in several times in the subsequent slides also. So, when 

you do this one what you get? 𝜌
𝐷𝐻̂

𝐷𝑡
− 𝜌

𝐷(
𝑝

𝜌
)

𝐷𝑡
.  



So, this if you further do the substantial time derivative then what you have? 
𝜌(

𝐷𝑝

𝐷𝑡
)−𝑝(

𝐷𝜌

𝐷𝑡
)

𝜌2  

and then right hand side terms are as it is. So that means, this we multiply this 𝜌 also if 

you bring inside. So, 𝜌2 and then this 𝜌2 will be cancelled out and then here you have + 

p𝜌 
𝐷𝜌

𝐷𝑡
. That is what we are having. 
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So, 
𝜌𝐷𝐻̂

𝐷𝑡
−

𝐷𝑝

𝐷𝑡
+

𝑝

𝜌
(

𝐷𝜌

𝐷𝑡
) = right hand side terms as it is we are not doing any changes in the 

right hand side term. Now, from equation of continuity we can write 
𝐷𝜌

𝐷𝑡
 is nothing but 

(−𝜌(∇. 𝑣)), this is what we can write. This we have derived in the last class. So, that if 

you substitute here, so, 
𝑝

𝜌
− 𝜌(∇. 𝑣). So, this 𝜌 this 𝜌 is cancelled out. So, that you can 

write −𝑝∇. 𝑣 here rest all other terms as it is. 

So, that this −𝑝∇. 𝑣 in the left hand side and this −𝑝∇. 𝑣 in the right hand side can be 

cancelled out and then this −
𝐷𝑝

𝐷𝑡
 if you bring to the right hand side then you have 

𝜌𝐷𝐻̂

𝐷𝑡
=

−∇. 𝑞 − 𝜏: ∇v +
𝐷𝑝

𝐷𝑡
. And this is nothing but equation of change for enthalpy in an element 

of fluid moving with fluid velocity ok. 

So, now we got equation of change for enthalpy. Now, what we do? This enthalpy we 

write in the form of temperature, pressure and then we try to write the equation of change 

for temperature that is what we are going to do now. How are we going to do? 
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We have to make use this relation that is ∆𝐻̂ = 𝐶̂𝑝∆𝑇 + {𝑉̂ − 𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑝
} ∆𝑝, this equation 

we have to make use ok. Now, here this equation both sides, first what you do? You do 

the substantial time derivative and then multiply both sides by ρ.  

So, then you have left hand side 
𝜌𝐷𝐻̂

𝐷𝑡
= 𝜌𝐶̂𝑝

𝐷𝑇

𝐷𝑡
+ 𝜌 {𝑉̂ − 𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑝
} I am writing 

1

𝜌
 and then 

𝐷𝑝

𝐷𝑡
 that is what we are having right. So, now, this left hand side as it is, right hand side first 

term is as it is. This term here again what I am writing? 𝑉̂ again I am writing as 
1

𝜌
.  

So, now this whatever you multiply inside this 𝜌 if you bring in, so, what you are going to 

have? You are going to have 1 − 𝑇𝜌 and then (
𝜕𝜌

𝜕𝑇
)

𝑝
. So, then 𝜌2 then we have 𝜌2, 𝜌(0) −

1 and then 
𝜕𝜌

𝜕𝑇
 that is what you are going to have. So, then that we can write 1 − 𝑇𝜌 and 

this is −
1

𝜌2
 
𝜕𝜌

𝜕𝑇
.  

So, that I can write 1 +
𝑇

𝜌

𝜕𝜌

𝜕𝑇
. So, 

𝑇

𝜌

𝜕𝜌

𝜕𝑇
, I can write 

𝜕𝜌

𝜌

𝜕𝑇

𝑇

. So, that I can write 
𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
. So, that is 

1+ (
𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
)

𝑝
, remaining terms are as it is right. That means, 

𝜌𝐷𝐻̂

𝐷𝑡
= 𝜌𝐶̂𝑝

𝐷𝑇

𝐷𝑡
+

𝐷𝑝

𝐷𝑡
+



(
𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
)

𝑝

𝐷𝑝

𝐷𝑡
. This 

𝐷

𝐷𝑡
 indicates substantial time derivative as we have seen in the previous 

lecture right. 
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So, now what we do? This part we are going to substitute in equation number 14. This 

equation number 16 whatever we just derived that we are going to substitute in equation 

number 15 ok. So, in place of 
𝜌𝐷𝐻̂

𝐷𝑡
 we are going to write this part from equation number 

16. So, that you have this equation right.  

So, now here left hand side 
𝐷𝑝

𝐷𝑡
 and then right hand side 

𝐷𝑝

𝐷𝑡
 can be cancelled out and then 

left hand side we keep only this term this term and then whatever the 
𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
 term is there 

that we take to the right hand side. So, that 𝜌𝐶̂𝑝
𝐷𝑇

𝐷𝑡
= −∇. 𝑞 − 𝜏: ∇v − (

𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
)

𝑝

𝐷𝑝

𝐷𝑡
.  

So, this is nothing but equation of change for temperature. So, now, here this term indicates 

the rate of increase of temperature the temporal term and then it also include includes the 

rate of addition of temperature. Because of the convection this term indicates the rate of 

addition of temperature because of the conduction.  

This term indicates the rate of addition of temperature because of the viscous dissipation 

and then this part indicates the rate of addition of temperature because of the work done 



because of the pressure forces all those terms are included right. But in general we do not 

use this entire equation in the complete form right.  

So, now, this is the final energy equation in the form of temperature right. So, all these 

equations of change whatever we have seen they are energy equations only. First equation 

is that including all three forms of energy that is kinetic energy, potential energy and 

internal energy. Then we have written for the separately internal energy then separately 

for enthalpy then now separately for in the form of temperatures. 

So, it is different forms simplified one after the other we are you know reducing the 

complexities and then finally, come to one form of equation where the terms are having 

something which are you know measurable right.  

If at all if you wanted to do the validation with experimental parts, so, you should be in a 

measurable terms. So, that is temperature, density, velocity all these things are measurable. 

So, that is the advantage of this form of equation of change for energy ok for non 

isothermal systems. 
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So, now here −∇. 𝑞 is nothing but ∇. 𝑘∇𝑇 right and then −𝜏: ∇ v⃗⃗ is nothing but μϕv + κψv. 

Here for Newtonian fluids this part whatever is there that can be written as this equation. 

Here κ is the dilational viscosity and then μ is the viscosity. If the 𝛿 if i = j then 𝛿ij = 1. If 

i ≠ j then 𝛿ij = 0 in this equation right. 



So, this term indicates degradation of mechanical energy into thermal energy which is 

known as the viscous dissipation heating or energy due to the viscous dissipation ok. And 

this usually how the importance when we have a high viscous fluids which are moving at 

high velocity. Usually high viscous fluids, does not move at high velocities in general. 

So, then in most of the application the contribution of this viscous dissipation is very small; 

however, there are many cases it is also included ok. So, now, what we do? We take a case 

where the conductivity is constant and then where we take the case the viscous dissipation 

heating is negligible. 
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So, when we take those assumptions then this equation number 17 we can write in this 

form that is 𝜌𝐶̂𝑝
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇 − (

𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
)

𝑝

𝐷𝑝

𝐷𝑡
 ok. This is even further simplified compared to 

the previous equation number 17. Because now we have taken in Fourier’s law k is 

constant and then viscous dissipation terms we have neglected. Now, we take a few further 

simplifications of these equations. So, what we do? 
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We take an ideal gas. For ideal gas p M = ρ R T at constant pressure what if we rearrange 

this equation p M/ R = T ρ. And then if you take the differentiation both sides in the left 

hand side M is constant for a given system, R is constant, p is also constant because we 

are doing at constant pressure. So, left hand side is equals to 0 and the right hand side term 

we have 𝜌 Dt + T D𝜌.  

So, that if you simplify you get (
𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
)

𝑝
 is nothing but −1, ok. So, this if you substitute in 

equation number 20 here, so, then what we have? 𝜌𝐶̂𝑝
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇 +

𝐷𝑝

𝐷𝑡
 this is what we are 

having. 
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Now, for the same ideal gas what we have? 𝐶𝑝 − 𝐶𝑣 = 𝑅. Both sides if you divide by 

molecular weight of the gas whatever you have taken then you have 𝐶̂𝑝 − 𝐶̂𝑣 =
𝑅

𝑀
 because 

this tilde indicate per unit mass. So, that 𝐶̂𝑝 = 𝐶̂𝑣 +
𝑅

𝑀
 we can write. So, what are we going 

to do now here? 

The previous equation we have written in terms of 𝐶̂𝑝, now we are going to write in terms 

of 𝐶̂𝑣. Further then you know 𝜌𝐶̂𝑝this equation from here as per this making use of this 

relation what we can write? 𝜌𝐶̂𝑝
𝐷𝑇

𝐷𝑡
= 𝜌𝐶̂𝑣

𝐷𝑇

𝐷𝑡
+

𝜌𝑅

𝑀

𝐷𝑇

𝐷𝑡
 that is nothing but this equation we 

are multiplying by 𝜌 and then multiplying by 
𝐷𝑇

𝐷𝑡
 both sides. 

Now, in equation number 21, wherever 𝜌𝐶̂𝑝
𝐷𝑇

𝐷𝑡
 is there you make use of this particular 

thing here. So, that you get the equation in terms of 𝐶̂𝑣 ok. So, that is 𝜌𝐶̂𝑣
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇 +

𝐷𝑝

𝐷𝑡
 

as it is. Whatever 
𝜌𝑅

𝑀

𝐷𝑇

𝐷𝑡
 is there that we are taking to the right hand side. So, then we are 

getting −
𝜌𝑅

𝑀

𝐷𝑇

𝐷𝑡
right. So, further we have p M = ρ R T for the same ideal gas that we can 

write p = 
𝑅

𝑀
T ρ.  

Why are we doing here? Because we wanted to just get rid of these additional terms here 

in the right hand side. So, now, this equation if you do substantial time derivative both 

sides 
𝐷𝑝

𝐷𝑡
= (

𝑅

𝑀
) {𝑇 (

𝐷𝜌

𝐷𝑡
) + 𝜌 (

𝐷𝑇

𝐷𝑡
)} that is what you get. So, in place of 

𝐷𝑝

𝐷𝑡
 here in this 

equation number 21, you substitute this expression here.  

So, that you do 𝜌𝐶̂𝑣 
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇 as it is and then 

𝑅𝑇

𝑀

𝐷𝜌

𝐷𝑡
+

𝜌𝑅

𝑀

𝐷𝑇

𝐷𝑡
 and then −

𝜌𝑅

𝑀

𝐷𝑇

𝐷𝑡
 of equation 

number 22 as it is. So, this term, this term you can cancel out because one is + another one 

is minus. Then further from the continuity equation in place of 
𝐷𝜌

𝐷𝑡
 you can write it as 

−𝜌∇. v and then for a same ideal gas 
𝑅𝑇

𝑀
 we can write  

𝑝

𝜌
. So, in place of 

𝑅𝑇

𝑀
 I have written 

𝑝

𝜌
 here. 

And then in place of 
𝐷𝜌

𝐷𝑡
 I have written −𝜌∇. v from for this part. So, that you know this 𝜌 

and then this 𝜌 is further cancelled out and then we have this equation 𝜌𝐶̂𝑣
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇 −



𝑝∇. v this is what we have right. So, the same equation in different forms in different 

variables we are writing that is it. 
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So, as a summary what we have? In terms of temperature equation of change for 

temperature we have this equation, we also have this equation for ideal gas system and 

then we also have in terms of 𝐶̂𝑣 this equation. These are the things just now we have 

derived ok. These are some special forms. We are writing the same equation for different 

cases ok. So, this is what all we have written for you know different cases.  

Now, let us say if we have a fluid flowing with constant pressure, if the pressure is constant 

then 
𝐷𝑝

𝐷𝑡
 is going to be 0. So, this equation here if you write 

𝐷𝑝

𝐷𝑡
= 0 then you have only 

𝜌𝐶̂𝑝
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇. Then if you have a fluid with constant density then again (

𝜕𝑙𝑛𝜌

𝜕𝑙𝑛𝑇
)

𝑝
= 0. 

So, this part is 0 anyway then again we have 𝜌𝐶̂𝑝
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇. Remember this equation is 

the general equation this is not for a this is not for a ideal gas. These are for ideal gas, but 

this is not for ideal gas this is general any fluid right. So, now, finally, for a stationary solid 

if the solid is there that is the fluid is not moving or if you have a stationary solid then 

vector v is 0. 

Then in the left hand side 𝜌𝐶̂𝑝 in place of a partial in place of substantial time derivative 

you have to write a partial time derivative. Because substantial derivative in the substantial 



derivative if the v is 0 that is nothing but you know partial derivative, you get only partial 

derivative term right. So, these are the equation.  

So, this equation if we expand then we have 𝜌𝐶̂𝑝
𝜕𝑇

𝜕𝑡
+ 𝑣𝑥

𝜕𝑇

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
+ 𝑣𝑧

𝜕𝑇

𝜕𝑧
= 𝑘

𝜕2𝑇

𝜕𝑥2 +

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
 . This is what we have you know in Cartesian coordinates likewise we can have 

the equation in cylindrical and spherical coordinates ok.  

So, now we have seen basics of a transport phenomena part also, the derivation of 

continuity equation, momentum equation and energy equation and then previously we 

have seen so many details of non-Newtonian fluids. So, from next class onwards what we 

are going to see? We are going to see a few problems associated with the transport 

phenomena of non-Newtonian fluids ok. 
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The reference for this lecture; the entire lecture is prepared from this standard textbook 

Bird, Stewart and Lightfoot that is Transport Phenomena Second Edition. But similar 

details may also be found in these two books that is Deen and then Panton, additional 

reference are may be available in these two books as well. 

Thank you.  


