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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids, the title 

of this lecture is Rotational Viscometers part III. In this week we have started discussing 

about rotational viscometers, what are the working principles and then what are the 

equations that we can make use in order to know the rheology of a an unknown fluid. 

Before going into todays lecture what we will be doing? We will be having a kind of 

recapitulation of what we have studied in last two lectures. 
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Under the category of rotational viscometers we started with concentric cylinder 

rheometers for measuring the rheology of fluids. And then let us say if we measure the, if 

the torque is measured on the inner cylinder is Mi then shear stress we can calculate using 

this expression that is 
𝑀𝑖

2𝜋𝑅𝑖
2𝐿

 whereas, the torque is measured on the outer cylinder then 

shear stress can be calculated using this equation 
𝑀0

2𝜋𝑅0
2𝐿

 that is what we have seen. 

Remember the geometry that we started with to develop these equations, we started we 

have considered the inner cylinder rotating; but however, for the either of the cases or both 



the cases rotating how the equations to be interchanged how the equations are to be 

corrected and then appropriately use that also we have discussed. Coming to the shear rate 

it largely depends on the gap between the two cylinders. 

So, then we started taking initial case where very narrow gap is there that is 
𝑅𝑖

𝑅0
 is greater 

than 0.99 that is they are both the cylinders are almost touching to each other. So, then 

under such conditions we assume that the curvature effect is negligible and then we got 

this shear rate expression. 

But however, in reality always we may not have such very narrow gap rheometers, in 

general we may because of the nature of concentrated multi-phase emulsion suspensions 

nature of many of the non-Newtonian fluids you may not, you may not be able to take such 

narrow gap concentric rheometers.  

So, then when the gap is less than 0.99 or when the k value that is 
𝑅𝑖

𝑅0
 is less than 0.99 then 

shear rate we obtain as this expression 𝛾( τ) ̇  is nothing but 2𝜏
𝑑Ω

𝑑𝜏
. Ω is nothing but the 

rotational velocity at which the inner cylinder is rotating. 

For very large gap cases where that is when 
𝑅𝑖

𝑅0
 less than 0.1 then shear rate we obtained as 

this expression 𝛾 ̇ 𝑅𝑖
 is nothing but 2 Ωi

𝑑𝑙𝑛Ω𝑖

𝑑𝑙𝑛𝜏𝑅𝑖

, which we can also write as a 2 Ωi
𝑑𝑙𝑛Ω𝑖

𝑑𝑙𝑛𝑀𝑖
 because 

τ is directly proportional to M and then R h L etcetera are constant in the expression of the 

shear stress right.  

So, but if you have a fairly narrow gap then we found the shear rate is given by this one 

for a inner cylinder and then outer cylinder shear rate is given by this one where, n is 

nothing but 
𝑑𝑙𝑛𝑀𝑖

𝑑𝑙𝑛Ω𝑖
 this we obtained by applying the Maclaurin series. After discussing about 

the concentric cylinder rheometers and its working principles then what we have done? 

We have taken a case where the geometry is, where the geometry is cone and plate 

geometry. 
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So, cone and plate rheometers for measuring the rheology of fluids is most appropriate 

especially when the fluids are expected to have non-Newtonian fluids and they produces 

constant shear rate because of the low cone angle in general and then it is also have a 

provision that we can directly measure the normal stress differences through the thrust. 

Thrust directly we can measure and then from there we can measure the normal stress 

differences directly using this cone and plate rheometer. That is one of the important reason 

that for viscoelastic material or the material which are expected to display elastic behavior 

one prefers to go for cone and plate rheometers.  

So, then under this category shear stress expression we got like this that is 𝜏𝜃𝜑 =
3𝑀

2𝜋𝑅3 

whereas, the shear rate, 𝛾 ̇ we got it as 
𝛺

𝛽
; 𝛽 is the cone angle it is true only when the cone 

angle is very very small and in most of the cone and plate rheometers operate with a low 

cone angle device. 

And then first normal stress difference N1 can be obtained from the total thrust Fz by using 

this equation 𝑁1 =
2𝐹𝑧

𝜋𝑅2
. So, in the last two lectures this is what we have seen about the 

concentric cylinder rheometers and cone and plate rheometers. Now, in this lecture we will 

be discussing another type of rotational viscometer where the geometry is nothing but 

parallel disk right. So, the today’s lecture would be on parallel disk rheometers. 
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So, this geometry was also suggested by Mooney in 1934, it consist of a disk rotating 

inside a cylindrical cavity we will be seeing the schematic in next slide. Then it is 

extensively used in rubber industry. Russell have used the parallel disk rheometer in order 

to obtain the normal stress differences from total thrust between two disks. 

Greensmith and Rivlin measured the pressure distribution using this parallel disk 

rheometer. Kotaka et al used total thrust to study the normal stresses in polymer melts. 

And then some, these are the some of the applications the some of the studies where you 

know this cone and this where this parallel disk rheometer has been extensively used right. 

Further this geometry is many way similar to cone and plate geometry except that you 

know in the case of a cone and plate geometry we have a cone placed in a cylindrical in a 

plate. Now, we will be having you know in a cylindrical cavity two parallel disks could be 

there.  

In many ways the flow is similar to cone and plate geometry especially most instruments 

are designed to permit the use of either of the geometries that is cone and plate and parallel 

disk rheometers both can be you know applied, you know are the instruments are designed 

such a way that the both the geometries can be utilized in one single device. 

And then contrast to cone and plate rheometer, flow between parallel disk is not 

homogeneous ok. Now we will be discussing schematically, what is this parallel disk 



geometry that is used for measuring the rheology of the fluid. And then what are the 

constraints that we are going to be using in order to simplify the equation. So, that to get 

the equations, simplified equations for the shear stress shear rate and, or the normal stress 

differences, that is what we are going to see now. 

(Refer Slide Time: 07:59) 

 

So, now we have a cylindrical cavity like this ok. Now here, two disk, parallel disk are 

placed such a way that the distance between these two disk is h as given here, the distance 

between these two disk parallel disk is h whereas, the radius of the disk is R right, the 

material whatever the material or the fluid for which you wanted to measure the rheology 

that is confined between these two disks. 

So, then this material is being squeezed in the radial direction ok as we will as because of 

this height you know the variations velocity variations would also be there in the other 

direction also, that is possible right. The top disk is rotating in the θ direction right it is 

rotating at 𝛺 velocity ok. 

Now, since the rotation is in theta direction. So, a velocity component in θ direction would 

be predominant and then since it is being squeezed out in the radial direction so this it 

would be a function of r. And then because of the height in the distribution, velocity 

distribution is varying in the vertical direction also. So, then this vθ would also be a 

function of z, that is vθ is function of both r and z ok. So, the torque is M and then thrust 

is Fz is provided ok as shown here ok. 



So now this is the schematic. So, then what we have? We need to have a proper assumption 

simplification so that we can simplify the momentum equations. Now, here the momentum 

equations we should take in cylindrical coordinates because of the cylindrical cavity that 

we have taken ok. 

So, what are the assumptions? In general, we take steady laminar isothermal flow and then 

vθ as explained here it is function of r and z. Since the rotation is there in θ direction so 

velocity component would be predominant in the θ direction, but compared to that velocity 

component, velocity components in other two directions would be very small. 

So, vr and vz would be negligibly small compared to vθ. So, what we can take? vr is 0 and 

then vz is also 0. Further we are taking cylindrical edge and then negligible body forces 

and then also we are taking symmetry in θ direction ok. 
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So now, what we do? We simplify momentum equations; we start with θ component of 

equation of motion right. So now, what we have to understand from the schematic that you 

know the rotation is in the θ direction and then variations are in z and r directions also, but 

h is having a significant role on the shear rate. So, then what we have? If we have the 

narrow gap parallel disk so then only shear stress that would be acting is 𝜏𝑧𝜃, other 

component of shear stress would be negligible or very small ok. 



And then as in previous two cases here also we cannot say normal stress components or 

extra stress component or 0 because there is no logic for cancelling out extra stress 

component for non-Newtonian fluids. We do not know nature of the fluids so then we 

cannot say that you know since it is a Newtonian fluid.  

So, then 𝜏𝑟𝑟 , 𝜏𝜃𝜃 etcetera are 0 or their difference is 0 like that we cannot say ok. So, then 

you know applying the assumptions or the constraint that we have enlisted in the previous 

slides we simplify momentum equations now ok. So, since we have taken steady state first 

term is 0 vr is 0, vθ is not 0, but because of symmetry this term is 0 vr is 0, vz is 0.  

So, left hand side all the terms are 0 and then because of symmetry we can take this one 

also 0 and then only shear stress existing in this current geometry or the situation flow 

situations we have taken such a way that only 𝜏𝑧𝜃 is existing. So, this is 0 and then because 

of symmetry this is 0 right.  

So, this term we cannot say 0 it exists and then, but laminar flow at least for the laminar 

symmetric flow conditions you know these two quantities should be equal to each other. 

So, it is 0 and then we are not taking body forces in this geometry not required. So, then 

we have simplified θ component of equation of motion is nothing but 
𝜕

𝜕𝑧
(𝜏𝜃𝑧) or 

𝜕

𝜕𝑧
(𝜏𝑧𝜃) =

0 right. 

So, this equation gives that the shear stress at least in the θ direction, you know at least in 

the z direction it is constant right, shear stress is constant in the z direction that is what we 

can understand from this equation ok. Then only 
𝜕

𝜕𝑧
(𝜏𝑧𝜃) is would become 0 ok. Now, z 

component of equation of motion; similarly, if you simplify then what we get, the steady 

state. So, this term is 0, vr is 0, vθ is 0, vz is 0, pressure we do not know let us keep it as it 

is and then only 𝜏𝜃𝑧 is existing. So, this is 0 because of symmetry this is 0 and then 𝜏𝑧𝑧 

extra stress component, extra stress component for non-Newtonian fluids it would be there 

so, but we cannot say whether it is function of z only it is function of r or it is function of 

θ as of now you know we cannot say, so then we cannot cancel out this term right. 

So, further next you know body forces we are not considering. So, then last term is also 

cancelled out. So, in absence of pressure you know pressure the squeezing out of the fluid 

is taking place in the radial direction. So, then pressure variation in the z direction we can 

take it would be very small or negligible. So, then that can also be taken out. So then finally 



what we have? 
𝜕𝜏𝑧𝑧

𝜕𝑧
= 0; That means, extra stress component 𝜏𝑧𝑧 is independent of z 

direction that is what we can say whereas, the shear stress is independent of z direction.  

So, both in the z directions what we can understand? That shear stress and then extra stress 

component both of them are independent, they are not varying, and they are constant ok 

that is what we can say that is what we can say. So, it is very important for understanding 

because you know based on these assumptions only or based on these considerations only 

we can develop velocity profile ok. 
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So, now r component of equation of motion similarly if you simplify what we have? Steady 

state. So, this term is 0 vr is 0, vθ is existing, but you know symmetry this term is 0, vθ is 

existing vz is not there pressure we do not know anything. So, this is the extra stress 

component so we cannot cancel out. 

So, 𝜏𝜃𝑟 is not existing as we well as because of the symmetry this entire term is 0, extra 

stress component we cannot say how much it would be without knowing the nature of the 

fluid. So, then it has to be there and then these 𝜏𝑧𝑟 also not existing because only 𝜏𝑧𝜃 is 

existing and there is no body force in this case. 

So, then what we have? We have right hand side three terms and the left hand side one 

term. So, that is −𝜌
𝑣𝜃

2

𝑟
= −

𝜕𝑃

𝜕𝑟
+

1

𝑟

𝜕(𝑟𝜏𝑟𝑟)

𝜕𝑟
−

𝜏𝜃𝜃

𝑟
. So, now, in the absence of inertia and then 

we if you assume that the pressure distribution in the radial direction is constant then what 



we can have? We can have this equation because this equation will provide us information 

about the normal stress differences ok. 

So now r θ z component of equations of motion we have simplified and then we got some 

information from those equations. What is the important thing that we realize from the z 

and θ components of equation of motions after simplifying? We realize that the shear stress 

and then extra stress component 𝜏𝑧𝑧 are independent of z direction. 
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So, by making that assumptions you know we can develop a velocity profile. So, what do 

we say? With one disk stationary and other one rotating at 𝛺. So, bottom one let us fix 

stationary and then top one let it is assume it is rotating at 𝛺 and assuming no slip at their 

surfaces and neglecting inertial forces the velocity must be this one; vθ (r, z) should be 

nothing but 
𝑟Ωz

ℎ
. It should be a linear profile as long as this h is very small right ok. 

So, this is the velocity profile we can have the best possible velocity profile this one of 

course, we can also derive it from the 
𝜕𝜏𝜃𝑧

𝜕𝑧
= 0 and expression that expression we can use 

and then simplify that expression for a given fluid and then that we can do. But that we 

can do only when we know the nature of the fluid ok so, but let us not go into those details. 



Now, having the information from equation number 1 that is you know θ component of 

equation of motion simplification that is 
𝜕𝜏𝜃𝑧

𝜕𝑧
 or 

𝜕𝜏𝑧𝜃

𝜕𝑧
= 0, what we can understand that shear 

stress is independent of the z direction right. 

From the second equation that is z component of equation of motion when we simplified 

we got 
𝜕𝜏𝑧𝑧

𝜕𝑧
= 0, that is extra stress component 𝜏𝑧𝑧 is also independent of the z direction. 

So, then what we can say? We can by taking these two as a kind of basis and then what we 

can understand that the velocity profile is going to be the linear one as long as this h value 

is going to be small, is going to be small. 

So, then what we take? Within now we take one disk stationary and other one rotating at 

omega, and then we assume the no slip boundary condition at the surface then we can after 

neglecting the inertial forces we can get 𝑣𝜃 as function of r and z which is nothing but 
𝑟Ωz

ℎ
, 

this is what we can have ok. 

So, once you have the velocity profile. So, then similarly what you can write? You can 

write the shear rate 𝛾̇ (𝑟) which is nothing but 
𝑟Ω

ℎ
 because this shear rate we are measuring 

in the z direction between two cylinders. That is 
𝜕𝑣𝜃

𝜕𝑧
 that is nothing but this 𝛾̇  and then it 

is function of r only, because we have already seen the shear stress is independent of z 

direction so; obviously, the shear rate would also be independent of the z direction ok. 

So, then this is nothing but 
𝜕𝑣𝜃

𝜕𝑧
 and then which is nothing but function of r ok. So, this 

equation from this equation once you have this one, similarly strain also we can get γ =
𝜃𝑟

ℎ
 

similar to shear rates we can have the strain also like 
𝜃𝑟

ℎ
. So, what we understand? Strain 

also goes from 0 at the center to maximum at the edge at r = 0 both strain as we well as 

the shear rate both of them are 0 and they are maximum at the edge. 
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Now, we need to have information about the shear stress as well. So, that we can get by 

doing a torque balance. So, shear stress multiplied by the surface area on which it is acting 

that should be balanced by the force due to the torque right. So, then that if you write for 

differential quantities and then integrate then you get 𝑀 = 2𝜋 ∫ 𝑟𝜏𝜃𝑧(𝑟)𝑟𝑑𝑟
𝑅

0
. 

So, now, this equation though from the balance between torque and then shearing forces 

we have a relation for the shear stress, but we cannot use this equation right because though 

the torque is known for us from the experimental conditions, the right hand side integration 

what function of r is the shear stress that we do not know. 

So, we cannot simplify this equation further. So, then what we do? We change the variables 

by using equation number 4; equation number 4 what we have 𝛾̇(𝑟) =
𝑟𝛺

ℎ
. So, from here 

what we can have? 𝑟 =
ℎ

𝛺𝛾̇
 right. So now, the from this equation if you substitute r = R 

then whatever the 𝛾̇ is there, let us say if we call it 𝛾̇𝑅 =
𝛺𝑅

ℎ
 right. 

So now, in place of 
ℎ

𝛺
 you can write, from this equation in place of 

ℎ

𝛺
 you can write 

𝑅

𝛾̇𝑅
. So, 

that I am writing here in this equation here. So, 𝛾̇
𝑅

𝛾̇𝑅
 and then dr is nothing but 

𝑅

𝛾̇𝑅
  d𝛾̇.  



So now, in place of r I will be writing 
ℎ

𝛺𝛾̇
 and then in place of dr I will be writing 

𝑅

𝛾̇𝑅
 d 𝛾̇. 

Remember 𝛾̇𝑅 is nothing but the shear rate at the edge; at the edge in the sense at r = R ok, 

that this at the edge of the disk ok. 

So now when you do this one, then you have 𝑀 = 2𝜋 integral in place of R you know, so 

we have r multiplied by r. So, then we have 
ℎ2

𝛺2
. 𝛾̇2 and then 𝜏𝜃𝑧 as it is, then dr is nothing 

but 
𝑅

𝛾̇𝑅
d𝛾̇ that is what we have ok.  

So now, in place of 
ℎ

𝛺
 what I can write? I can write (

𝑅

𝛾̇𝑅
)

2

I can write then this 𝛾̇2is as it is, 

𝜏𝜃𝑧 is as it is, 
𝑅

𝛾̇𝑅
 we are having d𝛾̇. So, then (

𝑅

𝛾̇𝑅
)

3

 𝛾̇2 𝜏𝜃𝑧 right. Now which is nothing but 

function of 𝛾̇ and then d𝛾̇ that is what we are having. 

So, the limits also we have seen from equation number 4, when r = 0 𝛾̇ function of r is 

nothing but 0, and then at r = R we have taken 𝛾̇ is nothing but some maximum value of 

𝛾̇ that is 𝛾̇𝑅 we are writing. So, then this equation we are having right. 

So, now this equation we rearrange such a way that this 2𝜋𝑅3 we get it to the left hand 

side and then 𝛾̇𝑅
3 also we take to the left hand side. So then left hand side what we have? 

𝑀𝛾̇𝑅
3

2𝜋𝑅3 that is what we have in the left hand side. In the right hand side what we will be 

having? ∫ 𝛾̇2𝜏𝜃𝑧𝑑𝛾̇. 

So, now this 𝜏𝜃𝑧 we have written in as a function of a 𝛾̇ rather as a function of r because 

we do not know what it is as a function of r. In fact, what it is as function of 𝛾̇ also we do 

not know unless we know the fluid, but let us not worry about that one. So, this is equation 

number 1 when you rearrange so we have this equation. Now this equation what we will 

be doing?  

We will be doing differentiation both sides using you know 𝛾̇𝑅 ok. So, then left hand side 

you know this is as it is so we are not doing anything. Right hand side whatever this term 

is there so that is having you know in the Leibniz form, in the Leibniz form it is there. So, 

then this should be having this particular solution. 



So, right hand side term you will be getting answer as 𝛾̇𝑅
2 𝜏𝜃𝑧 (𝛾)̇ , that is what you have 

ok for the right hand side. You will be having left hand side 
1

2𝜋𝑅3 common. And then what 

you will be having? 
𝑑𝑀

𝑑𝛾̇𝑅
. 𝛾̇𝑅

3 + 𝑀(3𝛾̇𝑅
2) this is what you have left hand side. 

So, further what you do? Now, whatever this left hand side term is there so, that we are 

equating to this right hand side term. So, and then simplifying. 
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So, in the right hand side I am keeping the 𝜏𝜃𝑧 as it is one side and then whatever the 𝛾̇𝑅
2 

is there that I am taking to the other side. So, then I can have 
1

2𝜋𝑅3
 then 

𝑑𝑀

𝑑𝛾̇𝑅
 𝛾̇𝑅 only will be 

there + 3M would be there. So, next step what we can do? 
1

2𝜋𝑅3. Here what I am doing? I 

am multiplying and dividing by M here so then I can write 
𝑑𝑙𝑛 𝑀

𝑑𝑙𝑛𝛾̇𝑅
, that is for only first term 

and then second term as it is. 

So then, 𝜏𝜃𝑧 =
𝑀

2𝜋𝑅3 (3 +
𝑑𝑙𝑛 𝑀

𝑑𝑙𝑛𝛾̇𝑅
) this is what we get. This is what we get expression for the 

shear stress previous slide equation number 4 we got shear rate expression. 
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Now, shear stress expression we got this one the same equation. So, after simplifying the 

same equation is written here as equation number 8. So, 𝜏𝜃𝑧 function of 𝛾̇ it should be 

function of 𝛾̇𝑅 and then that is obtained as 
𝑀

2𝜋𝑅3 {3 +
𝑑𝑙𝑛 𝑀

𝑑𝑙𝑛 𝛾̇𝑅
} ok. 

So obviously, if the test liquid is Newtonian liquid. So, then what we will be getting? This 

slope 
𝑑𝑙𝑛 𝑀

𝑑𝑙𝑛𝛾̇𝑅
 you will be getting value 1. So, then we get 3 + 1 = 4, 

4𝑀

2𝜋𝑅3 that is nothing but 

2𝑀

𝜋𝑅3 if it is a Newtonian fluid. If it is Newtonian fluid then only, otherwise we have to use 

this equation number 8.  

This apparent shear stress often used to calculate an apparent viscosity, since only a single 

torque measurement is required, that is the reason this is mostly used in a many of the 

rubber industries in situ kind of thing. 
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Some of the advantage of this parallel disk rheometer are provided here. It is easier to load 

and unload viscous or soft solid samples with parallel disk geometry than other two 

rotational viscometers that we have studied. And then parallel disks are usually preferred 

for measuring viscoelastic material functions, because directly from the thrust we can get 

the normal stress differences. 

This is also very useful for obtaining viscosity and a normal stress data at high shear rates 

also and then not only low shear rates, but high shear rates also we can get because high 

shear rate that equation whatever the equation number 4 according to that equation number 

4 you can get by increasing the rotational speed or decreasing the gap or by decreasing the 

gap we can get the high shear rate. So, then even at high shear rate also we can get the 

viscosity and then and normal stress differences ok. 
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So, in general errors due to the secondary flows edge effects and then shear heating etcetera 

are reduced by operating at small gaps that is small h values. And then another use for data 

collected at different gaps in parallel disk geometry is in, is useful in measuring the wall 

slip.  

How it is? Apparent shear stress versus apparent shear rate at different gaps one can obtain, 

and then related to the wall slip analogous to the case of concentric cylindrical geometry 

right. So, now we see equation number 3 and then we try to get normal stress differences 

from that say equation number 3. 
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So, equation number 3 after neglecting the inertial forces and then assuming the pressure 

is independent in the r direction or pressure drop is constant in the r direction then that 

equation number 3 is this one ok. Now, that r we can cancel out and then we can rearrange 

this equation like this. So, then 
𝜕𝜏𝑟𝑟

𝜕𝑟
 we can write it as 

−𝜏𝑟𝑟−𝜏𝜃𝜃

𝑟
. 

But 
𝜕𝜏𝑧𝑧

𝜕𝑟
 we can write it as 

𝜕𝜏𝑟𝑟

𝜕𝑟
+

𝜕(𝜏𝑧𝑧−𝜏𝑟𝑟)

𝜕𝑟
, because this we can write it as 

𝜕𝜏𝑧𝑧

𝜕𝑟
−

𝜕𝜏𝑟𝑟

𝜕𝑟
. So, 

then that +
𝜕𝜏𝑟𝑟

𝜕𝑟
 and then this −

𝜕𝜏𝑟𝑟

𝜕𝑟
 would be cancel out so then only 

𝜕𝜏𝑧𝑧

𝜕𝑟
 will be 

remaining. This is just a mathematical playing around with equation to get the required 

things right. 

So, now, in place of 
𝜕𝜏𝑟𝑟

𝜕𝑟
 what we write here? From equation number 10 we write 

−𝜏𝑟𝑟−𝜏𝜃𝜃

𝑟
 

here so that this term is like this here ok. Now, this equation we cannot further integrate or 

simplify. So, that to get this 𝜏𝑧𝑧 − 𝜏𝑟𝑟 or 𝜏𝑟𝑟 − 𝜏𝜃𝜃 information they are nothing but the 

normal stress differences.  

So, we can get only what function are, what function are these 𝜏𝑧𝑧 or 𝜏𝜃𝜃 or 𝜏𝑟𝑟 right. So, 

how are these; how are these 𝜏𝑧𝑧 𝜏𝜃𝜃 𝜏𝑟𝑟 depending on radial coordinate r we do not know, 

when we know then only we can simplify this equation ok. And they are independent of 

the z direction because that we have already found from equation number 1 and 2 ok. So, 

then what we do? We do you know some kind of mathematical rearrangement. 
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So, here now the same equations we are writing in the form of integral form like this. So, 

left hand side whatever 
𝜕𝜏𝑧𝑧

𝜕𝑟
 was there. So, the dr we have taken to the right hand side and 

then we are integrating it. So, then we have this equation ok. So, this equation is simple 

this equation is also simple, but this part third part whatever is there that we have written 

in terms of dummy variables 𝜉 ok which is similar to r.  

So, here N1 is nothing but 𝜏𝜃𝜃 − 𝜏𝑧𝑧 and then N2 is nothing but 𝜏𝑧𝑧 − 𝜏𝑟𝑟. So, when you 

integrate the first part then what you get 𝜉 is dummy variable similar to r varying between 

r to R. So, now, when you integrate this term, you get 𝜏𝑧𝑧(𝑅) − 𝜏𝑧𝑧(𝑟) = 𝑁2(𝑅) −

𝑁2(𝑟) + this one we are not integrating because we do not know what is that N1 and N2 

function of zeta those things we do not know.  

So but 𝑁2(𝑅) and zz at R they are same. So, then this equation we can write 𝜏𝑧𝑧 (𝑟) 

= 𝑁2(𝑟) − this integration ok. So now, this equation you know will provide us some 

information about normal stress differences right. So, whatever this N2.2πr dr and then this 

integral whole integral ∫ 2πr dr and then integration of this entire thing with a negative 

sign would be giving you the thrust. 
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So, that equation is written here. So, 𝐹𝑧 = −2𝜋 ∫ 𝑁2𝑟𝑑𝑟 + 2𝜋 ∫
𝑁1+𝑁2

𝜉
(∫ 𝑑𝜉

𝑅

𝑟
) 𝑟𝑑𝑟

𝑅

0

𝑅

0
 this 

is what we have. So as mentioned it is negative value of integration of equation of, equation 

number 12.  

So, then here again we can do the simplifications then we get 𝐹𝑧 is this one. Again we 

cannot simplify these equations you know without knowing this N2 and N1 information, 

N2 how it dependent on r, N1 how it dependent on the r value that we do not know. So, 

then straightforward we cannot simplify this equation. So, we are in the same position as 

in the case of shear stress measurements. So, then what we have done there? We have used 

the shear rate expression to change the variables. 

So here also we will be doing the changing the variables using equation number 4, then 

we have this r is equals to this one, dr is this one and then 𝛾̇𝑅 is this one and then 

differentiating above equation with respect to 𝛾̇𝑅. And then doing the all simplification 

that we have done for the case of shear stress by applying the Leibniz formula and all that.  

Then finally, what we get? You get this expression. This you can try yourself we can get 

without any difficulty or 𝑁1 − 𝑁2 at constant 𝛾̇𝑅 is nothing but 
𝐹𝑧

𝜋𝑅2 [2 +
𝑑𝑙𝑛𝐹𝑧

𝑑𝑙𝑛𝛾̇𝑅
] ok. So that 

is how we can get the shear stress shear rate and then normal stress differences using 

parallel disk rheometers. Now, we take an example problem to understand how to use these 

equations. 
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So, the rotational speed and torque data for an aqueous polymer solution is given here at a 

certain temperature and pressure. Height is the gap between this parallel disks is 0.7 mm 

that is very small and then radius of the disk is nothing but 25 mm. The question is obtain 

shear stress versus shear rate data for this polymer solution and determine the rheological 

models suitable for this solution. 

So, some 3 percent aqueous polymer solution for that you know that solution has been 

confined between two parallel disk and then one of the disk was rotating. And then so 

called the rotational velocity and then torque have been measured right. So, that data has 

been provided here.  

So, the gap between two disks is 0.7 mm and then the radius of the disk is 25 mm right. 

So, all the information is given actually in order to get the shear stress shear rate 

information. We were not asked to get the normal stress differences, if we are about to if 

we are supposed to get the normal stress differences also then we should also been given 

some information about the total thrust. So, that is not required now. 



(Refer Slide Time: 38:56) 

 

So, now sample calculation for the first data point 𝛾̇ =
𝑅

ℎ
Ω. Because now all these τ and 

then shear rate etcetera we are calculating at the edge, that is it r = R ok. So, R is 25 mm h 

is 0.7 mm and then 𝛺 first data point 3.56 x 10−4 then when you simplify these numbers 

we will get 𝛾̇ 0.0127 𝑠−1. 

Similarly, tau we got this expression 𝜏 =
𝑀

2𝜋𝑅3 (3 +
𝑑 ln 𝑀

𝑑 ln Ω
). So, first data point M is given 

as 1.16 𝑥 10−5Nm and then 2 𝜋 R is nothing but the 25 mm ok, multiplied by 3 this M 

versus 𝛺 data is given.  

So, that data you have to plot on a log-log graph sheet and then get the slope right. So, that 

slope is nothing but 0.842 right. So, then you get first data point shear stresses 0.454 Pascal. 

So, whatever the torque versus rotational velocity was there so that we have converted in 

terms of you know shear stress and then shear rate ok. 

So that we tabulated here right. So, actually ln M versus ln 𝛺 plot we have here. So, then 

slope of this one is 0.842. So, likewise for all the data points of M versus 𝛺 corresponding 

shear stress versus shear rate values are calculated and tabulated here ok. So, now, if you 

plot them what you can understand? This data is passing through the origin and then it is 

slightly non-linear it is not completely linear and then it is not very highly non-linear. So, 

what we can see? It obeys a power law behavior of n = 0.89, that is very mild shear thinning 

behavior is there ok. 



So, this is about how to generate, how to develop the equations for the shear stress shear 

rate and then normal stress differences using parallel disk rheometers and then how to 

solve problem that is what we have seen now. 
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The references for this lecture; the entire lecture is prepared from this reference book 

Rheology: Principles, Measurements, and Applications by Macosko; however, some data 

and then example problem have also been taken from this book by Chhabra and 

Richardson. Other useful reference books are provided here. 

Thank you. 


