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Lecture - 13
Mass transfer theories

Welcome to 5th lecture of module-2 on Mass Transfer Operation. In this lecture, we will

discuss the Mass Transfer Coefficient, and then the theories of mass transfer in turbulent

conditions.  Before going to the next lecture, let  us have small  recap on our previous

lecture. 
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In our previous lecture, we have considered boundary layer theory in mass transfer. And

then the second case, we have considered film theory. So, in film theory mainly we have

discussed that the there is a stagnant film near the gas liquid interface.  And then the

concentration profile through the stagnant film is linear as with respect to the film theory

or as described by the film theory.
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Here we will discuss other mass transfer theories in the turbulent flow condition, one

such theory is penetration theory. As you can see there are two different no figures over

here. One is the bubble gas bubbles, and there is a liquid particles which are moving

along the surface. And then the other case in case of b as it is shown, it is there is a pool

of liquid. And there is a liquid particles, which goes to the and above the pool of the

liquid you have a gas layer. And then the liquid particles goes to the surface for a certain

period of time, it stays with the contact with the glass film, and then it return back to the

bulk.

So, penetration theory was explained by Higbie’s in 1935. And it is observed in many

situation that the time of exposure of the fluid to mass transfer is very short. So, exposure

of fluid to mass transfer for a period of time which is very short, in most many situations

in case of the mass transfer. So, if the time of exposure is very short, what happens? The

concentration  gradient  which  is  discussed  in  the  film  theory,  and  which  is  a

characteristics of the steady state conditions would not have time to develop. So, for

short contact time, the concentration gradient will not attain or will not develop. So, it is

Higbie explained as a bubble of gas rises through a liquid which absorbs the gas. So, one

case as it is given over here in case of figure a, a bubble of gas rises through a liquid

which absorbs the gas.
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And in the now in this case a particle of liquid b you can see over here, a particle of

liquid b, initially at the top of the bubble, and it was in contact with a with the gas for a

period of time theta, it requires for the bubble to rise a distance equal to its diameter that

means, while the liquid particles will slip from top to the bottom or to the along the

surface it slips, and comes to the bottom and it is discharged over here.

An extension of the cases where the liquid may be in turbulent motion as shown in figure

b, an eddy of b which is rising from the turbulent depth of the liquid and remaining

exposed for a time of theta to the action of the gas. So that means this no tiny liquid

droplet will go to the gas liquid interface remain exposed with the gas for a period of

time, which is defined here as theta for the mass transport to take place.
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In this theory, the time of exposure which is considered theta is taken as constant for all

eddies or for all liquid particles. Initially, the concentration of the dissolved gas in the

eddy is uniformly C A0. So, at initial conditions the concentration of the dissolved gas is

considered as C A naught, and it is the same over here as well in this case as well. And

internally the eddy is considered to be stagnant.

When the eddy is exposed to the gas at that surface, the concentration in the liquid at the

gas-liquid  surface  is  C  Ai.  So,  once  it  will  come  over  here,  the  concentration  of

component a in this in the liquid at the gas liquid interface is C Ai, which may be taken

as equilibrium solubility of the gas in the liquid.  So, this can be calculated from the

solubility of component A at a particular pressure which is dissolved in the liquid.
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Now, it  is  assume that  equilibrium is  immediately  attained  by the  surface layer  that

means,  as soon as the liquid element  comes in contact  with the gas phase the solute

which will transfer from the gas to the liquid, it will immediately attain equilibrium at

the surface layer. And that is why a process of unsteady state molecular diffusion occurs,

and that the element is remixed after a fixed interval of time, so that means the element

again come back to the bulk, and again return to the surface. 

So, in this calculation the depth of the liquid element is assumed to be infinite. So, why

whether this  assumption is  correct? It  will  be justified when the time of exposure is

sufficiently short for the penetration that means, the gas penetrate is a very small amount,

because the length of exposure of that element at the surface is very short. Due to this

short surface, the distance in the bulk is much higher and which can be considered as

infinite. 

Throughout, the existence of velocity gradient within the fluid is ignored. So, in this case

the velocity gradient within the fluid is neglected and the fluid at all depths is assumed to

be moving at the same rate as the interface. So, it is no rate, so there will not be gradient

of the velocity of all the liquid element with respect to the free surface that is at gas

liquid interface. 
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Now, let us take a problem like diffusion of A away from the interface in the z-direction

the Fick’s second law we can reduce to del C A del t would be equal to D del 2 C A del z

2 that is without chemical reaction. Now, the following boundary conditions will apply at

t is equal to 0, and z greater than 0, and less than infinity, C A would be C A naught. At t

greater than 0, at the gas-liquid interface at z is equal to 0, C A would be C A i. T greater

than 0, at any time z equal to infinity that is in the bulk is C A would be C A naught. So,

C  A naught  is  considered  as  the  concentration  in  the  bulk  phase,  and  C  A i  is  the

equilibrium value at the interface.

Now, we need to solve this problem to find out the concentration profile and the flux at

the interface.  Now, it  will be very convenient,  if  you work in terms of the deviation

variables that means, C dash would be C A minus C A naught that is the concentration in

the bulk which is constant. And this C A is the any concentration, so C dash is C A minus

C A naught. We can write equation-1 as del C dash del t would be equal to D del del

square C dash by del z square, this is equation-2. 
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Now, since C A naught is constant with respect to time and z, so it  is constant. The

boundary conditions we can write in terms of the deviation variables that is t would be at

t equal to 0 z greater than 0, and less than infinity. C dash would be 0, because it is C A

minus C A naught. So, at this t would be equal to 0, C A would be C A naught minus C A

naught so, then C dash would be equal to 0.

At any time t greater than 0, z equal to 0 that is at the interface, it will be the interfacial

concentration C A i. So, C dash would be at the interface that is C dash i would be equal

to C A i C A would C A i minus C A naught. And at t greater than 0, z equal to infinity

that is at the bulk, it will be similar to this, because at bulk its C A naught. So, it is C

dash would be 0. So, this is the boundary conditions, which are defined with respect to

the deviation variables or in terms of the deviation variables. 
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The boundary conditions are necessary and sufficient for equation-2; this is the equation-

2 which is  first  order  with respect  to  time,  and second order  with respect  to z.  The

equation we can most conveniently solve by the method of Laplace transform, and used

for the solution of unsteady state thermal conduction problems. So, we can easily solve

this problem using the Laplace transform method.
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By  definition,  the  Laplace  transform  C  dash  bar  of  C  dash  is  given  by  so  if  we

considered C dash is our variable, its Laplace transform will be C dash bar and which we



can write by definition C dash bar would be equal to integral 0 to infinity e to the power

minus p t C dash dt, this is equation-3.
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Now, in our case it is equation-1 is del C A del t would be equal to D del 2 C A del z 2.

So, we have to take Laplace transform of the left hand side that is del C A del t, and also

on the right hand side that is D del 2 C A del z. So, taking the Laplace transform of the

left hand side from this equation so, we can write del C dash bar del t would be equal to

integral 0 to infinity e to the power minus pt del C dash del t d t. 

So, if you just integrate it, it would be e to the power minus pt C dash limit 0 to infinity

plus p integral 0 to infinity e to the power minus pt C dash dt. Now, from this if you just

put the limit, and this part is nothing but is C dash bar which is the Laplace transform of

C. And so this can be written as p into C dash bar.
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Now, since the Laplace operator is independent of z. The right hand side, we can write

del 2 C dash bar del z 2 would be equal to del 2 C dash bar del z 2. So, here so z it is you

know Laplace operator is independent of z. So, we can write this. Now, thus taking the

Laplace transform of both side of this equation, we can write the left hand side which we

have derived earlier using the Laplace is p C dash bar would be equal to D del 2 C dash

bar del z 2 ok. And if you just rearrange this equation, so you will get del 2 C dash bar

del z 2 minus p by D C dash bar equal to 0. So, this is equation-7.
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This equation-7 is an ordinary second order linear differential equation in C dash bar.

And the solution of this equation, we can write as C dash bar would be equal to B 1 e to

the power root over p by D z plus B to e to the power minus root over p by D z. 
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Now, as we know when z is equal to 0, C A would be C A i, and C dash would be equal

to C A i minus C A naught would be C i dash. And when z is equal to infinity, C A would

be equal to C A naught, and C dash would be 0. So, if we use this boundary conditions in

our earlier  equation-8,  we can calculate  B 1 would be 0.  So,  then our equation will

reduce to C dash bar would be equal to B 2 e to the power minus root over p by D into z,

so which is equal to C i dash bar e to the power minus root over p by D z. So, this is

equation-9.
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Now, we need to find out this B 2 or C i dash bar. So, B 2 is equal to integral 0 to infinity

C A i minus C A naught e to the power minus pt d t. So, if you just integrate it, it will be

1 by p C A i minus C A naught.
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So, if we substitute this in the earlier equation, we will get C dash bar would be equal to

1 by p C A i minus C A naught e to the power minus root over p by D z. Now, this is the

Laplace transform of C dash that is the deviation variables. Now, if we take the inverse

Laplace of this, we will get C dash which is equal to in terms of the deviation variables C



A minus C A naught would be equal to C A i minus C A naught complementary error

function Z by 2 into root over D t. 
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So, if you just rearrange the equations from here, we can just rearrange like this C A

minus C A not divided by C A i minus C A naught. So, taking this term over here, and

then we will have in the right hand side complimentary error function z by 2 root over D

t, so which is written over here. Now, this complementary error function of z by 2 root

over D t can be written as 1 minus error function of z by 2 root over D t, so this is

equation-12. Here erf X is error function of X, and erfc X is the complementary error

function of X. So, error function already we have discussed in our earlier discussion.
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So, by definition complementary error function is equal to 2 by root pi integral X to

infinity e to the power minus x square d x. Since, 0 to infinity e to the power minus x

squared d x is equal to root pi by 2. The error complementary error function goes to 1 to

0 as X goes to 0 to infinity. So, when x goes to 0 to infinity, then the complementary

error function will vary from 1 to 0. 
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The concentration gradient is then obtained by differentiation of the equation-12, which

is this is the equation-12. And if you just take the differentiation of this equation with



respect to z, we will get the concentration profile. So, taking the no derivative of these, it

will be 1 by C A i minus C A naught del C A del z would be equal to del del z of 2 by

root pi integral z by 2 root over D t to infinity e to the power minus z square by 4 D t into

d of z by 2 root over D t. 
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So, this will be del C A del z would be equal to minus C A i minus C A naught 2 by root

pi into 1 by 2 root over D t into e to the power minus z square by 4 D t. And then if we

just rearrange, it will be minus C A i minus C A naught 1 by root over pi D t e to the

power minus z square by 4 D t. So, this is equation-13.
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The mass transfer at any position z at time t is given by N A t that is the flux, at any time

t which is equal to minus D del C A del z. So, if you substitute del C A del z from this

equation in the flux equation, we will get C A i minus C A naught into root over D by pi t

e to the power minus z square by 4 D t. So, this is equation-14. 
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When at z is equal to 0 that is at the interface at any time t the flux, we can define is

equal to minus D del C A del z at z is equal to 0 that is mass transfer rate per unit surface

at the gas liquid interface. So, if we use no this z is equal to 0 in our earlier equations



over here, so this will be 1. So, N A t at z is equal to 0 would be C A i minus C A naught

root over D by pi t, so which is written over here. So, this is equation-15.

And the point value of mass transfer coefficient K L will be root over D by pi t. So, this

is  no  very  well-known  output  from  the  penetration  theory,  where  mass  transfer

coefficient is related with the square root of diffusivity by pi theta. So, it is a square root

dependence of diffusivity in case of penetration theory. And we have seen in case of film

theory, the diffusion coefficient is directly proportional to d a b that is K L would be

equal to d a d a b by delta.
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Now, let us take an example in a gas-liquid contactor, a pure gas is absorbed in a solvent

and the penetration theory provides a reasonable model by which to describe the transfer

mechanism. A fresh solvent is exposed to the gas; the transfer rate is initially limited by

rate at which the gas molecules can reach the surface.

If at 293 Kelvin and a pressure of 1 bar the maximum possible rate of transfer of gas is

50 meter cube per meter square second, so this is the rate of transfer of gas, express this

as an equivalent resistance, when the gas solubility is point 0.04 kilo mole per meter

cube. The second problem is if the diffusivity in the liquid phase is given 1.8 into 10 to

the power minus 9 meter square per second, at what time after the initial exposure will

the resistance attributable to access of the gas be equal to about 10 percent of the total

resistance to transfer.
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So, let us consider bulk concentration, which is equal to 1 by 22.4 that is volume into

273 by 293, which is 0.0416 kilo mole per meter cube. So, we can calculate the bulk

concentration. Initial mass transfer rate which is given is 50 meter cube per meter square

second. And if you just multiply with the bulk concentration, it will give the no initial

mass transfer rate in terms of kilo mole per meter square second, it is 2.08 kilo mole per

meter square second.

Now, the concentration driving force in the liquid phase is 0.4 minus 0 that is it is a no

pure gas. Initially, there is no solute in the liquid, because it is fresh solvent which is

exposed to the gas. So, since it is fresh solvent, there is the solute concentration is 0. So,

we can calculate the concentration driving force, which is 0.04 kilo mole per meter cube.

The effective mass transfer coefficient initially is 2.08 divided by 0.04, so this is 52.0

meter per second. So, this is the initial effective mass transfer coefficient initially.
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Now, equivalent resistance is 1 by mass transfer coefficient which is 0.0192 second per

meter. So, equivalent resistance we can we have calculated. Now, when this constitutes

10 percent of the total resistance, it is given over here. This constitutes equals to about 10

percent of the total resistance. So, the liquid phase resistance will be 90 percent that is

0.0192 into 9. So, the liquid phase resistance would be 0.1728 second per meter. The

liquid phase coefficient will be 5.78 meters per second, so if you can calculate from here

from this resistance.
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Now, regular surface renewal, it is important to note that the mass transfer rate falls off

progressively during the period of exposure, theoretically from infinity at t is equal to 0

to zero at t is equal to infinity, so that is the theoretical mass transfer rate, which will fall

from infinity to 0 at time t to infinity.

Now, assuming that all the surface elements are exposed for the same time that is t e that

is Higbie’s assumption, from equation 15, the moles of A n A transferred at an area A in

time t e is given by this. This is the moles transferred no with the area and time of

exposure A and t e, it will be C A i minus C A naught root over D by pi area into area

integral 0 to t e dt by root over t. So, now if you just integrate it, it would be 2 into C A i

minus C A naught A root over D t e by pi. 
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Now, from here the average rate of mass transfer per unit area over the exposure time t e

is given by, so we will get the average rate of mass transfer or the flux N A would be

equal to 2 into C A i minus C A naught root over D by pi t e, so that is the average rate

over the interval t is equal to 0 to t is equal to t e, which is twice the point value at t is

equal to t e.

So, at point value it is basically we have seen N A would be equal to C A i minus C A

naught root over D by pi t e and so in this case, it is the twice the average rate of mass

transfer. So, from this we can write the mass transfer coefficient K L would be 2 into root

over D by pi t e. Thus, the shorter the time of exposure the greater is the rate of mass



transfer.  As  the  time  will  be  shorter,  the  mass  transfer  rate  will  enhance  from  this

equation. 

Now, no precise value can be assigned to t e, in any industrial equipments although its

value will clearly will become less as the degree of agitation of the fluid is increased. So,

as the turbulence in the fluid will increase, its value will essentially decrease the time of

exposure will essentially decrease. So, there is no particular value which can be assigned

to any industrial equipment.
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Now, let  us take another  example  a  deep pool  of ethanol  is  suddenly exposed to an

atmosphere of pure carbon dioxide and unsteady state mass transfer governed by Fick’s

law, which takes place at a time of 100 second. What proportion of the absorbed carbon

dioxide will have accumulated in 1 millimeter layer closest to the surface in this period.

Given that D C O 2 in ethanol is 4 into 10 to the power minus 9 meter square per second.

So, diffusivity is given.

Now, the accumulation in the 1 millimeter layer near the surface which will be equal to

the amount of carbon dioxide entering in the layer from the surface less that leaving in

the course of 100 seconds. So, this will  be the difference between the two, which is

entering and which is leaving, so that will govern the accumulation in that layer.



Now, the mass transfer rate at any position y and time t is given by equation-14, which

we have seen. N A t would be equal to C A i root over D by pi t e to the power minus y

square by 4 D t. N A t we know from the Fick’s law, it is minus D del C A del z, and

which is equal to if you just substitute, it will be C A i minus C A naught root over D by

pi t e to the power minus z square by 4 D t. Here N A is expressed in mole per unit area

and per unit time and C A naught is zero, because the solvent is pure ethanol.
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So, considering unit surface area, the mole transfer in time t e at depth y which can be

written as C A i root over D by pi integral 0 to t e t to the power minus half e to the

power minus y square by 4 D t into d t. Now, putting y square by 4 D t is equal to X

square, we can get t to the power minus half would be equal to 2 into root over D x by y.

And d t would be equal to y square by 4 D into minus 2 by X cube d X.
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So, the integral would be integral infinity to X e y square by 4 D into minus 2 by X cube

into 2 into root over D into X by y e to the power minus X square d X. And then we can

write it will be minus y by root over D integral infinity to X e X to the power minus 2 e

to the power minus X square d X.
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So, the molar transfer per unit area we can calculate, it would be C A i root over D by pi

into minus y by root over D into e to the power minus X square into minus X to the

power 1 with a limit infinity to X e minus integral 0 to X e minus 2 X e to the power



minus X square into minus X to the power minus 1 d X. So, this is the molar transfer rate

per unit area.

Now, if you just simplify C A i into minus y by root pi whole into minus X e to the

power minus 1 e to the power minus X e square plus 2 into integral X e to infinity e to

the power minus X square d X. So, it will be we can write this will be equal to C A i into

y by root pi whole into 2 into root over D t e by y e to the power minus y square by 4 D t

e minus root over pi complementary error function y by 2 into root over D t. So, this is

we can simplify as like this. 
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Now, the values which are given D is equal to 4 into 10 to the power minus 9 meter

square per second and t is 100. Now, if you put this value at y is equal to 0, the mole

transfer we can calculate. So, from the earlier equation. So, this is the moles transfer at y

is equal to 0, 7.14 into 10 to the power minus four C A i. So, this mole transfer in terms

of the interfacial concentration.

Similarly,  at  y is  equal  to 10 to  the power minus  3 meter, the mole  transfer  can be

calculated using this no equation. And these are tabulated function complementary error

function values can be taken from the table. And it will be finally, give the values of no

mole transfer at y is equal to 10 to the power minus 3 meter is 1.19 into 10 to the power

minus 4 C A i. 



So, now if we take the portion of the material retained in the layer, it will be 7.14 into 10

to the power minus 4 C A i minus 1.19 into 10 to the power minus 4 C A i divided by

7.14 into 10 to the power minus 4 C A i which is 0.83 that means 83 percent of the

material  which  will  be  retained  in  the  layer.  So,  thank  you  for  your  attention,  and

attending this lecture.  And we will  continue the mass transfer coefficient in turbulent

flow in the next lecture.


