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Lecture – 12
Boundary Layer Theory and mass transfer coefficients in turbulent flow

Welcome to the 4th lecture of module 2 on mass transfer operation. In module 2 we are

discussing the Mass Transfer Coefficient.  So, before going to this lecture let us have

small  recap on our earlier  lecture.  In our last  lecture we discussed,  no mass transfer

coefficient in laminar flow. In the laminar flow conditions we have considered two cases;

one  case  is  mass  transfer  coefficient  in  laminar  falling  film through  a  vertical  solid

surface.
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The second case we have considered mass transfer coefficient in laminar flow condition

falling film through an inclined surface.
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In this lecture, we will consider boundary layer theory in mass transfer and then we will

consider mass transfer coefficient in turbulent flow. If we considered a case the flow

through a solid surface in a horizontal surface and then we see that the when the fluid

pass  the  solid  surface  there  is  a  gradient  of  the  velocity  and  also  the  gradient  of

concentration  over  the surface,  near  to  the  surface and the we call  a  layer  which  is

formed where the concentration variation exist is called the boundary layer.

So, let us see the boundary layer, how it is formed. We have a solid surface over here and

when the fluid flow horizontally through the x direction where x is equal to 0 at the start

of  the  velocity  profile  or  the  boundary  layer  and  then  we  see  that;  no  there  is  a

concentration gradient over the surface and this is the edge of concentration boundary

layer and then the thickness of this boundary layer is delta C. 

So,  an  exact  solution  can  be  obtained  for  the  hydrodynamic  boundary  layer  for

isothermal laminar flow past a plate, if it is a plate. An extension of the Blasius solutions

can be extended to derive an expression for convective heat transfer. In the analogous

manner we can use the Blasius solutions for convective mass transfer as well for the

same geometry and laminar flow.
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Now in this case to define the system C A infinity is the concentration of A in the fluid

approaching the plate. So, concentration is C A infinity at this location and this is the

concentration variation and C As which is at the surface it is C As concentration of A in

the fluid adjacent to the surface so, which is over here. 

We start with the differential mass balance and simplifying it for steady state process. If

we consider  the  differential  mass  balance  and if  we considered  the  steady state,  for

steady state we considered del C A del t is equal to 0. So, del C A del t this is equal to 0.

Now for the flow which is we considered only in x and y directions.
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Then the velocity component that is v z would be 0 in the z direction and if we neglect

the diffusion which is happening towards the x and z direction.  So, since the fluid is

flowing through the flat surface in the x direction, the convective mass transfer is much

prominent than the diffusion. Hence, we can neglect the diffusion part in the x and z

direction.

So, we will be know arising out of this know equations which is v x del C A del x plus b

v y del C A del y is equal to D AB del 2 C A del z. So, this we can derive from the fixed

second law equations without no chemical reactions and understudy state condition. The

momentum layer is also very similar. It will be v x del v x del x plus v y del v x del y is

equal to mu by rho del 2 v x del y 2. Here mu is the viscosity and rho is the density.
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Now, thermal boundary layer also would be similar which is v x del T del x plus v y del

T del y is equal to k by rho C p del 2 T del y 2. Now, if we write in terms of the

dimensionless concentration in that case we can write v x by v infinity. This v infinity is

the know free stream velocity over here is equal to T minus T s divided by T infinity

minus T s which would be equal to C A minus C As divided by C A infinity minus CAs

would be equal to 0 at y equal to 0. So, under this conditions, we can write this boundary

condition in a dimensionless form. Now similarly we can write at y equal to infinity at a

very long distance from the surface v x by v infinity would be equal to T minus Ts

divided by T infinity minus Ts would be equal to CA minus CAs divided by CA infinity

minus CAs is equal to 1.
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Now, the Blasius solution is applied to convective heat transfer when mu by rho by alpha

that is the prandtl number which is equal to 1. So, when the prandtl number equal to 1,

we can apply the Blasius solutions for convective heat transfer. Similarly in case of mass

transfer we use for the laminar convective mass transfer when the Schmidt number equal

to 1. If the Schmidt number equal to 1, that is mu by rho D AB is equal to 1, if that is 1

then we can apply the Blasius solutions.

So, the velocity gradient was derived in fluid mechanics, you have already derived that

equations the velocity gradient that is del vx del y at y equal to 0 is equal to 0.332 v

infinity by x Reynolds number to the power half N Re x it is Reynolds number. So,

Reynolds number to the power half. So, this N Re x is x v infinity rho by mu, which is

Reynolds number.
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Now, from this equation know 5 which the boundary conditions which we have written

in terms of the dimensionless concentration or dimensionless velocity or dimensionless

temperature at y equal to infinity, we can write v x by v infinity would be equal to C A

minus C As divided by C A infinity minus C As. Now if we differentiate equation 7, this

equations if we differentiate and combined with the results of equation 6. So, we can

write del C A del y at y equal to 0 would be equal to C A infinity minus C As into 0.332

by x  Reynolds  number  to  the  power  half.  So,  I  think  this  is  very  clear  for  you  to

understand by differentiating this equation and then substituting this equation 6 in that

you will be able to obtain this relation.
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Now, the convective mass transfer equation can be written as follows and also related

with the fix equation for dilute solutions. So, for convective mass transfer, we write the

flux N A at any position y would be equal to k c dash into the concentration gradient that

is C As minus C A infinity. So, this is the convective mass flux. Now, if we for a very

dilute solution we can relate with the diffusive flux which is minus D AB del C A del y at

y equal to 0. 

Now, we know equation 8 which we have derived which is del C A del y at y equal to 0

is equal to C A infinity minus C As into 0.332 by x Reynolds number to the power half.

So, if we substitute this know del C A del y at y equal to 0 over here so, we will obtain k

c  dash  x  by  D  AB would  be  equal  to  Sherwood  number,  which  is  equal  to  0.332

Reynolds number to the power half.

So, substituting this equations over here like we can write k c dash C As minus C A

infinity would be equal to minus D AB into C A infinity minus C As into 0.332 by x N

Re x to the power half. Now, this if we rearrange this will canceled out and we will get k

c dash into x divided by D AB would be equal to 0.332 N Re x to the power half. So, this

is nothing but say sherwood number with respect to x. So, we can obtain this equation

10. So, this relation is valid when this schmidt number is 1; so, which we have said

before.
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Now, the relations between the thickness delta of the hydrodynamic and the delta c of the

concentration boundary layer. So, the hydrodynamic boundary layer thickness is delta

and the concentration boundary layer thickness is delta c. When Schmidt numbr is not

equal to 1, if Schmidt number is not equal to 1, then there is a relations between the

hydrodynamic boundary layer thickness and the concentration boundary layer thickness

and which is delta by delta c would be equal to Schmidt number to the power one-third.

The equation for local convective mass transfer coefficient that is k c dash x by D AB

which is sherwood number x with respect to x would be equal 0.332 reynolds number to

the power half into Schmidt number to the power one-third. So, this is question 12.
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We can obtain the mean mass transfer coefficient k c dash from x is equal to 0 to x is

equal to L for a plate of width b by integrating as follows. So, we can integrate k c dash

would be equal to b by b L integral 0 to L k c dash d x. Now if we substitute k c dash

which we have derived before k c dash from here then, we would be able to obtain k c

dash L divided by D AB is  equal  to  sherwood number  N with respect  to  sherwood

number  would  be  equal  to  0.664  Reynolds  number  to  the  power  half  into  Schmidt

number to the power one-third. So, the derivation after substituting k c dash from the

equation 13 to 14 is left to you as a part of your homework, you can do it very easily. So,

this is similar to the heat transfer equations for a flat plate.
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Now, let us take an example, a large volume of pure water at 25 degree centigrade is

flowing parallel to a flat surface of solid benzoic acid, where L is 0.244 meter in the

direction of flow. The water velocity is 0.061 meter per second. The solubility of benzoic

acid in water is 0.02948 kilo mole per meter cube. The diffusivity of benzoic acid is

1.245 into 10 to the power minus 9 meter square per second. We need to calculate the

average mass transfer coefficient k L average and the flux N A and the viscosity and the

density are given.
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So, now we need to calculate the Schmidt number. So, Schmidt number is mu by rho D

AB, mu is given 8.71 into 10 to the power minus 4 kg per meter second, rho is 996 and

diffusivity  is  given.  So,  you  can  calculate  the  Schmidt  number.  Similarly,  we  can

calculate the Reynolds number which is L u rho by mu L is given 0.244 meter and then

we know the velocity 0.061 meter per second. So, velocity is given L is known and rho is

given 996 kg per  meter  cube  and also the  viscosity.  So,  we can  calculate  know the

Reynolds number 1.7 into 10 to the power 4, which is in the turbulent region.
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 Now, if we just use the know value of N Reynolds number L which is know 1.7 into 10

to the power 4 and then Schmidt number which is 702, substituting this we would be and

then the diffusion coefficient is known to us D AB is given 1.245 into 10 to the power

minus 9 meter square per second and then the L which is given 0.244 meter. So, if we

substitute we will get k c dash average would be 3.92 into 10 to the power minus 6 meter

square per second.

In this case, diffusion of A through non diffusing B we can write the flux, N A is k c dash

average by x BM C A1 minus C A2 would be equal to k c C A1 minus C A2.
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Now, if we considered very dilute solutions x BM would be approximately equal to 1

and k c dash approximately equal to k c. So, the concentration C A1 which is 2.948 into

10 to the power minus 2 kg mole or kmol per meter cube which is given a solubility over

here. So, C A1 is known and since the large volume of fresh air it is said a large volume

of pure water once it said pure water. So, CA 2 would be equal to 0. So, then we can

write the flux would be equal to k c into the concentration gradient 0.02948 minus 0. So,

which would be equal to 1.156 into 10 to the power minus 7 kg mole per meter square

second.
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Now, we  will  consider  mass  transfer  coefficient  in  turbulent  flow. There  are  many

theories which attempt to interpret or explain the behavior of mass transfer coefficient.

So, we will try to cover few theories which are applicable in case of the turbulent flow.

One of them is film theory which is proposed by Nernst in 1904. The second theory

turbulent flow turbulent mass transfer coefficient is penetration theory, which is proposed

by Higbie in 1935. So, it is popularly known as Higbie’s theory and then third one is

surface renewal theory which is proposed by Danckwerts and it is in 1951. So, this is you

know evolution of this theory film theory, penetration theory and surface renewal theory

we will try to explain them sequentially.
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Now, you can see there is an interface over here and there is a stagnant film over here

which is given as delta n and you could see the fluid bulk and the velocity profile look

like this. The Nernst postulated that near the interface there exist or stagnant film. So,

this film is considered as stagnant film at a gas liquid interface towards the liquid site.

The stagnant film which is hypothetical this is considered as hypothetical since we really

do not know the details of the velocity profile near the interface. So, this is considered as

hypothetical.

The basic concept the resistance to diffusion can be considered equivalent to that in the

stagnant film of a certain thickness. So, most of the resistance which create for mass



transfer  is  due  to  the  stagnant  film.  So,  most  of  the  resistance  is  considered  in  this

stagnant film and has a certain thickness of delta n considered over here.
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Now, you can see the concentration profile with the stagnant film how it is varying, this

is  delta  the  thickness  and  the  concentration  is  varying  CA  at  the  interface  the

concentration  is  CA i  and at  the  bulk the  concentration  is  C Ab.  The stagnant  film

concentration you can see this is a linear drop in concentration, but you can see the actual

profile look like this, this is the actual profile, we will discuss know this things over here.

Mass transfer occur by molecular diffusion through the fluid layer at phase boundary that

is at solid wall. Beyond this film the concentration is homogeneous and is C Ab. So, at

the face boundary know the molecular  diffusion takes  place and beyond at  a certain

distance delta concentration is homogeneous that is considered as C Ab. Mass transfer

through stagnant film which occurs in this film is basically steady state. So, flux in this

film is very low and mass transfer occurs at very low concentrations. Hence, we can

write N A would be equal to minus D AB d C A dZ.
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Now, if we do the steady state mass balance over an elementary volume of thickness

delta Z. So, considered this is a elemental volume of delta Z this one thickness and flux

at Z, Z is varying from the surface interface towards this side. So, at Z is equal to 0 over

here at Z is equal to Z the flux is considered N AZ that is the rate of input of solute at Z.

So, over here at this location and the rate which is out over here is N A at Z plus delta Z.

So, rate of output of solute at Z plust delta Z would be equal to N A Z plus delta Z. The

accumulation is considered here is 0, the rate of accumulation is 0. So, which is equal to

rate of input minus rate of output. So, from this we can write at steady state N A Z minus

N A Z plus delta Z at Z plus delta Z would be equal to 0.
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So, if we considered very small thickness delta Z and taking limit del Z tends to 0 we can

write this equation N A at Z minus N A at Z plus delta Z by delta Z would be equal to 0.

So, we can write dN A dZ would be equal to 0. Now N A if we substitute this N A from

the Fick’s law which is minus D A B d C A dZ which is equal to 0. So, we can write

minus DA B del 2 CA dZ square would be equal to zero since, DA B is not equal to 0.
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Now, if we integrate this equation 4 that is minus DA B d 2 CA dZ 2 equal to 0 with the

boundary conditions that is at C A would be C Ai at Z is equal to 0 at the interface it will



be C Ai that is at Z is equal to 0 and C A would be C Ab when Z is equal to delta. So, that

is after the thickness it will remain C Ab the bulk concentration. So, we have now if we

just integrate these equations we can obtained C A would be equal to C Ai minus C Ai

minus C Ab into Z by delta. So, the integration with the boundary conditions given over

here is left to you as a homework. So, you can just know integrate this equation and we

will get this concentration profile.

Now, according to film theory we can write the concentration profile is in stagnant film

is linear. As per film theory the concentration profile over here would be linear and molar

flux through the film N A we can write N A would be equal to minus DA B dC A dZ at Z

is equal to 0. So, if we differentiate this equation 6 and then substitute in this relation we

will get N A would be equal to D AB C Ai minus CAb by delta.
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Now, if we compare equation 7 with definition of mass transfer coefficient. So, this is

equation 7 and if we compare with the mass transfer coefficient equations that is know

mass transfer coefficient is k L and the flux equation we can write N A is equal to k L

into C Ai minus C Ab. So, if we compare these two relation we can calculate k L would

be  D  AB  by  delta.  So,  in  this  film  transport  is  governed  essentially  by  molecular

diffusion. Therefore, Fick’s law describes flux through the film and we can write J is

equal to minus D dC dX and typically you need for this is milligram per meter square

second, it is mass flux.
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If  the  thickness  of  the  stagnant  film  is  given  by  delta  n  then  the  gradient  can  be

approximated by dC dX which is equal to C b minus C i by delta n. And C b and C i are

concentration in the bulk and at the interface. So, we can add any components. So, we

can write this equation at steady state if there is no reactions in the stagnant film there

will be no accumulation in the film that is D is constant and therefore, the gradient must

be linear and then the approximation is appropriate which we have considered. So, we

can write J would be equal to minus D C b minus C i by delta n.
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So, calculation of C i is done by assuming that the equilibrium that is the Henry’s law is

attained instantly at the interface. So, when the know if we assume the equilibrium which

will attained at the interface very instantaneously then we can apply the Henrys law at

the  interface  to  calculate  the  interfacial  concentration.  So,  C i  we would  be  able  to

calculate by Henrys law if the equilibrium achieved at the interface instantaneously. This

assumes that the other phase does not have a film. So, for the moment C i would be equal

to  C g by H c  Henry’s law H c  is  Henry’s law constant  and C g is  the  gas  phase

concentration of that component. If the film side is liquid and the opposite side is the gas

phase.  So,  C  i  the  interfacial  concentration  we  can  calculate  C  g  by  H  c.  So,  this

essentially considered that the gas there is no resistance in the gas phase. A problem with

the  model  is  that,  the  effective  diffusion  coefficient  is  seldom  constant  since  some

turbulence does occurred the film area.

So, the film theory which states that in the film the concentration profile is linear, but

actually it is not linear because the defective diffusion coefficient is not constant because

it  varies  due  to  the  turbulence  in  the  film,  which  actually  exist  show.  So,  the

concentration profile in the film will look like actual gradient will look like this because

of the turbulence which exist,  but the hypothetical  gradient  as per the film theory is

linear.

Thank you for hearing this lecture and we will continue with the mass transfer coefficient

in turbulent flow in the next lecture.


