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Lecture – 10
Dimensionless groups and correlations for convective mass transfer coefficients

Welcome to the second lecture of module 2 on Mass Transfer operation.
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In the last lecture, we have discussed on the concept of mass transfer coefficient under

which we have discussed the different types of mass transfer coefficient. And, then we

have discussed the relation between the mass transfer coefficient. In this lecture, we will

discuss the dimensionless group involve in mass transfer.
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The  transport  coefficient  and  other  important  parameters  such  as  fluid  properties,

velocity  etc.  can be expressed in  terms  of  meaningful  dimensionless  groups.  So,  for

example, the heat transfer coefficient h is often expressed in terms of the Nusselt number

and also Reynolds  number  and Prandtl  number. Experimental  forced convection  heat

transfer  data  are  frequently  correlated  as  Nusselt  number  is  a  function  of  Reynolds

number and Prandtl number. This is very well known equations we know.
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The resulting correlation may be used to estimate the heat transfer coefficient for any

other set of process conditions and system parameters.  The most important  equations

which relates the Nusselt number with the Reynolds number and Prandtl number is the

Dittus-Boelter equation. Here we have two most important dimensionless group in case

of mass transfer similar to the heat transfer. One of them is the Sherwood number which

is the mass transfer analogue of the Nusselt number.

So, so in case of mass transfer it is Sherwood number which is analogue to the Nusselt

number  in  case  of  the heat  transfer. Another  important  dimensionless  group in mass

transfer is the Schmidt number. This is also the mass transfer analogue of the Prandtl

number in case of the heat transfer. So, these two important dimensionless groups also

relates with the heat transfer. We have some more dimensionless group, we will discuss

at the later part of this lecture.
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The origin of Sherwood and Schmidt can be traced by analogy with Nusselt and Prandtl

respectively.  So,  like  let  us  considered  or  discuss  this  analogy here.  In  case  of  heat

transfer the Nusselt number we can define is the convective heat flux divided by the heat

flux  for  conduction  through a  stagnant  medium of  thickness  l  with  a  delta  T is  the

temperature gradient the driving force. So, it is a ratio between the convective heat flux

and then heat flux due to conduction. So, if you just write the convective heat flux is h

into delta T and then the conduction heat flux we can write k by l delta T where, l is the



thickness of the stagnant medium. So, this will lead to h l by k where, k is the thermal

conductivity.
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Now,  if  we  look  into  the  mass  transfer  the  Sherwood  number  can  be  defined  by

convective mass flux or molar flux divided by the mass or molar flux for molecular

diffusion through a stagnant medium of thickness l under the driving force of delta p A.

Delta p A is the partial pressure driving force.

So, in this case convective mass transfer, ratio of convective mass transfer and the mass

transfer due to the molecular diffusion will give you the Sherwood number. So, if we

considered a gas phase, mass transfer of A through a binary mixture of A and B in which

we considered B is not diffusing. In that case we can write the convective flux as k G

into delta p A where, k G is the mass transfer coefficient in the gas phase.
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The mass flux due to molecular diffusion of A through non-diffusing B we have derived

earlier in the module 1 which is D AB P t by RT l p BLM into delta p A. D AB is the

mutual diffusion coefficient of A into B and P t is the total pressure, R is the universal

gas constant. T is any temperature, l is the distance through which the diffusion takes

place and p BLM is the log mean pressure difference. So, we can write then Sherwood

number would be the k G delta p A that is the convective flux divided by the diffusive

flux which is written over here. So, it would if we simplify it would be k G p BLM RTl

divided by D AB P t which we can write k c l p BLM by D AB P t.

So, in case of know very dilute solution p BLM by P t is approximately 1. So, in that

case we can write k c l divided by D AB. Now, if we considered transport of A in a liquid

solution at a rather low concentration where X BLM is 1, in that case we can write the

convective  flux  N A would  be  equal  to  k  L,  k  L is  the  liquid  phase  mass  transfer

coefficient and delta C A is the concentration driving force in the liquid phase.



(Refer Slide Time: 08:25)

Now, the diffusive flux of A through a stagnant liquid layer of thickness l we can write D

AB by l into delta C A. So, the Sherwood number we can calculate k L delta C A divided

by D AB by l into delta C A. So, which will lead to k L into l D AB it is the Sherwood

number which is analogous number of the heat transfer that is Nusselt number.

So,  here  l  is  the  characteristic  length.  The commonly  used  characteristics  lengths  in

different cases as you can see, if we considered a sphere of diameter d then it is the

characteristic length. In case of cylinder the diameter d is the characteristics length and

for a flat plate the distance from the leading edge x is the characteristic length. These are

the commonly used characteristic length.
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Now, Schmidt number is the mass transfer analogue of Prandtl number as we have said.

This Schmidt number we can define like in case of heat transfer, we define the Prandtl

number is the momentum diffusivity divided by the thermal diffusivity. Momentum by

thermal; so, momentum diffusivity is mu by rho mu is the viscosity and rho is the density

divided by k by rho c p that is the thermal diffusivity.

So,  it  is  c  p  mu  by  k;  so,  Prandtl  number  we  can  write  c  p  mu  by  k.  Similarly,

analogously  we  can  write  the  Schmidt  number  in  case  of  mass  transfer  which  is

momentum diffusivity divided by the molecular diffusivity. So, momentum diffusivity

mu by rho divided by the molecular diffusivity is D AB. So, we can write mu by rho D

AB or mu by D AB. So, similarly this is the Schmidt number and an analogous number

of heat transfer is Prandtl number.
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Now, Schmidt number also represents the relative order of magnitude of the thickness of

concentration boundary layer in comparison with that of the velocity boundary layer. So,

this  taking the case of gas  phase mass  transfer  for  flow past  a  sphere,  if  we take 2

centimetre in diameter of the sphere and at low partial pressure of the solute; as we said

for low partial pressure of the solute this p BLM by P t would be approximately equal to

1. So, in that case the Sherwood number we can write if we have k C is 10 to the power

minus 2 metre per second and D AB is 10 to the power minus 5 metre square per second.

Then we can calculate  from this equation Sherwood number  equation k C 10 to the

power minus 2 metre per second and d which is given 2 centimetre is in diameter. So, 2

into 10 to the power minus 2 metre is d and then the diffusion coefficient D AB is 10 to

the power minus 5 metre square per second. So, if we substitute them then and as we said

p BLM by P t this term is 1 approximately 1. So, the Sherwood number would be equal

to 20.
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The Schmidt number may be found to be as follows nu is the viscous kinematic viscosity

which is 10 to the power minus 5 metre square per second. And which is given and D AB

is also given. So, you can calculate a Schmidt number is about 1. So, for common gases

the Prandtl number approximately equal to Schmidt number and would be approximately

equal to 1.
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Now, for liquid phase mass transport in a similar geometry we can calculate Sherwood

number k L d by D AB. So, k L is 10 to the power minus 2 metre per second and d is



given 2 into 10 to the power minus 2 metre. And, then diffusivity in the liquid phase is in

the range of 10 to the power minus 9 metre square per second. So, which is about 4 order

less compared to the gas phase diffusion coefficient.

So, if we substitute in case of liquid phase the Sherwood number is approximately 200.

Now, Schmidt number also we can calculate it is about 1000. So, basically the Schmidt

number for most of the common liquids its and the Prandtl number you can see the range

between 10 to 100. And, in  case of Schmidt  number  it  varies  between know 400 to

10000.
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Now, let us turn to the Stanton number for the mass transfer which is also analogous

number you know Stanton number for heat transfer. So, we define Stanton number in

case of the heat transfer, it is the convective heat flux by heat flux due to bulk flow. So,

convective heat flux is h delta T and then the heat flux due to bulk flow is c p rho v delta

T. So, we can just rearrange this if we just multiply l know both side in the numerator

and the denominator.

And, then if we just manipulate with rho by mu over here we can write this know ratio as

h l by k divided by v l rho by mu into c p mu by k. So, this is represented in terms of the

different dimensionless number we have studied. So, that is Nusselt number divided by

Reynolds number into Prandtl number. So, the Stanton number can be defined with this

dimensionless number.



(Refer Slide Time: 15:59)

Similarly, in case of mass transfer we can also write Stanton number for mass transfer

which is convective mass  flux divided by flux due to bulk flow of the medium. So,

convective mass flux as we know k L into delta C divided by v into delta C that is the

flux due to bulk flow. And, if we rearrange it is k L C k L into small l divided by D AB

whole divided by v l rho by mu into mu by rho D AB.

So,  this  is  Sherwood number  and this  is  basically  Reynolds  number  and this  one is

Schmidt number. So, we can write the Stanton number for mass transfer in terms of the

Sherwood number and Reynolds number and Schmidt number.
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Now, let us turn to the Peclet number for the mass transfer which is analogue of the

Peclet  number  in case of the heat  transfer. We define Peclet  number  in  case of heat

transfer  as  Peclet  number  is  equal  to  heat  flux  due  to  bulk  flow  and  flux  due  to

conduction across a thickness l. So, if we just write the heat flux due to bulk flow c p rho

v into delta T divided by k by l into delta T, we can just group them into two different

dimensionless number; it is v l rho by mu into c p mu by k.

So, it is we can write Reynolds number and Prandtl number. So, Peclet number in case of

heat transfer we can define in terms of Reynolds number and a Prandtl number.
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So, similar way we can write the analogous number for mass transfer. So, Peclet number

for the mass transfer we can define flux due to the bulk flow of the medium divided by

the diffusive flux across a thickness l. So, if we just write the flux equation v into delta C

is the flux due to the bulk flow of the medium divided by the diffusive flux across a

thickness is D AB by l into delta C.

So, if we just group them it will be v l rho by mu into mu by rho D or D AB. So, this is

Reynolds number and this is Schmidt number. So, Peclet number we can define in terms

of the two dimensionless number is Reynolds number and Schmidt number.
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Now, correlation  for  the  convective  mass  transfer  coefficients.  So,  the  objective  in

studying  the  section  are  to  explain  the  concept  and  importance  of  the  dimensional

analysis in correlating experimental data on convective mass transfer coefficient. And,

the  another  one  is  used  Buckingham  method  to  determine  the  dimensionless  group

significant  to  a  given  mass  transfer  problems.  So,  with  these  two  objectives  let  us

continue our discussion.
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Most practically useful mass transfer situations involve turbulent flow and for this it is

generally  not  possible  to  compute  mass  transfer  coefficient  from  theoretical

consideration. So, instead we must rely principally on experimental data. So, if we rely

on the experimental data then we need to have the dimensional analysis that relates the

significant  variable  in  a  given  situation  that  are  grouped  into  the  dimensionless

parameters which are less numerous than the original variables.

So, if we can make the dimensionless group then it  would be much more helpful to

correlating the experimental data in case of turbulent flow. By combining the variable

into  a  smaller  number  of  dimensionless  parameter  the  work  of  experimental  data  is

considerably reduced. So, this will help us to reduce the experimental work.
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Dimensional analysis predicts the various dimensionless parameters which are helpful in

correlating experimental data. Certain dimensions must be established as fundamental.

So, we need to have a fundamental dimensions with which we can express the other

terms.  So,  that  is  those  terms  are  considered  as  fundamental,  like  one  of  these

fundamentals dimension is the length. So, length we can use symbol L. Now, if we want

to define area and the volume we may dimensionally be expressed which know area and

volume as length square and length cube. So, the volume can be expressed in length cube

and area can be expressed in plane square. Similarly, the second fundamental dimension

is time like which is which we can symbolize with t. So, like if we want to define the



velocity  or  acceleration  we  can  write  in  case  of  velocity  it  is  length  per  time  and

acceleration length per time square. So, this velocity acceleration or area and volume

these are based on certain fundamental dimensions which is over here is length time.
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Now, another  fundamental  dimension  is  mass  which  is  symbolised  as  M.  So,  M is

symbolised as mass. So, also mole is also included in this, the mole also included in case

of  the  dimension  M.  Like  take  an  example  density  which  is  mass  density  or  molar

density and it is expressed in terms of M per length cube, that is mass or mole M per L

cube. If the differential equation describing a given situation is known then dimensional

homogeneity requires each term in the equations have the same units.
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So,  the  ratio  of  one  term  in  the  equation  to  another  mass  then  be  of  necessity  be

dimensionless. So, in this case with knowledge of physical meaning of the various terms

in  the  equation,  we  are  then  able  to  give  some  physical  interpretation  to  the

dimensionless parameter thus formed. So, we can give a physical interpretation for the

various terms in the equation to some physical systems.

A more general situation in which dimensional analysis may be profitable employed is

one in which there is no governing differential equation which clearly applies. So, where

when there is no governing equations available, differential equation available or that

does not applicable to that particulate system; then this dimensional analysis is a much

helpful  in  that  situation.  So,  in  such  cases  the  Buckingham method  is  used  for  the

dimensional analysis.



(Refer Slide Time: 24:27)

The initial step in applying that Buckingham method request, the listing of the variables

significant  to  a  given problem.  So,  once  the  problem is  given and then  we have  to

identify  the  significant  variable  for  that  particular  problem.  It  is  then  necessary  to

determine  the  number  of  dimensionless  parameters  into  which  the  variables  maybe

combined.  This  number  may  be  determined  using  Buckingham pi  theorem and  this

theorem states that the number of dimensionless groups used to describe a situation that

is i d is the number of dimensionless group involving n variables should be equal to n

minus  r;  that  means,  i  d  would  be  equal  to  n  minus  r  where,  r  is  the  rank  of  the

dimensional matrix of the variables.
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The dimensionless matrix is simply the matrix formed by tabulating the exponent of the

fundamental dimension M, L and t which appear in each of the variable involved. So, if

we make the dimensionless group and the fundamental dimensions raised to the power

some values those form the dimensionless matrix.  And, the rank of the matrix  is the

number of rows in the largest non-zero determinant which can be formed from it. So, let

us know take an example of the evaluation of r and i d as well as the application of

Buckingham method.
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So, the example is mass transfer into a dilute stream flowing under forced convection in

a circular tube. So, here N B is equal to 0 that is stagnant B. Now, consider the mass

transfer from the walls of a circular tube to a dilute stream flowing through the tube. The

transfer of A through stagnant B is a result of the concentration driving force, that is C

A1 minus C A2. Use the Buckingham method to determine the dimensionless group

formed from the variable significant to these problems. So, we have taken an example

problem and we will see how the Buckingham method can be applicable to find out the

dimensionless groups.
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 For this case the important variables and their symbols, their dimensional representation

are listed.  So,  that  has to be listed first  as you can see.  The variables  here the tube

diameter d and its units is metre and then fundamental dimension is L. Similarly, fluid

density rho which is kg per metre cube which is the fundamental dimension is M L to the

power minus 3, fluid viscosity mu kg per metre second.

And then fundamental  dimension is  M L inverse and t  inverse.  Fluid viscosity  fluid

velocity v which is metre per second is length into time inverse, mass diffusivity D AB is

metre square per second. So, it is length square per time, mass transfer coefficient k C is

metre  per  second  which  is  length  per  time.  So,  this  know all  these  variables  for  a

particular situations are described in terms of the dimensionless number.
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Now, to determine the number of dimensionless parameters to be formed we must know

the rank r of the dimensional matrix. The matrix is formed in the following tabulation;

you can see that if we write k c which is know length per time. So, it is L is 1, per time is

minus 1. Similarly, the velocity is length per time is metre, length is a 1 and time is

minus 1 and like density is kg per metre cube or the mass is 1 per metre cube is length to

the power minus 3. So, similar way viscosity, diffusivity and diameter these are defined

in terms of the fundamental dimensions M L and t.
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Now, the numbers in the table represents the exponent of M, L and t in the dimensional

expression of each of the six variables involved. Now for example, that I am as we said

the dimensional expression of mu is M per litre into time. Hence, the exponent 1, minus

1 and minus 1 are tabulated versus M, L and t respectively. The dimensions with which

they are associated so, as we have already discussed.
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Now, if we want to make a dimensional matrix A is then the array of numbers which we

can write A matrix would be equal to as shown in the tabulation. This is the A matrix, the

rank of this matrix can easily be obtain using the rank a function of Mathcad or any other

software you can use to calculate the rank of the matrix or mathematical; you can use or

MATLAB you can use to calculate the rank of the matrix. So, in this case the rank a of A

matrix is 3; that means, from the equation which we have said i d is equal to A n minus r.

So, in this case a rank is r is 3 and so, i d would be equal to number of variables is 6 and

rank is 3. So, i d would be 3 which means that there will be three dimensionless groups.
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The three dimensionless parameters which will be symbolised as pi 1 pi 2 pi 3 and may

be formed in several different ways. So, initially a core group of r variables must be

chosen which will appear in each of the pi groups and among them contain all of the

fundamental dimensions. One way to choose a core is to exclude from it those variables

whose effect one wishes to isolate. So, if we want to isolate effect of some variables we

will exclude them from the core groups.
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Like in this case it  would be desirable to have mass  transfer coefficient  in only one

dimensionless group. Hence, it will not be in the core one. Similarly, let us arbitrarily

exclude fluid velocity and viscosity from the core group. The core group is now consists

of D AB, d, rho and which include M, L and t among them; if we just look into the

dimension of these 3 parameters.
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Now, we know that all pi 1 pi 2 and pi 3 contain D AB, d and rho that one of them

include k c, one include mu and then other include v which we have excluded from the

core group; k c, mu and v and then all must be dimensionless. So, let us write the for

each dimensionless group the variables must be raised to certain exponents.

So, let us write the different terms pi 1 would be equal to D AB to the power a rho to the

power  b  and  d  to  the  power  c  into  k  c.  So,  we  have  included  k  c  in  this  know

fundamental core group along with k c which we have excluded. Similarly, in pi 2 we

have excluded v, in pi 3 we have included know mu. So pi 1, pi 2, pi 3 we can write in

this form.
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Now, writing pi 1 in dimensionless form gives M to the power 0 L to the power 0 and t to

the power 0 would be equal to 1 which is equal to length square t to the power minus 1

whole to the power a into M into L to the power minus 3 whole to the power b L to the

power c and L into t to the power minus 1. So, basically the pi 1 which is D AB, rho, d

and k c are written with the fundamental dimension. Now, if we equate the exponent of

the fundamental dimension on both sides of the equations we can just get the value of L

and then t and M.
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So, from this 3 relation we can obtain a is equal to minus 1. So, the solution of this

equation for the 3 unknown exponent yield a is equal to minus 1, b is equal to 0 and c is

equal to 1. Thus, we can write pi 1 would be equal to k c d by D AB which is Sherwood

number. The Sherwood number  represents  the mass  transfer  analogue of the Nusselt

number of heat transfer.

(Refer Slide Time: 35:41)

So, the other two pi groups are determined in the same manner and that will yield pi 2

would be is equal to v d by D AB which is Peclet number in case of mass transfer and pi

3 is mu by rho D AB which is Schmidt number. So, here S c represent the Schmidt

number in case of the mass transfer. So, we can get similar with three dimensionless

numbers.
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If we divide know pi 2 by pi 3, pi 2 is the Peclet number and pi 3 is the Schmidt number;

if we divide them to we will get the Reynolds number ok.
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The result of the dimensional analysis of forced convection mass transfer in a circular

tube indicates that a correlating relations could be of the form pi 1 is a function of pi 2

and pi 3. So, that is phi Reynolds number to the power alpha and Schmidt number to the

power beta. So, in this case phi alpha beta are the dimensionless constants and which is



analogous to  the heat  transfer  correlation,  Nusselt  number  is  a  function of Reynolds

number and Prandtl number.
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So, the typical correlations pi 1 is Sherwood number as we have derived earlier and then

typical  values  for  different  systems  are  tabulated  over  here.  Like  if  we  considered

laminar flow through a circular tube, the Reynolds number is less than equal to 2 and

2100. The Sherwood number is 1.62 into Reynolds number into Schmidt number d by L

to the power one-third.  Similarly, for  turbulent  flow through a tube where Reynolds

number is in the range of know 4000 to 60,000.

And, the Schmidt in between 0.6 to 3,000; the Sherwood number can be correlated with

Sherwood  number  is  equal  to  0.023  into  Reynolds  number  to  the  power  0.83  and

Schmidt  number  to  the  power  0.33.  Like  liquid  flow  through  a  packed  bed  where

Reynolds number in between 3 to 10,000 we can correlate Sherwood number as 2 plus

1.1 Reynolds number to the power 0.6 and Schmidt number to the power 0.33.

Thank you,  for hearing this lecture.  And, in the next lecture we will  continue to the

discussion of the mass transfer coefficient in laminar flow condition. 


