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Second Law and Entropy

Hello  and  welcome  back;  in  the  last  class  we  were  looking  at  the  second  law  of

thermodynamics and Carnot cycles; which essentially form the backbone for the second

law of thermodynamics.
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Let  us  quickly  recap what  we have  done.  So,  far  we have  looked at  the  heat  work

requirements and change in enthalpy and internal energy for a process that involves ideal

gas.  We looked  at  irreversible  processes  and  how to  account  for  that  irreversibility

through  defining  the  efficiency  of  the  irreversible  process.  We  also  looked  at  the

temperature dependency for heat capacity of an ideal gas and then we started looking at

second law of thermodynamics and we said that we cannot be learn apparatus which can

completely convert heat into work.

And  we  also  defined  what  is  known  as  a  Carnot  engine  and  it  turns  out  that  the

conversion from heat to work occurs in the maximum conversion for heat to work occurs

for a reversible process. And if we build an engine around this reversible process; we call

that as a Carnot engine and the efficiency of the Carnot engine is given by these relations



down here right. It is 1 minus Q C over Q H that is the ratio of the heat transferred for to

the cold reservoir and heat taken from the hot reservoir. And it turns out that we can

show that this ratio will also be equal to the temperatures of the two reservoirs.

So, the efficiency is going to be 1 minus T C by T H. And again like I said we want to

note this, the maximum efficiency we can obtain is for a process that involves a Carnot

engine. Now let us look at the definition of another thermodynamic variable which we

call as law of entropy.
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Now, recall that we have demonstrated that the ratio of the heat exchange with the cold

and hot reservoirs is equal to T C over T H. And what this implies is Q H by T H; H is Q

C over T C and remember we are talking about a engine here. For an engine Q H is the

absolute value is going to be equal to Q H; since Q H is positive. And for Q C this would

be negative  of  Q C because Q C is  negative.  So,  the  absolute  value is  going to  be

negative of negative which is going to be positive. So, absolute value in that sense is

negative of QC.

So, if I take this and put it back here it turns out then Q H over T H is going to be equal

to negative of Q C over T C; these are the actual values not the absolute values. And

what this implies is Q H over T H plus Q C over T C would equal 0 this is true for any

Carnot cycle.



So, if I complete the cycle right the total amount of the ratios of Q to T over the hot

reservoir and the cold reservoir; if I add them up it should go to 0. Now it turns out for

any reversible process again this can be proved thermodynamically, but we will take it as

it is it turns out that for any reversible process or if we actually talk about the cycle any

reversible cycle can be produced by a series of closely spaced Carnot cycles.

So, any reversible cycle can actually be built from a series of Carnot cycles depending on

how we arrange them, but they need to be closely spaced. So, if that be the case for any

reversible cycle; the integral the cyclic integral d Q over T will be equal to 0. This is

because a reversible cycle is made up of constituent small Carnot cycles and for a Carnot

cycle; we have already demonstrated that Q H by T H plus Q C by T C is 0.

So, if you complete the cycle for a Carnot cycle Q by T is 0 and because the reversible

cycle can be produced from a series of Carnot cycles; this cyclic integral of d Q over T

will be equal to 0. So, to make the point that we are talking only about irreversible cycle;

let us write that that this d Q needs to be for a reversible cycle. What we will do is; we

will replace this as we always do we will replace this quantity d Q reversible over d T

with d S and because this is total let us call it as d S t.

So, then this cyclic integral over d S t will be equal to 0 and this quantity S t is called as

the total entropy. And because the units are energy per temperature; we can think of it as

in case of SI units it would be Joule per temperature which is Kelvin. So, S t is called as

the total entropy its units are going to be Joule per Kelvin and the cyclic integral over S t

for any reversible process so far is going to be equal to 0.

Now if you think about it we said that d S t equals 0 right and I can make because I can

make it for any reversible process; it turns out that d S t actually will be a state function

or rather S t will be a state function. That is because I can build several reversible cycles

and all of them will give me the same change in the entropy. So, S t itself will be a state

function it will not be dependent on what path I take to reach that particular state.

So, because S t is a state function, it turns out that I can actually irrespective of the path

whether reversible or irreversible; the change in entropy is always going to be same.
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We will come back to that in a minute, but over here let us summarize then what we

discussed so far. We said the cyclic integral of d Q reversible over T is 0 and we call this

as d S t is 0 and S t is a state function. And the units are going to be Joules per Kelvin; I

can  define  in  S,  which  is  the  molar  entropy. And  as  usual  our  definition  for  molar

quantity is going to be the total entropy over the number of moles; total entropy S t over

the number of moles.

Now, since S t is a state function let us say I have a process going from A to B state; A to

state B. And I can build two paths; so for this process a reversible path where the change

in entropy is going to be delta S t reversible and an irreversible path; where the change in

entropy is going to be delta S t irreversible.

And because S t is we said is a state function right delta S t over the irreversible path is

going to be equal to delta S t over the reversible path. And both these quantities if I want

to relate them to the heat requirements will integral of d Q reversible going from A to B

over T. And this will not be equal to the d Q over T of the irreversible path. Remember Q

itself is dependent on the path; so Q for reversible and irreversible paths is different.

So, if we integrate that d Q irreversible over T here; this quantity then it does not give us

entropy. But if  we integrate  it  over the reversible path,  it  will  give us the change in

entropy and irrespective  of  the path whether  reversible  or  irreversible  the  change in



entropy is going to be same because we are talking about a state function here in this

case entropy.

Now let  us  talk  about  then;  so  we defined  now from the  second law we defined  a

quantity called as entropy based on our idea of the second law. And it turns out that

entropy is a state function and irrespective of whether the actual process is reversible or

irreversible;  I  can  always  calculate  the  change  in  entropy  by  considering  the  heat

requirement for a reversible path.

Now, let us talk about its implications in calculation of entropy. Let us say I have an ideal

gas we; so far our discussion is for ideal gases we know; how to make heat and work

requirement calculations for processes that involve ideal gas.
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So, we will stick to that let us say I have an ideal gas, I have one mole of ideal gas and

the temperature and pressure are P 1 and T 1 initially; I go to it is a closed system. So, n

is still 1 and the final temperature and pressure are P 2 and T 2. And we want to calculate

the change in entropy for this process this is ideal gas of course, what is the change in

entropy if this was given to me right.

Now we do not know. Let us say this is an irreversible path and we want to calculate the

change in entropy for this, but entropy is a state function. So, what I can do is I can

always construct a reversible path for this process right. I have constructed a reversible



path right; now over this reversible path; now if you recall d U the change in internal

energy is d Q for the reversible plus d W for the reversible path. And they should also

equal d Q for the irreversible plus d W for the irreversible; both Q and W are dependent

on the path whereas, d U is not dependent or U is not dependent. Because again just like

entropy is a state function we already talked about this right.

Now, for a reversible process d Q reversible is then d U minus d W for the reversible

process and for a reversible process we already know that d W is negative P d V. So, this

is d U plus P d; this is d Q for the reversible process right. And we are doing this because

we want to express everything in terms of specific heat capacities d U’s or d H’s; so that

I can express entropy also in terms of specific heat capacity.

So, what we will do is change d U because we like C P ij more it is just convenient to use

that when I say like. So, we will change this H minus PV plus P d V and now would be d

H minus P d V minus V d P plus P d V and that will be d H minus V d P right d H minus

V d P. This is d Q reversible; now d S we know is d Q reversible over T; so that will be d

H over T minus V over T d P; V over T d P right; this is the yes.

So, what we can do is this is an ideal gas right let us write that in a separate color. So,

that we know what we are doing just for sake of it; V over T for an ideal gas is well PV is

RT right for an ideal gas; PV is RT. So, V over T is R over P. So, I am going to replace

this guy here with R over P; let us do that so that what I get is d H over T minus; R over

P d P R over P d P. So, this is my d S well of course, this is for an ideal gas; so let us not

forget that superscript there; so, this is d S ig.
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Now, if I want delta S; let us write that again d S ig is d H over T minus R over P d P.

Now, d  H  if  you  remember  is  C  P for  the  ideal  gas  d  T;  it  is  only  dependent  on

temperature.

So, its C P d T minus R over P d P; if I want delta S ig then it will be integral T 1 to T 2

this is integral for T. So, its C p ig by T d T minus integral R there; P 1 to P 2 d P over P.

So, that will be integral T 1 to T 2 C p ig by T minus R ln P 2 over P 1. So, this is the

change in entropy than expressed in terms of the specific heat capacity for the ideal gas

and the change in pressures.

Now if I have the temperature and pressure and I know the specific heat capacity or the

functionality for specific heat capacity. If you recall one of the expressions we used is BT

plus CT square plus D by T square right; it is a function of temperature. I can substitute

this functionality of temperature and if I know the parameters A B C and D, I should be

able to calculate that integral and if I know T 1 and T 2 P 1 and P 2, then I can calculate

the change in entropy at least for him as far as an idea of gas is concerned right.

So, then what we have done is defined the; a quantity a new thermodynamic variable

called as entropy and we looked at how we can perform the calculation for change in

entropy in case of an ideal gas.
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One of the important things; we will encounter as we go on is calculating delta S for a

reservoir. What is change in entropy for a reservoir? Now, if you recall our definition

when we say reservoir what we mean is it is an infinite source of heat or a sink of heat.

So, if we are rejecting heat to the reservoir; it will be an infinite source of a sink for heat.

And if we are accepting heat from the reservoir it is an infinite source of heat. In that

sense the temperature of the reservoir because we are adding additional heat is not going

to change much; it is going to be what it is an infinite source. So, even if we add this my

minute amount of heat or remove minute amount of heat from this infinite source; it is

not going to change much.

The temperature is not changing then the gradients for temperature within the reservoir

are negligible; they are very well they are actually 0 if it is infinite source, but if it is a

very large source which is practically getting an infinite source is not possible, but if it is

very large source then the gradients for the temperature within the reservoir are going to

be  minimal  very  negligible.  And  if  the  gradients  are  negligible  then  we  approach;

remember, when we define irreversibility for the process with the example of a piston

cylinder simply taking weights of the load from the piston and replace it with grains of

sand which are very very small; we are actually reducing the gradients.

And in this case the only thing that matters is the temperature gradient and because a

reservoir  is  an  infinite  source;  the  temperature  gradients  within  the  reservoir  are



negligible.  And once the temperature gradients are negligible  the process is going to

approach  reversibility.  So,  at  least  as  far  as  the  reservoir  alone  is  concerned;  it

approaches  what  we  call  as  internal  reversibility  because  the  temperature  gradients

internally within the reservoir are negligible.

If it approaches internal reversibility then for calculation of the entropy change in the

reservoir right d S for the reservoir is going to be d Q over T; where this d Q is the heat

exchanged. And because it is internally reversible it does not matter what is happening

outside the reservoir, but the moment we say reservoir is exchanging a heat of d Q either

positive or negative;  then d S is  simply d Q over T because internally  as far  as the

reservoir alone is concerned it has exchanged a heat of d Q. So, d S reservoir is going to

be d Q over T because this d Q is a heat that is exchanged reversibly right.

So, it is simply going to be d Q over T. So, when we do this although the process itself

might be externally reversible only as far as the reservoir is concerned; the change in

entropy is always going to be d Q over T. Now let  us talk about the implications of

entropy and how we calculate the efficiency of a process or the work extracted from an

engine using the concept of entropy. So, for that let us consider a engine.
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So, I have in case of an engine what I have is a reservoir from which I accept heat; that

heat goes into the engine. And this engine outputs a work which is equal to W and rejects

some heat to the cold reservoir at T C; this is my engine.



Now based on our notation Q H is positive for the engine; well let us just say Q H like

that and negative Q H is the. So, when I take the absolute value of Q H it is positive. So,

negative of this absolute value of Q H is the heat gained by hot reservoir in its; in a sense

it is a negative quantity; so it is the heat lost by hot reservoir.

Now, let us say we go through a complete cycle where I start with the indish; the engine

in a particular state I accept heat, output work reject the heat and go back to its initial

state; so I complete the whole process. Once I complete the whole cycle the change in

the entropy for the engine is going to be equal to 0 because I completed the cycle; I came

back to where I was; S is a state function. So, the change in entropy for the engine is 0.

On the other hand, the change in entropy of the hot reservoir is going to be equal to

negative of Q H or T H; Q H is the heat it is well the reservoir is rejecting heat to the

engine the engine is accepting it from the reservoir. So, absolute value of Q H is the heat

that is rejected by the engine. So, negative of that quantity is the heat that the reservoir is

gaining from the engine. So, that change in entropy as we have discussed in the previous

slide; as far as the reservoir is concerned is Q H over T H because reservoir itself is it

internally reversible.

So, now the total change in entropy for when I say total; we mean total for the universe

and in this case the universe constitutes the engine and the two reservoirs. So, the total

change in the entropy is essentially negative of 0; the first quantity for the engine anyway

then negative of Q H by T H plus Q C over T C; this is a total change in the entropy of

the universe.

And as far as the work done is concerned; it is going to be, if we do a balance energy

balance over the engine or the first law over the engine the W has to be equal to Q H

minus Q C right. I can do a little bit of manipulation here for this delta S total plus Q H

over T H multiplied with T C; this will equal to Q C right. What I will do is take this

quantity right here and substitute it for this Q C there right.

And if I do that right; let us go back to that. I am going to take this quantity; then W is

going to be Q H minus delta S total plus Q H over T H times T C. And if I simplify this;

this will be Q H 1 minus T C over T H minus delta S total times T C right. So, what I

have is an expression for work done; it is Q H 1 minus T C by T H minus delta S total

times T C.
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Now, let  us  go back and rewrite  this  expression one more time this  is  an important

observation, it turns out W is Q H 1 minus T C over T H right minus delta S total times T

C right. Now remember, the work done for a Carnot engine; which is the ideal scenario

for a reversible process is Q H 1 minus T C over T H.

So, then this W is the W for the Carnot engine minus delta S total times T C. What this

implies is delta S total; we all go to 0 for a Carnot engine or for a reversible process. So,

if the process itself is reversible, then the total change in entropy has to be equal to 0.

Let us summarize then; if delta S total, the total change in entropy for the system and the

surroundings or the total change in entropy of the universe is 0; then the work done is Q

H 1 minus T C by T H; which is that of a Carnot engine. Secondly, delta S total can never

be less than 0 because if it is less than 0; then this W here right.

Because if this is less than 0 W is never greater than the W for the Carnot engine because

Carnot engine has the maximum one can obtain the maximum work done in case of a

Carnot  engine.  So,  we  cannot  violate  that  second  law  requirement  and  then  for  a

irreversible process delta S total is going to be greater than 0 for irreversible process. We

talked about reversible process, we talked about the scenario that it cannot be less than 0.

So, the only thing that is left is that it is going to be greater than 0 for an irreversible

process.



And the  fourth point  we want  to  make is  that  when the total  work output  from the

process is 0; which is the scenario when W is 0 then we are not out there is no output of

work; what occurs is only heat transfer from the hot reservoir to the cold reservoir right.

And in such a scenario; obviously, we can go through the math, but it turns out that Q H

should be equal to Q C. And we can obtain an expression for the change in entropy for

such a process etcetera, it is going to be maximum for such a scenario.

(Refer Slide Time: 29:36)

Let us look at an example we have 10 moles of methane at 300 Kelvin and it is being

compressed isothermally from 1 bar to 5 bar. The heat is transferred to the ambient at

288 Kelvin; assume methane behaves as an ideal gas. We want to calculate the total and

the molar change in entropy. And we also want to calculate the entropy change for the

reservoir  and  the  total  entropy  change  for  the  universe;  if  the  work  required  for

compression is 30 percent higher than that of a reversible process. Let us see how we can

solve this particular problem.

So, I have P 1 and P 2 given to me the first thing is pretty straightforward; we have an

ideal gas and we want to calculate the total and molar change in the entropy for this

particular process. Now, if you recall we have derived the expression for entropy change

of an ideal gas and we said it is d S is C P; ig d T over T minus R by P d P or delta S is

integral T 1 to T 2 C p ig by T; d T minus R ln P 2 over P 1.



In  this  case,  we  are  compressing  methane  isothermally  right.  So,  this  isothermal

compression essentially means for methane itself the temperature is not changing. So, T

1 equals T 2 equals 300 Kelvin and in which case the first part of the delta S or the first

term in the delta S cancels out; there is no integral of T 1 to T 2 it will go to 0, all I am

left with is minus R ln P 2 over P 1.

And if I put consistent units what I will have is minus 8.314 SI units of Joule per mole

per Kelvin; ln of 5 over 1 that will give me negative 13.38 Joule per mole per Kelvin.

Remember total entropy has units of Joule per Kelvin; molar entropy has units of Joules

per  mole  per  Kelvin,  this  is  the molar  enthalpy change if  am interested  in  the total

entropy change, then it is the number of moles multiplied with the molar value.

So, that would be negative 133.8 this case the units are going to be Joules per Kelvin;

this is how we calculate the entropy change. Now the second part of the problem says we

know  that  the  process  is  irreversible  and  the  work  required  for  the  irreversible

compression is 30 percent higher than that for the reversible compression. We want to

calculate the entropy change for the reservoir and for the total entropy change for such a

process; let us see how we can do that.
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So,  let  us  write  this  down  we  are  given  that  the  W the  work  requirement  for  the

irreversible process is 30 times higher. So, it is going to be 1.3 times W for the reversible

process and we also know that delta U has to be same irrespective of the path; which



means delta U is going to be W plus Q for irreversible process which is going to be same

as W plus Q for the reversible process.

So, what we will do then is first find W for the reversible process; W reversible if you

recall is negative integral of P d V; that is going to be negative integral because this is an

ideal gas, methane behaves as an ideal gas that is given to us d V; it is a isothermal

process the temperature is constant. So, it is going to be negative R ln V 2 over V 1 right

negative R ln V 2 over V 1. So, this will be we do not know the temperatures, but we

know the pressure.

So, I can easily flip that ratio of volumes to ratio of pressures and it will be negative of

that R ln P 2 over P 1. So, that is going to be 8.314 logarithm of 5 over 1; I am sorry

there is an RT term there. So, this is RT ln P 2 over P 1. So, that is going to be 8.314

times 300 times ln of 5 over 1; so, that will be 4014.3 Joules per mole. This is the work

requirement for a reversible process per mole of course, right. Now for an irreversible

process the work requirement is 30 times higher; so it will be 1.3 times of this quantity.

So, which will be 5218.53 Joules per mole right and W for the, we calculated W for the

irreversible process. Now if you think about it Q for the irreversible process is going to

be delta U minus W for the irreversible process. Delta U is 0 because T is constant and it

is an ideal gas minus 5218.53. So, delta U is 0 because we have an ideal gas and the

temperature is not changing; so, change in an internal energy is 0.

So, Q then will essentially be negative of W which will be 5218.53 Joule per mole; this

will be Q for the irreversible process right. And I have 10 moles of the gas; so the total Q

for the irreversible process is going to be negative 52185.3; 10 times of that value molar

value. So, it will be negative 52185.3 Joules. As far as the reservoir is concerned, it will

be negative of what this value is.

So, the methane in this case is losing heat; so the reservoir is going to gain that heat so,

that quantity is going to be positive so many Joules. And delta S for the reservoir is

simply Q for the reservoir over T for the reservoir. And in this case, it is given to us as

288 Kelvin. So, delta S for the reservoir is 181.2 Joules per Kelvin. So, if you look at the

problem it says heat is transferred to ambient which is our reservoir in this case at 288

Kelvin. So, that would be our temperature of the reservoir. So, Q for the reservoir over

288 Kelvin will be 181.2.
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And if we are interested in calculating the total entropy change; delta S total is going to

be delta S for the reservoir plus delta S for the system. So, it will be 181.2 minus 133.8

right.

So, that will be 47.4 Joules per Kelvin, this will be delta S total and remember delta S

total  is  greater  than  0;  as  it  should  be  by  virtue  of  due  to  the  second law. So,  that

completes our problem given an ideal gas I know how to calculate the entropy change for

a system and for the surroundings or the reservoir and the total entropy change. Let us

quickly look at one other problem in this case we did not do the integral for temperature

because there was no temperature change.
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So, let us look at another example which involves a calculation with the temperature

changes. I have one mole of methane in this case that is compressed from 300 Kelvin, let

us use and 1 bar to 5 bar and 400 Kelvin. So, T 1, P 1, T 2, P 2 are given to me I have to

calculate the entropy change number of moles is 1 and what is given to me is that we can

assume it to be an ideal gas and given the value of Cp i g over R.

Now, remember as we have done earlier for an ideal gas the entropy change is T 1 to T 2;

C p ig over T d T minus integral P 1 to P 2 R d P over P. So, this then turns out to be

matter of integrating C p by T d T C p ig by T d T minus R ln P 2 over P 1 the second

term is pretty straightforward. Remember C p ig is given to us, let us write them down

this is A; let us call this coefficients as A, B and C right. So, if I do this integration T 1 to

T 2 C p ig by T d T; then it will be remember this is C p ig by R. So, I will get it R there

multiplied with the integral of T 1 to T 2; A by T because I am dividing C p ig with T

plus B plus CT d T.

And that will be R times A ln; T 2 over T 1 plus B T 2 minus T 1 plus C by 2; T 2 square

minus T 1 square right. So, now if I put this back what I have for delta S ig is going to be

R times A ln; T 2 over T 1 plus B T 2 minus T 1 plus C by 2, T 2 square minus T 1 square

minus ln of P 2 over P 1. I can throw in all the numbers there and the final result is going

to be 3.02; it depends on the units I use for R, everything else is dimensionless in this

case I have used SI units.



So, delta S ig is going to be in Joules per mole per Kelvin. So, the total entropy change

for an ideal gas scenario is going to be negative 3.02 Joules per mole per Kelvin. So, that

is how we can calculate an entropy change for an ideal gas given the initial and final

conditions; it is pretty straightforward. We just need to perform the integration for C p ig

and I need to know the specific heat capacity.

With that we will wind up this lecture; we have looked at the definition for entropy and

how to calculate entropy change for a reservoir for a system when we have an ideal gas

as the working fluid. And finally, the entropy change of the universe which is that of the

system and the surroundings.

Thank you.


