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Processes Involving Ideal Gas

Hello and welcome back in the last lecture we looked at derivation of heat and work, in

case  of  Processes  that  involve  Ideal  Gas,  those  derivations  essentially  the  word  for

mechanically reversible processes, what we will do today is try to solve a few problems

based on those concepts  for  different  kinds  of processes  such as  isothermal  process,

isobaric process, adiabatic process and so on. And then I will introduce the concept of

irreversibility and how we calculate the work done, in case of an irreversible process also

involving an ideal gas, where the heat capacities are constant they do not change with

time.

Then we bring in the concept of temperature dependency for the heat capacity in case of

an  ideal  gas.  And  then  finally,  we  will  start  moving  towards  the  second  law  of

thermodynamics  and the  concept  of  entropy. Let  us  first  start  with  a  few numerical

problems on processes that involve ideal gases.

(Refer Slide Time: 01:52)

Before that a quick summary of what we have done in the last lecture, we said for an

ideal  gas  the  difference  in  the  heat  capacities  is  always  equal  to  the  universal  gas



constant R and then the ratio of heat capacities is what we call as gamma that is the ratio

of C p to C v.

And because for an ideal gas both U and H are functions only of temperature, they are

independent of pressure it turns out that irrespective of the process delta U and delta H

are always integrals of C v d T and C p d T again only for an ideal gas. Now, in case of a

isothermal process because delta U and delta H depend only on temperature and in case

of an isothermal process the temperature does not change delta U and delta H will be 0

and because of P V T relationship in case of an ideal gas P V is RT. So, that would imply

ratio of the pressures will be equal to the inverse ratio of the volumes if the process is

isothermal.

On top of this we can derive the work requirement for the process as minus of integral P

d V and we substitute the P V T relationship for an ideal gas to get this equations shown

here and applying first law that would also be equal to negative of the heat requirement. 

(Refer Slide Time: 03:27)

We can do a similar exercise for other types of processes such as the isobaric process, in

case  of  an isobaric  process  P V T relationship  gives  this  relation  between V and T,

because P is constant, these two relations still do not change their integrals of C p d T

and C v d T. And then because the process is isobaric we can get W to be equal to

integral of minus P integral d V dv is RT by P so, that will turn out to be W will be equal

to minus R T 2 minus T 1 and so on. For a isochoric process it is that the work done is



minus P d V so, it will be 0 if the process is mechanically reversible and because delta U

is integral C v d T Q will also be equal to integral of C v d T.

(Refer Slide Time: 04:20)

And  finally,  in  case  of  an  adiabatic  process  if  the  definition  requires  that  the  heat

exchanged with the surroundings is 0 for a closed system, remember that all through we

have been talking about closed systems right.

So, Q is 0 so by virtue of the first law W will be equal to delta U which is integral of C v

d T right. And then we can derive the P V T relationships we can apply P V is RT and

then since W is also equal to minus P d V or integral of minus P d V, this will be equal to

integral of C v d T we can use these two relations in tandem to get these three equations

depending on what variable we eliminate whether P V or T. And finally, once we have

these relations we can rewrite the expression for work and heat requirement in terms of

two of the three variables depending on what we have at hand.

All again these equations will be applicable only for mechanically reversible processes

and then when C p and C v are constant that they do not change with temperature, but

this in mind these equations are elaborate you can straightaway use them in solving the

numerical problems, but what we will do when we solve the numerical problems is just

try to go over from the basics and derive either 1 or 2 equations that are necessary to

solve that particular problem.



(Refer Slide Time: 05:47)

That so look at an example I have an ideal gas at 8 bar and 600 Kelvin it undergoes a

mechanically reversible isochoric process to a final pressure of 1 bar, the C p and C v

values are constant they are 7 by 2 R and 5 by 2 R respectively we want to find Q W

delta U and delta H for this process right. So, if I were to draw a P V curve for this

particular process. The volume is constant so, it starts at 8 bar and goes down to 1 bar P 1

is 8 bar and P 2 is 1 bar. 

This gas is at 600 Kelvin its an ideal gas and we were to we are required to calculate the

4 quantities asked there. The first thing W it is a mechanically reversible process W is

integral of negative P d V, because volume is constant this will be equal to 0 because

delta U is Q plus W this also implies Q will be equal to delta U and because this process

involves an ideal gas, we can calculate both delta U and delta H from the integrals.

So, delta U will be integral of T 1 to T 2 C v d T or this will be C v of T 2 minus T 1

because C v is constant it is 5 by 2 R. So, it will be 5 by 2 R T 2 minus T 1 so these are

the numbers I have. So, this will be the value of delta U what I have at hand is the initial

temperature T 1 what I do not know is the final temperature T 2, but what I do know that

the is that the process is isochoric which means which means volume is not changing.

So, P 1 V 1 is R T 1 and at the final condition P 2 the volume has not changed it is still V

1 will be equal to R T 2 these are the 2 conditions at the initial condition 1 and the final

condition 2.



So, then I can find out T 2 from these relations hopefully. So, T 2 then is going to be

equal to P 2 over P 1 times T 1 and that would be 1 bar or 8 bar times 600 which is 75

Kelvin. So, once I have T 2 I can go back and calculate delta U; delta U is going to be 5

over 2 times R which is 8.314 times T 2 minus T 1 that is going to be 75 minus 600,

which would give me negative 10 9 1 0 in joules per mole. 

On the other hand delta H is going to be 7 by 2 R times T 2 minus T 1 and that would

give me negative 15300 joules per mole 15300 joules per mole. So, essentially then to

solve this particular problem what we have done is first use the ideal gas law, to calculate

the unknown condition at the final state T 2 and once we have T 2 we can use C v d T

and C p d T to calculate delta U and delta H. And apply the first law to calculate Q and

W for this is an isochoric process or d W reversible isochoric process W is 0 and delta U

is going to be then equal to Q. So, that completes this particular problem.

(Refer Slide Time: 10:29)

This time I still have the initial conditions to be same, I have an ideal gas undergoing a

mechanically reversible process the initial conditions are 8 bar and 600 Kelvin, but now

the process is isochoric as earlier. So, the other values are of course, the same the final

pressure is again 1 bar C p and C v values are constant as in the earlier case and we want

to find all the 4 variables Q W delta U and delta H again this process is isothermal.

So, delta U is always integral C v d T because the gas is ideal. So, since the temperature

is not changing then this integral will go to 0. Similarly delta H is integral C p d T and



again since d T or delta T or change in temperature is 0 this integral also goes to 0. So,

now, I am left only with 2 numbers Q and W to calculate by virtue of the first law Q plus

W is delta U which happened to be 0 a minute ago which means Q will be equal to

negative of W right. So, we will try then proceed to calculate W; W is minus P d V

integral of that going from V 1 to V 2 or let us just say because we know the pressures let

us see if I can integrate it with respect to pressure P 1 to P 2 right.

So, negative of integral P for an ideal gas V is RT over P this is d right P 1 to P 2. Since

temperature is constant this can come out. So, it will be minus RT integral P 1 to P 2 P d

of 1 over P right. So, I will be minus RT integral P 1 to P 2 minus of 1 over P square P d

V that is minus RT or rather plus now RT ln P 2 over P 1. So, that will be 8.314 times the

temperature is constant anyway 600 Kelvin times ln of 1 by 8. 

So,  that  will  be  equal  to  negative  10.37 kilojoules  per  mole  like  that  is  also  pretty

straightforward calculation. So, we know how to handle an isothermal process we know

how to handle a isochoric process, let us see what we do in case of an adiabatic process

right. 

(Refer Slide Time: 13:27)

Again I  have the same conditions  starting from P 1 is  8 bar to P 2 being 1 bar the

temperature  initial  temperature  is  still  the  same,  600 Kelvin  P 2  is  1  bar  process  is

adiabatic and the specific heats are again constant with respect to temperature. 



Because the process is adiabatic I can use any of the equations, we had earlier depending

on the variables I have to get the unknown variable, but let us see if we can actually

derive this again. So, for an adiabatic process we know that Q is 0 which implies W is

going to be equal to delta U right and delta H is going to be equal to C v d T or integral

of that going from T 1 to T 2. And W is negative integral of P d V going from state 1 to 2

whatever variable we choose to integrate it with and delta U is integral of C v I am sorry

this is delta H. 

So, it should have been it should have been a C p not C v this is delta U is actually C v d

T going from T 1 to T 2 right, what we can do is a because these numbers that U is equal

to delta, now if I were to integrate this I need some variables at condition two I have

pressure I do not have volume I do not have temperature. So, what we do is because we

know that W equals delta U what I can do is actually let us just derive that expression

here C v d T is minus P d V right this is d U and this is the other side is d W. 

So, what we can do is C v d T instead of P because the gas is ideal we can write it as P

multiplied with d of RT by P, I can expand that derivative on the right hand side right to

get C v d T will be equal to negative R d T plus R T by P dP right. So, if i bring R d T to

the other side it will be C v plus R d T by T is R d P by P for an ideal gas C v plus R is C

p. So, C p d T by T they will be equal to R d P by P I can integrate this to get ln of T 2 by

T 1 equals R by C p ln of P 2 by P 1 or T 2 is going to be equal to T 1 multiplied with P 2

by P 1 to the power R over C p.

So, if I know P 1 P 2 and T 1 I can calculate T 2 and once I know T 2 I can calculate all

the other variables.  So, what we will do is borrow that equation is T 1 which is 600

Kelvin multiplied by 1 over 8 which is P 2 over P 1 R by C p is 7 by 2 times of R. So,

that is 600 1 by 8 to the power of 2 by 7 to the power of 2 by 7 which turns out to be

331.2 Kelvin right that is T 2, once you have T 2 we can calculate all the other variables

we need delta U is integral of T 1 to T 2 C v d T that is 5 by 2 times 8.314 times 600

minus 331.2 which turns out to be minus 5.587 kilojoules per mole.

And because  in this  case this  will  also be equal  to  W; W also will  be minus 5.587

kilojoules per mole and finally, delta H is integral of C p d T because I know T 1 and T 2

I can readily calculate this integral value to be 7 by 2 times R times you know this should



have been actually T 2 minus T 1. So, let us correct that 331.2 minus 600 which will

actually give us that negative sign there. 

And similarly here as well it is T 2 minus T 1 so, 331.2 minus 600 which is negative

7.821 kilo joules per mole. So, that is how we handle an adiabatic process of course, we

can we do not have to do the yellow part of the derivation here those are some of the

equations,  I showed to you early on in the slide in this lecture right for an adiabatic

process this equation is known I know P 1 P 2 and T 1 I can use this equation here

gamma of course, as we said is ratio of specific heats since C p and C v are given.

I can use the value of gamma and calculate T 2 directly from this equation or spend a few

minutes  and  derive  what  we  have  here  on  the  right  hand  side  and  then  go  about

calculating T 2 and finally, delta U and delta H. 

(Refer Slide Time: 20:13)

Let  us  see  if  we  can  bring  some  irreversibility  into  picture  and  how  we  handle

irreversibility and calculate the work and heat requirements for an irreversible process

right. Now, remember all the equations we had earlier for W such as d W is minus P d V

this equation is true only for a reversible process.

It is true only for a reversible process if the process is not reversible, then this equation

will not hold and we did not look at how we can calculate the work in processes that are

not reversible which is what we are going to do in this problem. Let us take the same



problem we have dealt with so far the initial state is same as in the previous case P 1 is 8

bar and P 2 is 1 bar the process is an isothermal P 1 is 8 bar P 2 is 1 bar T 1 is T 2 is 600

Kelvin.

What we want to do is calculate the heat and work requirements as well as changes in

delta U and delta H for an irreversible process. First stop irrespective of whether the

process is reversible or irreversible delta U and delta H do not depend on the path, they

depend only  on  the  state  going from P 1  T 1  to  P 2  T 2.  As long as  that  happens

irrespective of whether the path itself is reversible or irreversible delta U will always be

integral  of C v d T as long as the gas is  ideal,  even for an irreversible  process and

because in this case change in temperature is 0 delta U will be 0.

And similarly delta H again is only a state function or H is a state function. So, delta H

only depends on the two states initial and final and it will be integral of C p d T for an

ideal gas. And because change in temperature is 0 delta H also is going to be equal to 0

for this case, then if the process were reversible we could use the reversible work done to

calculate work and by using first law we can calculate the heat requirements, but now the

process is not reversible so, how do we calculate the work requirement. So, to be able to

handle that we use a quantity called as the efficiency of the process and in this case the

efficiency of the process is given as 75 percent.

So, we will see how to use that, but first what we do is we calculate the work done for a

reversible process. As earlier for a reversible process the work done is simply integral of

P d V and in this case because the gas is ideal it will be negative RT ln or rather positive

RT ln P 2 over P 1. So, that will be 8.314 times 600 times ln of 1 over 8 which turns out

to be negative 10.373 kilojoules per mole this is the work and the negative sign implies

that the system is doing work on the surroundings.

So, this negative sign indicates work is done by the system on the surroundings that is

the sign convention, we are following and what this means is that in a reversible process

the system is going to do a work of 10.373 kilojoules per mole.  If the process were

irreversible then the system will not be able to do so, much work it will depend how

much work it does on the surroundings will depend on the efficiency of the process. And

the way we define efficiency is work done in an irreversible process over work done in a

reversible process.



If  it  is  a  system that  is  doing work  on the  surroundings.  So,  if  W is  negative  then

efficiency is the ratio of the work done in the irreversible process to that of the reversible

process, what this means is in this case the work done in an irreversible process is going

to be efficiency times the work done in a reversible process, because it is the system that

is doing work. So, this will be 0.75 75 percent times negative 10.373. So, that will be

equal to negative 7.78 kilojoules per mole.

So, in case of a reverse irreversible process the system will be able to do only negative

7.78 kilojoules per mole of work. And the first law has to hold irrespective of whether

the process is reversible or irreversible delta U is still this, what this means is that Q in

case of an irreversible process is going to be 7.78 kilojoules per mole notice that W is not

P  d  V  its  P  d  V  multiplied  with  whatever  the  efficiency  of  the  processes  and  Q

accordingly changes for an irreversible process. This is the key if the system is doing

work on the surroundings, this is how we use efficiency of a irreversible process.

(Refer Slide Time: 26:20)

The earlier one was an irreversible expansion of the gas, where the system is going to do

work on the surroundings. Now, let us consider an irreversible compression all right in

this case what we are doing is we start with an initial state of 1 bar the temperature is

same 600 Kelvin and we go to a final state of 8 bar it is still an isothermal process, it is

an ideal gas undergoing this change. Again process is not mechanically reversible, but it



is irreversible and the efficiency of the process is 0.75 or 70 percent the question asked is

what is the work and heat the requirements for this process.

Now, this looks pretty straightforward and on the first look except once we try to solve it,

we see a subtle difference between the earlier expansion case. And this compression case

when the process is irreversible notice that since the temperature is same even for this

process delta U is integral C v d T it is 0 and delta H is integral C p d T it is also going to

be equal to 0, what this also means by through first law is that Q is going to be equal to

negative of W.

Now, to use efficiency as earlier what we do is we calculate the work required for a

reversible process first, the work required in case of a reversible process in this example

is going to be integral of P d V this will be RT ln P 2 over P 1 RT ln 8 over 1 or that will

be positive 10.373 kilojoules per mole. Now, notice that this number is the same which

makes sense, because it is same as earlier irreversible or reversible expansion the system

is going to do 10.373 kilojoules per mole of work.

If it is a reversible compression the surroundings have to do the same amount of work

10.373 kilojoules per mole of work on the system to get back to the original state. So, in

case of a reversible process the work requirement during compression is exactly equal to

the work produced during expansion, because the process is reversible; however, if the

process is irreversible. So, now, if you look at this is a compression what I am saying is

we need 10.373 kilojoules  per mole of work to be done by the surroundings on the

system so, that we can go from 1 bar to 8 bar.

Now, if the process is irreversible then the surroundings have to do more work on the

system to get it back to the final state. So, in case of an irreversible process when W is

positive the way we define efficiency is the work required in case of an irreversible

process  is  the  work  required  in  a  reversible  process  over  the  efficiency, when W is

positive. If the surroundings are doing work on the system then they need to do more

work if the process is irreversible, which means in this case it will be 10.373 over 0.75

which will be equal to 13.83 kilojoules per mole.

This is the work required in case of an irreversible process the system, the surroundings

have to do more work on the system. And again as earlier the Q will be negative of W the

first law still holds so, it will be negative 13.83 kilojoules per mole. So, notice that we



used the relation between reverse if the definition for efficiency slightly differently for an

expansion versus a compression. So, now, we know that we can handle an irreversible

process as well except what I need to know is the efficiency of the process ok.

So, if it is seventy five percent efficient then I can use that efficiency to calculate the

work done. So, this efficiency is always used in this calculations as efficiency for the

work required or work done by the system.

(Refer Slide Time: 31:34)

So,  far  what  we  have  looked  at  is  processes  that  involve  ideal  gases,  they  can  be

reversible or irreversible  we can handle them, but all  through the calculations  if you

notice what we have used is that the heat capacity C p or C v is constant it was 7 over 2

times R or 5 over 2 times R.

This is rarely the case if we go back to the phase rule to fix the state of a system I need 2

variables let us say temperature and pressure, if I have a gas I need 2 variable and a

single component  gas, then I need 2 variables  to fix the state  of the system. So, for

example, H will be a function of 2 variables, but for an ideal case it is a special case

because  the  molecules  do not  interact  H will  turn  out  to  be  a  function  of  only  one

variable which is the temperature right.

So, because C p if you recall the definition for C p it is derivative of H with respect to

temperature  at  constant  pressure and for an ideal  gas  it  will  be total  derivative  with



respect to temperature, because it is not dependent on pressure anyway or let us separate

them. So, for an ideal gas there will be d H ig over d T. So, since H is a function of

temperature C p ig also strictly speaking is going to be dependent on temperature it is not

constant,  like we have used in the previous problems it  is going to be a function of

temperature strictly speaking.

So; however, the earlier  relations still  hold C p minus C v for an ideal gas,  we can

actually prove this rigorously is always going to be equal to R. Even though both of them

are functions of temperature the difference between the 2 is always going to be equal to

R. So, if I define one of these two specific heats it is fairly straightforward to calculate

the other specific heat. So, what we will do usually what is done is we focus only on one

of these quantities usually C p ig is what we are interested in if need be we can always

calculate it for an ideal gas by subtracting R from this value.

So, then my focus is on C p ig and its always a function of temperature even for an ideal

gas. And usually this functionality for is tabulated experiments have to be performed and

then the temperature dependency of this quantity is tabulated in any of the handbooks

you want to refer to you should in some of the handbooks, you can refer to find these

values and usually the functionalities expressed in terms of a polynomial the last term is

inverse quadratic so, d T to the power minus 2.

This is the usual functionality you will find for temperature dependency of C p ig in

certain cases one or more of these parameters A B C or D might be 0 usually either C or

D might be 0, but you a and b are nonzero values. So, A B C D are constants for a given

gas and there is a particular range over which you can use these C p values the range is

usually specified in the table next to A B C D values so, be careful about the range where

we are applying going to apply this equation to find the specific heat capacity make sure

that it falls within the range suggested for use of these A B C D values.

Once you have that you should be it should be pretty straightforward to calculate C p ig

at a particular temperature. Usually though what we are interested is not the value of C p

ig, rather the integral of that value right remember that in the earlier discussion this is

actually not the value of C p ig rather it is the value of C p ig over R right. So, it is not

just C p ig but rather it C p ig over R. 



(Refer Slide Time: 36:28)

So, if we want to calculate for example, delta H, then what we need to do is integrate this

with respect to d T right and C p ig is no longer constant, but rather it is a plus B T plus

C T squared plus D T to the power minus 2 D T A B C D are constants  this is  an

algebraic expression we can integrate it pretty easily and it turns out that this value is

going to be equal to A times T 1 times T 2 minus T 1 minus 1 plus B over 2 T 1 squared

T 2 by T 1 whole squared minus 1 plus C over 3 T 1 cube T 2 by T 1 whole cube minus 1

plus d by T 1 T 2 by T 1 minus 1 over T 2 by T 1.

So,  this  is  the  suggested  expression  for  delta  H  involving  A B C and  D when  the

temperature changes from T 1 to T 2. Usually T 2 by T 1 is written as tau and then we

can use this expression in a pretty straightforward fashion otherwise we can integrate it

whenever the need arises.



(Refer Slide Time: 38:32)

So,  let  us  do one quick example  based on this  idea  right  we have methane  and for

methane the C p ig from the tables is given as C p ig over R is 1.702 plus 9.081 10 power

minus 3 T minus 2.164 times 10 power minus 6 times T squared.

Notice that we had a multiplication with R here which we missed probably. So, C p ig

over R is in terms of A B C and D so, we have a factor of R there. The whole thing if A B

C D relate to C p ig over R. This is the case this is C p ig over R what we are interested

in is finding delta H ig the change in delta H for an ideal gas, going from 300 to 400

Kelvin we want to find delta H ig, this is a pretty straightforward delta H for an ideal gas

is integral C p ig d T going from T 1 to T 2.

So, in this case it will be going from 300 to 400 let us quickly write these this is A this is

B and then this is C negative of 2.164 is C into 10 power minus 6 is C. So, this will be C

p ig over R times R times d T. So, this is R times A plus B T plus C T squared D T

integral of 300 to 400 so, that is 8.314 times A 400 minus 300 plus B T squared or rather

400 squared minus 300 squared over 2 plus V by 3 400 cube minus 300 cube.

And we can put the values of A B and C back in this expression to get 38 35.6 joules per

mole. So, this is the value of delta H ig going from 300 to 400 Kelvin notice that these

are is in joules per mole per Kelvin and this is in this integral itself is in Kelvin. So, what

we get is joules per mole here right. So, this is the change in the molar enthalpy going

from T 1 to T 2 given C p ig value, we can always calculate the total enthalpy change



delta H total is going to be the number of moles multiplied with the molar value delta H

ig.

So, for example if n is 2 moles then delta H total is going to be 7.67 kilojoules etcetera.

So, once we have the temperature dependency for C p ig then we cannot consider C p to

be constant with temperature anymore, we will have to perform an integration on the

polynomial  we  have  for  C  p  ig  and  then  get  the  final  value  of  delta  H  after  the

integration. So, with that we come to an end of the discussion on calculation of a heat

and work requirements for various processes involving an ideal gas.

How we do the calculation if the process is irreversible and how do we how we do these

calculations, if the heat capacities are not constant, but rather depend on temperature. 

Thank you, I will see you in the next lecture. 


