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Hello and welcome back to this course on Chemical Engineering Thermodynamics.  I

hope you have been enjoying the course so far. In the last lecture we looked at several

applications of the first law of thermodynamics for both open and closed systems. How

we calculate heat, work, internal energy changes given some of the other, some of these

variables, we try to find the other variables. 

 If you recall one of the things we have done during these calculations is, taking either

the change in internal energy to be C v delta T or change in enthalpy to be C p delta T.

And then values of C p and C v were assumed to be constant with temperature. So, we

use the things such as C p is 7 by 2 R or C v is 5 by 2 times the gas constant. 

Those were approximations, they help us in understanding the concepts early on when

we apply the first law. But then in real life these in the these C p and C v the specific

heats are essentially derivatives of enthalpy and internal energy. And since for a single

phase system containing one chemical species, we already discussed that enthalpy and

internal energy or any thermal these variables depend on two intensive variables, right.

We need two intensive variables to fix the state of the system showing include;  that

means,  if  we have  to  fix  internal  energy  or  enthalpy, we need two variables  which

automatically implies that both C p and C v are actually going to change, when two of

these variables are changed either temperature pressure. 

They  may  be  weak  functions  of  temperature  and  pressure  in  certain  cases,  but

nevertheless thermodynamically they are going to a be functions of two variables for a

system, a single phase system containing one chemical species. 

 So, one of the challenges then, is to understand how the PVT behaviour of a substance

plays a role in these calculations. So, to be able to do that, we start off with the simplest

possible fluid an ideal gas, but before we go to the ideal gas one can look at another



simple application of the PVT behaviour and then we move on to the ideal gas type of

behaviour. 

 So, then what I am interested in, is to try to obtain a relation for P V and T, in terms of

variables that can be used in the calculations. 

(Refer Slide Time: 03:30)

So, for a single phase region, containing one chemical species, the volume is going to be

a function of two variable, let us say temperature and pressure. Since, we are talking

about PVT behaviour, let us express volume as a function of temperature and pressure. 

So, these curly braces is something I am going to a use throughout this course. I am

going to a use them to express the functionality, so volume depends on pressure and

temperature or it is a function of pressure and temperature. So, I am going to a use this

curly brace, braces to express that functionality or in other words I can also write this as

function of PVT is going to be 0, mathematically they are equivalent statements, right.

And if I take this and try to take the derivative, how much is the change in volume if

both pressure and temperature change. 

The way we express it mathematically is d V is going to be the partial derivative of V

with respect  to  pressure right,  the partial  derivative  of  V with respect  to  pressure at

constant  temperature  times  d  P plus,  plus  the  partial  derivative  of  the  volume  with

respect to temperature at constant pressure this time. So, remember we said the vertical



bar is to denote the variables we are holding constant, we write those variables after the

vertical bar in a subscript. And then we are taking the partial derivative of volume with

respect to temperature at constant pressure times d T. 

Since, V is a function of two variables P and T, I can express the total derivative in V as

sum of these two partial derivatives dou V by dou P at constant temperature times d P

plus dou V by dou T at constant pressure times, times d d T. 

 Now, if I take or if I divide this with volume d V by V, there will be equal to 1 over V

derivative  of  V, I  am going to  bring  this  term here  with  respect  to  T d  T plus  the

derivative of V with respect to P. This is this term brought here at constant temperature

times T P. 

So, all I have done is divided the above equation with V to get this expression, right. And

what we are going to a do is give a name to these two variables. This variable here, we

will call this as beta and this variable here we will call it as Kappa. So, then this will be

beta times d T. In fact, we will call this variable as negative Kappa, so that, this will be

minus Kappa times d P.

So, then d V by V equals beta times d T minus Kappa times d P minus Kappa times d P.

So, these two variables here are called as volume expansivity. Say amount of volume

expansion that takes due to change in temperature in those coordinates. It is actually the

fractional volume change due to the change in temperature. 

And then this guy here Kappa is called as the isothermal  compressibility;  isothermal

compressibility. So, it is the change or the fractional change in volume due to the change

in pressure dou V by dou P times 1 over V. So, if I increase the pressure the volume is

going to decrease. So, that is the reason for having the negative sign therefore, Kappa, so

it is the isothermal compressibility. 

So, what we have done is we have expressed the factional change in volume on the left

hand  side,  as  change  in  temperature  plus  a  change  in  pressure  multiplied  with  two

coefficients which we are calling as volume expansivity and isothermal compressibility.

Now, the reason we do this, is because for most for, for most liquids for small changes,

we  can  actually  consider  them  to  be  incompressible  fluids.  And  if  they  are

incompressible  then  this,  both  this  coefficients  right,  both  this  coefficients  beta  and



Kappa are going to be equal to 0 for in compressible fluids. Or even otherwise, if they

are not completely equal to 0, these numbers are very small and they can be assumed to

be weak functions of temperature and pressure. 

So, they are going to be fairly constant for moderate changes in temperature and pressure

and that affords us to calculate the change in volume fairly easily using the coefficients

without resorting to elaborate integration schemes. 

So,  that  is  the  reason,  we  like  this  expression,  especially  for  liquids,  if  they  are

incompressible  it  is  0  anyway,  otherwise  I  can  take  them  to  be  weak  functions  of

temperature and pressure and then I can easily integrate the expression and do some

straight forward calculations. 

So, we do not require any special PVT relationship or we are doing is expressing the

change in volume, in terms of volume expansivity and isothermal compressibility. 

 And then I  am going to a use the fact that they are going to be weak functions  of

temperature and pressure and try to integrate this expressions for moderate changes in

temperature and pressure and can make some quick calculations for liquids. So, let us see

how we can do that through an example. 

(Refer Slide Time: 10:40).

So,  what  I  have  is  for  a  liquid  water  at  353 Kelvin  in  1 bar  the  density  isothermal

compressibility. And volume expansivity are given to me, right the density is 972 the iso



volume expansivity is 641 and isothermal compressibility is 46.10 power minus 6 bar

inverse, right. 

 First questions says to what pressure must water will be compressed to obtain a density

of 973. So, this is water, it has a density of 972 kg per metre cube at 80 or 353 Kelvin.

And we want to increase the pressure, so that the density increases slightly from 972 to

began with 973 after the increase in pressure.

 What we are interested in finding is how much should this change in pressure be or what

should be the new pressure, so that the density will be 973, the temperature is still the

same.  And  for  this  calculation  we,  we  are  told  that  we  can  assume  that  Kappa  is

independent of, Kappa is independent of a pressure. So, to do this what we will do is,

resort to the equation we had earlier, which says d V over V is beta times d T minus

Kappa times d d P, right. 

And then since the temperature is same 353 Kelvin, we are looking at case a here this 1.

So,  since  the  temperature  is  same I  can  drop the  first  term,  there  is  no  d  T. So,  it

essentially means d V by V for this scenario is simply minus Kappa d P. 

 And since, we are talking about densities, I can either convert the density 973 to volume

or other way of doing it is convert this X equation in terms of density itself. We know

that the mole or volume V is 1 over the density, I am sorry this is the specific volume V

is 1 over the specific density. So, d V over V will be d of 1 over density by the density, so

that will be 1 over rho square d rho over sorry 1 over rho here for volume. 

So, this is 1 over rho, so that will be minus d rho over rho. So, this is d V over V which

means,  which  means  in  terms  of  density  negative  of  d  rho  over  rho is  going to  be

negative of Kappa times d P or d rho over rho is going to be Kappa times d P. 

 Now I can integrate this from the initial state through the final state which gives me

logarithm of the final density over the initial density is going to be Kappa times P 2

minus P 1. I could do this,  because I  am assuming kappa, right,  I  am assuming this

Kappa to be independent of pressure, so when I integrate what I do is I go from rho 1 to

rho 2 d rho over rho equals Kappa comes out of the integral P 1 to P 2, initial pressure to

the final pressure d P. So, this will give me this equation here, right.



So, I  have the I  have everything I  need, I  just  need to calculate  P 2.  I  just  need to

calculate P 2, the final pressure. So, the equation I had obtained so far is, logarithm of the

ratio of the densities is K times, Kappa times P 2 minus P 1. 

(Refer Slide Time: 14:54)

So, what I am interested in is P 2. So, this is going to be logarithm of rho 2 over rho 1

divided by kappa, divided by Kappa plus plus P 1. 

 So, this is going to be logarithm of the final density is 973 kg per meter cube, the initial

density is 972 kg per meter cube over the Kappa value given to us is 46.1 10 power

minus 6 bar inverse. So, I am dividing with bar inverse. So, this whole term here will be

in terms of bar. So, I just need to make sure that P 1 also is in terms of bar, the initial

pressure was 1 bar. 

 So, if I simplify the numerical value what I get is 23.3 bar. So, I have to change the

density from 1 bar to 23.3 bar, so that I am sorry, I have to change the pressure from 1

bar to 23.3 bar, so that the density changes from 972 to 973 are Kelvin that, sorry kg per

meter cube. 

So, that is a pretty straight forward calculation using, using the information given to us,

right.  Only thing to keep in mind is  when we use these things,  we are assuming of

course, that Kappa is independent of pressure and then I could do the integration pretty

easily. Sometimes we can a also take a weak functionality in terms of pressure if there is



enough information and we can still do a similar type of integration if that information is

available. 

Now, let us look at the second part of this question, it says to what temperature must

water be cooled to obtain the density of 973 kg per metre cube at 1 bar. So, in the second

case; in the second case, in the second case I still need to get 973 Kelvin, but this time

the pressure is held constant at 1 bar and we are changing the temperature. 

The initial pressure is 1 bar, the final pressure is 1 bar, but I am changing the temperature

now. So, we want to know what temperature should I cool this liquid to, so that the

density will be 973 or density will change to 973 from 972. We still imply the same

equation as earlier to began with and then we will get rid of the terms we do not need in

this particular case. 

So, the equation we start with is d V over V is d V over V is delta times d T minus Kappa

times d P. Now in this case, P is constant which implies d V over V is simply going to be

equal to beta times d T, because d V is con P is constant d term drops out. So, d V over V

is going to be beta times d T. 

Now, we can integrate this and then in this case we are told that beta is independent of

temperature, so we can integrate this, but before we do that let us change the volume into

density, because that is the information we have. So, this will be equals beta times d T.

Like earlier this will be derivative of d rho square times rho is going to be equal to beta

times d T or d rho over rho is negative beta times d T or logarithm of rho 2 over rho 1

integrated from rho 2 to rho 1 and the second integral goes from T 1 to T 2. 

 So, this will be T 2 minus; T 2 minus T 1, right or this means T 2 minus T 1 is going to

be logarithm of rho 2 over rho 1 divided by beta. So, and then of course, I get a negative

sign, I get a negative sign with the beta. So, the negative sign appears there or T 2 is

going to be T 1 minus logarithm of rho 2 over rho 1 divided by beta.

Now, I can plug in the numbers I already have, were starting at a temperature of 353

Kelvin minus l n of 973 is the final density kg per meter cube 972 is initial density, also

in kg per metre cube divided by beta in Kelvin. So, 1 over beta is, sorry beta in Kelvin

inverse, so 1 over beta is going to be equal to, will be in terms of Kelvin and then I can

add it to T 1 in Kelvin. 



Let us see quickly get the value for beta, how much do we have? Beta is 641 10 power of

minus 6.  So,  that  is  641 10 power minus 6 Kelvin inverse.  And if  you simplify the

numericals the final value we have is 351.4 Kelvin. So, all I need to do is, change the

temperature from 353 to 351 Kelvin and will have the required change in density. 

Now, compare this, for the same change in density which is going to obtain only if I

change the pressure from 1 bar to 23.3 bar. So, I need to change the pressure a lot more

than temperature to obtain the same change in density almost under identical,  similar

conditions.  Having said  this  however, in  most  cases  though,  we do have a  situation

where this P V T relationship or such simple P V T relationships may not be applicable

and what we are going to do is, try to see how we handle such scenarios. 

(Refer Slide Time: 22:05)

For most gases right, for most gases in the gas and vapour regions, the pressure volume

product of pressure and volume can be expressed in terms of a power series in pressure a

plus b p plus c p square plus an infinite series so on. And we can take this a out of the

summation to get a 1 plus B prime P plus C prime P square plus so on in the infinite

series. 

 This was observed to be true for most gases and vapours, right. For most gases and

vapours such a infinite series relation seems to hold, right. And it was also observed that

a is same for all gases and depends only on the temperature. 



 So, irrespective of the gas, this constant a seems to be same for all the gases and it

depends only on temperature, right. And if I take the take the limit to get this value a all I

need to do is take the limit as P goes to 0. If I take the limit for this product P V as P goes

0 or obtain this product at fairly low pressures as P goes to 0, then all the terms in the

infinite series disappear accept the first and this term is going to be equal to a, and for all

the gases, this was observed to be R times, R times the temperature. 

This temperature could be in any scale, there is no requirement for absolute temperature,

but  if  we plotted  in  centigrade  scale.  We have discussed this  earlier  if  we plot  it  in

centigrade scale, a P V relationship, right on y axis, we plot P V on x axis we plot T

integrate, centigrade then what I get is a straight line like that. Let us draw that in a

different colour what I get is a straight line like that right. 

 The slope of this straight line is r and this intercept, if T is integrate centigrade it turns

out to be negative 273.15, right. I can use different temperature units, I get different,

different intercepts, right. And to get rid of the inconvenient number, what is often done

is,  express it  the temperature in absolute units;  such that  you know a is going to be

simply equal to R times T, T is an absolute units, absolute temperature either in Kelvin or

raunchy, so that we do not have to worry about this intercept, that will make the intercept

0 for when we use the absolute scale. 

 And the such gases where at the limit of pressure going to 0 when P V is going to be

simply equal to R T, we call such gases as ideal gases. And if we want to get the value of

R, then it would simply be the limit of P going to 0, the product P V over T, this will be

the value of R. And like we discussed earlier the value of R is 8.314 joules per mole per

Kelvin,  it  is  also  equal  to  1.986 B t  u  in  English  units  per  pound mole  per  degree

Rankine. 

 So,  what  we are  saying then  is  all  the  gases  and vapours  the  product  P V can be

expressed as an infinite series in P. And at the limit of 0 pressure all the terms disappear

and P V is  going to  be equal  to  R T and we call  such a  behaviour  as an ideal  gas

behaviour. 
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The other term we commonly encounter in thermodynamics is this ratio Z which is P V

over R T and because of the definition of an ideal  gas,  if  P V equals R T then this

compressibility factor Z will be equal to 1. Will first write this name this is not to be

confused  with  the  isothermal  compressibility  this  is  Z  and  we  call  this  as  the

compressibility factor. 

And for ideal gases of course in P V is R T Z will always be equal to 1 for ideal gases.

Otherwise, in terms of the power series, we have written earlier in terms of the power

series,  we  have  written  earlier  P V over  R  T will  be  equal  to  1  plus  the  B  prime

coefficient times P plus C prime coefficient times P square and so on. 

So, this compressibility factor is going to a be this or we can also rewrite this in terms of

volumes it will be Z equals 1 plus B by V, it still P V over R T, we are simply changing

the coefficients. So, that we can get this expression for the compressibility factor in terms

of volume rather than pressure and in that case, it will be 1 plus P by V plus C by V

squared plus so, on in the infinite series 

 These two infinite series expansions the coefficients B prime and B of course, are going

to be related, we can derive a relation between them, but then for now it is sufficient to

remember that these type of infinite series expansions are called as virial  equation of

state.  Equation of state simply denotes, equation of state simply denotes that you are

using it as a function to relate the PVT behaviour of a substance. And virial equation of



state is a type of equation of state where in we express the compressibility factor or P V

by R T in terms of an infinite series of in P or 1 over V. 

 (Refer Slide Time: 29:31)

We will  come back to  the  discussion on Virial  equation  of  state  and other  types  of

equation of state later on, but for our discussion, now we will focus on the ideal gas

behaviour and we said for an ideal gas P V equals R T and Z equals 1 for an ideal gas,

right.  And this  occurs,  because  the infinite  series,  all  the terms in the infinite  series

accept the first one drop out and that happens at the limit of 0 pressure and at the at this

limit all the gases are going to behave as ideal gases, right. 

 So, at this limit, since the pressure is 0, right if you take this expression the volume is

going to go to infinity which means the molecules are going to be very very far away. If

the molecules are far away there is going to be almost negligible molecular interaction.

The volume is so, large that the molecular interaction, interactions are negligible. There

will not be a there will not be enough, there will not be large interactions between the

molecules, because they are very far away, right. 

The interactions  decrease  as  the  distance  between the two molecules  increases.  Also

compared to the volume, we are talking about the size of the molecules is going to be

become  negligible.  There  they  will  not  occupy,  almost  they  will  occupy  negligible

volume as compared to the whole volume, we are talking about, we are talking about a

very large volume.  So, the size of the molecules  is  negligible  compared to  the total



volume.  And also the molecular  interactions  are negligible  and this  characterizes  the

ideal gas behaviour.

Now, notice that using the phase rho for a single phase system. In general for a single

phase system containing one chemical species,  the degree of freedom is 1 minus the

number of phases which is also 1 plus 2 or 2 for a single phase system containing one

chemical  species,  the degrees  of  freedom is  2,  right,  but  So,  for  example,  if  I  have

internal energy, then internal energy is fixed only if I fix 2 intensive variables, let us say

temperature and pressure. 

So, the internal energy of a gas, then if it is a single gas then is going to depend on two

variables temperature and pressure, but for an ideal gas since, the intermolecular forces

are negligible the change in pressure is not going to effect the internal energy, right.

Remember internal energy we said is due to vibration rotation of molecules translation of

molecules which are all due to temperature that is where we get the translation rotation

and vibration of molecules from. The bonding energy is which have nothing to do with

the pressure the only thing that the pressure will effect is the potential  energy or the

intermolecular interactions, but because the intermolecular interactions in, in an ideal gas

are so, small or negligible, pressure is not going to effect the internal energy. So, for an

ideal gas U is going to be only a function of temperature, it will not depend on pressure,

because inter molecular interactions are negligible, right in fact 0. 

So, for an ideal gas, let us use a super script i g for the ideal gas. Then it will depend

only, only on temperature. Now see what happens, if the functionality is only in terms of

temperature is the derivative C v. Remember, we defined it as the partial derivative of the

molar  internal  energy  with  respect  to  temperature  at  constant  volume;  at  constant

volume. 

 We need a partial derivative, if there is, if, if U depends on more than one variable, but

now  U  depends  only  one  variable  that  is  temperature.  So,  we  do  not  need  partial

derivative any more. For an ideal gas than it will simply be d U over d T, d U over d T,

right. So, C v for an ideal gas than is going to be a function only of temperature, U for an

ideal gas is going to be only a function of temperature and delta U is going to be simply

C v i g d T. 



 Irrespective of whether  the volume is constant or not it  does not matter, because U

depends only on temperature, delta U is going to be integral C v d T always, this is true

for an ideal gas. 

(Refer Slide Time: 34:40)

Now, let us look at what happen, what happens to enthalpy. We had U for an ideal gas to

be a function only of Temperature we also have C v for an ideal gas defined as d U for an

ideal gas over d T. 

Now, let us look at enthalpy by definition enthalpy is u plus P V. And for an ideal gas, I

can just use a sub script i g for the 3 variables H U and V right. And since, this term for

an ideal gas is R T P V is R T so, this term is R T. So, then this will be U i g plus R T.

Now u is a function only of temperature as we have seen here right. And R T only has

temperature which then implies H also will be a function of temperature alone for the

ideal gas. 

And by definition the specific heat capacity C p is the partial derivative of H with respect

to temperature at constant pressure than for an ideal gas, because it depends only on one

variable the partial derivative reduces to the total derivative, it will be d H i g over d T,

that will be the value of C p i g, right. 

So, these are the two relations, we get for an ideal gas that both internal energy and

enthalpy than are going to be only the functions of temperature, we can also derive a



relationship between these two C p and C v between these two specific heat Cp i g and C

v i g, right, for example, C p i g is d H i g over d T so, this is d of U i g plus R T over d T.

So, this will be d of U i g over d T plus the derivative of R T with respect to d T will be

R. And the first term is C v i g if you recall so, C p i g will then be equal to C v i g plus R

or usually the way we write it is the difference between the two specific heats. In case of

an ideal gas is going to be equal to the gas constant R. 

 So, then we looked at small manipulations involving the internal energy and enthalpy

for an ideal gas type of a behaviour. The most important thing to remember here is that

both  these  quantities  enthalpy and internal  energy. And hence,  their  derivatives  with

respect to temperature C p i g and C v i g are going to depend only on temperature, if the

behaviour is like an ideal gas. 

Now, what we will do is we will try to do some calculations involving heat work and the

internal  energy  as  well  as  the  enthalpy  changes  for  some  of  the  processes  that  we

commonly encounter in an industry. So, the first type of process, we will look at today is,

what we call as an iso thermal process. 

(Refer Slide Time: 38:44)

We are going to stick our discussion to ideal gases for different types of processes. And

isothermal process involving an ideal gas right, if it is an isothermal process temperature

is constant, right that is a characteristic of an isothermal process. And if temperature is



constant then both delta U as well as delta H for an ideal gas is going to be 0, because the

temperature is not changing and both these quantities depend only on temperature.  If

temperature does not change delta in this quantities is going to be 0. 

Also, since the first law applies, we are talking about a closed system. Since the first law

applies and since d Q is a sorry, d U is d Q plus d W this implies d Q is negative of d W

and this will be equal to P d V for a reversible, for a reversible process, right. And this is

an ideal gas, right. So, d Q is P d V for an ideal gas P is R T by V. So, R T by V d V and

an if I integrate, this is an isothermal process. So, Q is going to be integral of R T over V

d V going from volume 1 to volume 2. 

Since, temperature is constant, it can come out of the integral and what I will have inside

the integral is simply d V over V going from V 1 to V 2, going from V 1 to V 2 and. And,

if I finish this integral, it will be R T in V 2 over V 1. Now let us look at another process

involving an ideal gas, this time an iso baric process, isobaric process involving an ideal

gas. 

The process is isobaric which means temperature will change what will be constant is the

pressure, the pressure is constant what happens to the process?
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Delta U is simply going to be integral of C V d T going from T 1 to T 2 for the ideal gas.

And delta H is going to be integral going from T 1 to T 2 C P i g d T. Depending on the

values of C p i g, we can integrate this and get delta H or delta U, right. 

What  happens to dU, d sorry, d what happens to the work done W if  the process is

reversible then d W is going to be negative, negative of P d V, right.

 And since, the pressure is constant, right, it will be negative of P, we will write d V as R

T over P, because this is an ideal gas P V is R T or V is R T over P, now P and R are

constants so, it will be minus R d T. 

This is d W or if we integrate this going from T 1 to T 2, we will get W as integral going

from T 1 to T 2 negative R d T or this is R negative R T 2 minus T 1, this is W. And d U

we already have so, Q since delta U is Q plus W, we can get Q. Once we get the integral

for C V d T, we can then calculate Q as delta U minus, minus W, it also turns out that

since this is an ideal gas P V is RT.

 So, once we put this delta U minus R R delta T, this will be actually equal to delta H. So,

for an ideal gas than if the process is isobaric Q is going to be equal to delta H, W is

going to  be negative  R delta  T and we can  calculate  delta  H and delta  U from the

integrals. 
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The third type of process, we want to look at is what we call  as a isochoric process

involving an ideal gas again. In case of an isochoric process, we go back to our earlier

expressions. Since, temperature is changing delta U is going to be integral C V d T and

delta H is going to be integral C P d T. If the process is also reversible then W is going to

be d W is minus P d V and because it is an isochoric process, this will be 0. Since for a

closed system the first law applies delta U is Q plus W. And since W is 0, it implies the

heat exchange will be equal to the internal energy change which is delta U all through of

course, we mean an ideal gas.

 (Refer Slide Time: 45:06)

The last type of process, we want to look at is what we call as an adiabatic process. And

again these equations are applicable only for adiabatic processes involving ideal gases.

And all the equations earlier as well we always said that work done is calculated only for

a reversible process so, that statement also holds. 

We are  talking  about  a  reversible  adiabatic  process  involving ideal  gas,  because  the

process is adiabatic, no heat is exchanged with the surroundings. So, d Q is always 0 and

applying the first law it means that d U is going to be equal to d W, d U is going to be

equal to d W. And this implies C v i g, because this is an ideal gas d U is always going to

be C v i g d T. And on the other side d W is always going to be equal to minus, minus P d

V, because it is a reversible process, because it is also a process that involves ideal gas, I

can write this as minus R T by v d V. 



So, we will re arrange the terms a little bit d T over T will be negative R over C v d V

over V which implies ln of T 2 over T 1 is negative R over C v ln of V 2 over V 1. If I

complete that integration going from T 1 to T 2 to V 1 to V 2. 

 Or in other words if I get rid of the logarithms it turns out T 2 over T 1 is going to be V 1

over V 2 to the power R over C v. This of course, is still for an ideal gas so, we will

retain those superscripts C v i g, I can re arrange the terms instead of volumes, I could

have worked with pressures,  and I  could have obtained a similar  equation  involving

pressure. So, what I mean by that is instead of writing, instead of writing this P for the

ideal gas as R T over V, I could have changed the volume term here and written it as R T

over P. And then rearrange the terms proceeded with the integration all the way through

the end as we have done in case of volume. And what we would have obtained is a

relation between the temperatures and pressures in an adiabatic process. 

 And that would look something like this I would leave it for you to work on, but it is

pretty straight forward, all we will do is we will retain the P as it is and change V inside

the derivative d V to d of R T over P and then start working with the manipulations so,

that we can get the relation between temperatures and pressures.

 In case of a reversible adiabatic process involving an ideal gas, we can also do another

manipulation  see,  we have  3  variables  for  an  ideal  gas,  we just  need two intensive

properties to fix the state of the system and to begin with we had C v i g d T is a negative

of P d V, right here right. 

So, one way to rework these equations is substitute volume as R T by P, another ways to

substitute P as R T by V, the third way would be to replace d T term on the left hand side.

And write it as in terms of P and V, right in terms of P and V. So, P V is R T so, it will be

P V over R d T will be d of P V over R. 

 So, I can use this substitution then what I end up finally, is a relation between P and V

that involves an adiabatic process P and V. In case of an adiabatic process and it will look

something like this P T over P 2 over P 1 is V 2 over V 1 Cp over Cv. So, now, then let us

change this colour just to make sure that we are relating one to another. So, this would be

in yellow, right. 



(Refer Slide Time: 50:22)

So, this was T 2 over T 1 was P 2 over P 1 to the power R by C p i g. So, we get three

equivalent  relations,  one  involving  temperature  and  volume  the  other  one  involving

temperature and pressure, the third one involving pressure and volume. All equations are

identical depending on the availability of data, we can use one of these equations to get

the other unknowns. 

(Refer Slide Time: 51:02)

Now,  what  happens  these  are  interrelationships  between  pressure  volume  and

temperature in an adiabatic process. What happens to d W and d U, let us take a look at



them for an adiabatic process. Du is going to be equal to D w, because d Q is O, d U for

an  adiabatic  process  is  going to  be equal  to  d W always.  Now, this  also  involves  a

reversible process is also involves an ideal gas. So, d U is going to be or delta U is going

to be equal to W and this will be equal to integral of C v i g d T going from T 1 to T 2. 

 I can write this in a variety of forms depending on the relationships, we have obtained

earlier  and  then  use  whatever  information  is  available  to  get  the  work  done.  So,

essentially that is the summary of using an ideal gas for a variety of processes, there is

also something called as a polytrophic process that is mentioned in the box. 

 It essentially is one of these earlier processes, we have discussed and it is expressed

using a  parameter  delta  and depending on the value of delta  the polytrophic process

reduces, reduces to one of the processes we discussed for example, delta is 0, it will be

an isobaric process, if delta is 1 it will be an isothermal process, right.

 And then if delta equals infinity it will be an iso choric process and if delta equals C p

over C v, it will be an adiabatic process, this ratio C p over C v is often called as gamma

the ratio of the specific heats for an ideal gas. 

While we write it, I should also mention that the relations, we derived earlier that involve

temperature  and  volume  relation  or  temperature.  And  pressure  relation  these  are

applicable only for constant specific heat capacity C p i g and C v i g have to be constant,

they cannot change with temperature that is when we can write these expressions, right. 

 There are some books which involve a relation between P V T involving a polytrophic

process and depending on the value of delta ah, we get the correct relationships, but then

the basic idea of using an ideal gas is that we express the P V T relationship as P V equals

R T. And depending on the nature of the process I can work with the first law and obtain

the work done heat exchanged as well as delta U and delta H for any of the processes. 

 Once I know that this relationship is applicable and we have demonstrated few of those

processes. In this discussion today, what we will do when we come back in the next

lecture is try to use these ideas and do some numerical calculations on various processes

involving an ideal gas as well as also try to look at how we handle irreversibility or one

of the ways to handle irreversibility because for the discussion so, far we have always

talked about a reversible process. What happens if there is an irreversibility, how would I



handle irreversibility in a process that involves an ideal gas? So much for today and

thank you for listening to the lecture so far, I will see you in the next one. 


