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Hello  and  welcome  back  to  this  video  lectures  on  Chemical  Engineering

Thermodynamics. In the previous lectures we looked at phase equilibrium problem in

particular  vapour liquid equilibrium and given a set  of thermodynamic variables,  we

looked at how the other set of thermodynamic variables can be calculated for vapour

liquid equilibrium. We have started with the simple Raoult’s law approach then we have

modified it to account for non-idealities of the liquid phase or non-ideal solution as we

called it, and then we also looked at how the non-idealities of the gas phase or the vapour

phase can be accounted for by using the fugacity coefficients to describe the non ideal

gas behaviour.

Then we also looked at using cubic equations of state to achieve this objective. In this

lecture today what we look at is how we can extend the ideas and concepts we have

developed in phase equilibrium calculations for vapour liquid equilibrium to other types

of equilibrium. In particular we are interested in a liquid-liquid equilibrium, LLE and a

three phase vapour liquid-liquid equilibrium that is two liquid phases in equilibrium with

their vapour. Before we do that what we want to do is, first understand why immiscibility

occurs when two liquids are mixed? We will do a little derivation to understand this idea

right.



(Refer Slide Time: 02:26)

So, first let us take a closed system which is not at equilibrium right, this closed system

is  not  at  equilibrium  and  it  is  free  to  exchange  energy  as  well  as  work  with  the

surroundings. This is the system of interest, it has some arbitrary number of phases, it

can be a single phase or it can be more than one phase, but it is not at equilibrium. And, it

will  reach  final  equilibrium  state  by  exchanging  heat  as  well  as  work  with  the

surroundings and we want to use the subscript r for the surroundings. 

So, the change in entropy of the surroundings dS r is going to be dQ r over T r and

because the amount of heat exchanged with the surroundings is negative of what has

been added to the system, it will be negative dQ without a subscript is for the system

over  T  r.  Let  us  assume  that  this  heat  and  work  exchanges  by  the  system  to  the

surroundings are reversible and if it is reversible then it should occur the system needs to

be at equilibrium with the surrounding. So, T will be equal to T r which implies the

change in entropy of the surroundings is going to be negative dQ over T.

Now, in accordance with the second law the change in entropy of the system plus that for

the surroundings needs to be greater than or equal to 0, which means d S minus dQ over

T is going to be greater than or equal to 0. In addition the first law also requires that d U

is dQ plus dW, which means dQ is dU minus dW. So, if I put equation 2 in equation 1

what I end up with is dS minus dU minus dW over T right is greater than or equal to 0



and  remember  we  said  that  the  process  is  of  exchange  of  heat  and  work  with  the

surroundings we wanted them to occur reversibly.

So, dW in fact is going to be negative PdV. So, this will be dS or I will I will simply call

it as TdS minus dU plus dW is going to be greater than or equal to 0 right if I multiply it

with d all through and then I am going to substitute negative PdV for dW in which case it

becomes TdS minus dU minus PdV is greater than or equal to 0. TdS minus dU minus

PdV is greater than or equal to 0 or this also means dU plus PdV minus TdS is going to

be less than or equal to 0. So, any change that occurs in the system needs to obey this

particular inequality right.

And, now all the variables in this inequality are only state variables. So, irrespective of

the  path  we choose  whether  reversible  or  not,  this  particular  inequality  needs  to  be

satisfied for all changes that are occurring in the system. What this inequality also means

is that the change in U at constant V and S is going to be less than or equal to 0 and so

on. Of particular interest is the change that occurs at constant temperature and pressure.
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So, let us carry that equation from the previous slide, it is d U plus PdV minus TdS is

less than or equal to 0 and if the process occurs at constant temperature and pressure I

can also write this as d U plus d of PV, P can go inside the derivative because its constant

the same holds for T d of T S is less than or equal to 0, this is of course, true only at

constant T and P. So, if the process occurs at constant temperature and pressure then this



inequality needs to be satisfied. I can also write this as U plus pV which is h minus TS is

less than or equal to 0.

And since U plus pV minus T h is the Gibbs free energy I can also write this particular

inequality as dG at constant T and P is less than or equal to 0. So, any process needs to

obey  this  particular  inequality  if  it  is  moving  from  a  non  equilibrium  state  to  an

equilibrium  state.  Recall  for  a  closed  system  dG  is  VdP  minus  SdT  at  constant

temperature and pressure once the system reaches equilibrium then dG is going to be

equal to 0.

So, in a sense the equality in this particular equation three or in this particular expression

three is for the equilibrium condition and the inequality is for the change that takes the

system from a non equilibrium state to its  equilibrium state.  So,  any movement  that

occurs needs to satisfy this particular relation or in other words we say that the Gibbs

free energy needs to be minimized for an equilibrium state right. So, we can use this idea

to understand why immiscibility occurs in a liquid liquid mixture?
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For example let us look at liquid binary liquid liquid mixture, the x axis is for the mole

fraction of component 1 and the y axis is for delta G. Recall the change in Gibbs free

energy of mixing delta G when I mix 2 liquids 1 and 2 the change in Gibbs free energy

of the mixing delta G is defined as G for the mixture minus x 1 G for pure 1 minus x 2 G

for pure 2 right.



So, G 1 G 2 are for pure components 1 and 2, G mix is for the molar Gibbs free energy

of the mixture, delta G is the change in Gibbs free energy upon mixing the molar value

of course, and because we said if we are doing this process at constant temperature and

pressure say room temperature and atmospheric pressure. If I mix 2 liquids then there

will be a change in Gibbs free energy of those 2 liquids and that quantity is delta G, but

because we said when the mixing occurs and the system moves from a non-equilibrium

state to an equilibrium state, there should be a decrease in the total Gibbs free energy, it

automatically means that delta G always needs to be negative right.

So, this is 0 here and delta G is always going to be negative at a particular temperature

something like that right. At the two pure component ends delta G of course, is 0 and at

intermediate  compositions  it  will  have a  negative  value.  Now this  particular  delta  G

curves looks nice and smooth. There is no problem here, but let us take another example,

let us say the same mixture of two components A and B right. I am mixing two liquids a

denoted by subscript 1 and B denoted by subscript 2. At a particular temperature the

change in mixing is given by this figure let us call this as temperature T 1.

Now, if I mix the same two liquids at a different temperature it might so happen that the

change in Gibbs free energy versus the composition might look something like this. Let

me use a different colour. Now if this happens first the delta G is still negative at all

points between 0 and 1. The solid red curve here represents the change in the Gibbs free

energy if the system remains in a single phase. So, this red curve here denotes delta G for

single phase.

But, notice that between these two points corresponding to this point here and this point

here,  let  us  identify  those values  of  the mole fractions  x 1 alpha and let  us  say the

corresponding mole fraction for the second point is x 1 later right. Now, if this particular

curve has a different shape between the points x 1 alpha and x 2 beta right. It is concave

downward and for example, if I pick a point a then if the mixture stays in a single phase

then the Gibbs free energy change upon mixing at point a would be delta G a.

On the other hand; however, if the mixture splits into two phases each phase having a

composition of x 1 alpha and x 1 beta in different proportions then the overall Gibbs free

energy of this two phase mixture would be a linear combination of delta G at the for the

alpha phase and delta G for the beta phase right, which means it is going to fall on this



line joining delta G for the alpha phase and delta G for the beta phase right. So, that

would be delta G for the alpha phase and somewhere there would be delta G for the beta

phase.

And if the mixture splits into two different phases with x 1 alpha and x 1 beta as the

compositions for one in those two phases then delta G would be a linear combination of

this which falls on this dotted yellow line or maybe I should change that colour and make

it a solid green line and the to maintain the overall composition that value should be at

the same value as that of x 1 for a right. Let us call this as point b, and because now the

linear combination of Gibbs free energy for phases alpha and beta which is given by

delta G b is less than delta G a.

It turns out that the Gibbs free energy will be lower if the mixture splits into two phases

then existing in a single phase. So, the Gibbs free energy of the points on the solid green

line are lower than the corresponding points on the solid red curve and because of that

reason in between the points x 1 alpha and x 1 beta this particular liquid mixture will

exist in two phases. The compositions of the two phases will be x 1 alpha and x 1 beta

respectively,  they  will  be  existing  in  different  proportions  such  that  the  overall

composition of the mixture will be such that the overall composition of the mixture can

be obtained by the mass balance.

For example in the initial to this requirement it also turns out that mathematically the

derivative of delta G mixing with respect to x at constant T and P will be equal to 0 at

these two points. These two points the second derivative of delta G mixing with respect

to x will be equal to 0. So, the condition for immiscibility to occur in a binary system is

that delta G versus x curve needs to be concave downwards or the second derivative of

delta G with respect to x should go to 0.
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Another way of a stating the criteria for stability is that delta G are the first derivative of

delta G with respect to the composition or mole fraction. And, the second derivative all

of them need to be continuous functions and the second derivative needs to be always if

these  conditions  are  satisfied  then  we  will  have  complete  miscibility  or  stability

otherwise instability can set into the system. We talked about excess Gibbs free energies

and activity coefficients it is rather convenient to state the condition for miscibility or

stability in terms of excess Gibbs free energies and activity coefficients rather than the

change in Gibbs free energy of mixing.

So, what we do is try to convert this particular condition for stability in terms of GE and

then in terms of activity coefficients. For example, if you recall we said that the Gibbs

free  energy change  upon mixing  is  related  to  the  excess  Gibbs  free  energy  via  this

equation right. Now, if I take a second derivative of this with respect to x 1 then on the

right hand side what I get is one by x 1 x 2 plus the second derivative of GE by RT with

respect to x 1 square. So, another way of stating the criteria for stability is derivative of

GE over R T by dou x 1 square plus 1 by x 1 x 2 is less than or equal to sorry is greater

than or equal to 0.
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Now, one can also express the excess Gibbs free energy in terms of activity coefficients

recall that GE by RT is x 1 ln gamma 1 plus x 2 ln gamma 2 because ln gamma 1 is

partial  molar  excess  Gibbs  free  energy.  So,  what  this  also  means  is  that  the  first

derivative GE by R T with respect to x 1 is going to be ln gamma 1 plus well the second

one will be negative of ln gamma 2 because derivative of x 2 with respect to x 1 is minus

1 plus x 1 dou l n gamma 1 over dou x 1 plus x 2 now ln gamma 2 over dou x 1.

Now, remember all these derivations are at constant T and P. So, at constant T and P by

Gibbs Duhem equation this particular the sum of these 2 terms will be equal to 0. So, the

first derivative then with respect to x 1 at constant T and P will be ln gamma 1 minus ln

gamma 2. And if I take the second derivative it will be the 2 G E by RT over dou x 1 to

constant T and P is going to be derivative of ln gamma 1 over dou x 1 minus derivative

of ln gamma 2 over dou x 1.

Now, because of Gibbs Duhem equation I can rewrite this as derivative of ln gamma 1 by

dou x 1 minus minus x 1 over x 2 dou ln gamma 1 over dou x 1 and that will turn out to

be derivative of ln gamma 1 over dou x 1 1 plus x 1 by x 2 which is 1 over x 2 dou l n

gamma 1 over dou x 1. So, this is the second derivative of G E over R T with respect to x

1 and because of the stability criteria what this means is that derivative of G E over R T

by dou x 1 squared plus 1 over x 1 x 2 was greater than or equal to 0, which implies 1

over x 2 ln gamma 1 over dou x 1 plus 1 over x 1 x 2 is greater than or equal to 0 
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Or if I were to rewrite this particular equation what this means is, derivative of ln gamma

1 over x 1 is going to be greater than negative 1 over x 1.

(Refer Slide Time: 22:57)

If this happens then the particular liquid mixture is going to be stable there would be no

immiscibility  otherwise  immiscibility  will  set  in,  one can  also write  these  criteria  in

terms  of  fugacity  coefficients  and  chemical  potentials  for  example,  the  criteria  for

stability can also be written as df i hat over d x i is greater than 0 or in terms of chemical

potential we can show that it will be d mu i over the x is greater than 0, etcetera.



So,  depending  on where  we want  to  use  the  stability  criteria  one  or  more  of  these

equations will come in handy, but of course, all of these are at constant temperature and

pressure fine.
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Let us look at an example; the excess Gibbs free energy of a liquid mixture is given by

the expression here a x 1 x 2 that is G E over R T. So, what values of a will the liquid

mixture exhibit immiscibility? We will now solve this problem, the excess grip Gibbs

free energy of a liquid mixture is given by G E by R T is a x x 2 and we want to know for

what values of a will the liquid mixture exhibit immiscibility.

To solve this  particular  problem what  we will  do is  actually  write  the condition  for

stability, recall that the condition for stability is d 2 G E over R T by dx 1 2 plus 1 over x

1 x 2 is greater than 0 or in other words the condition for immiscibility is d 2 G E over R

T by dx 1 2 plus 1 over x 1 x 2 is less than or equal to 0 then there will be immiscibility.

Of course, the inequality is for immiscibility at equal to 0 immiscibility just sets n. Now,

so what we will do is we will take the expression for G E by R T given to us and find its

second derivative; so, let us find the first derivative G E over R T by d x 1 is A derivative

of x 1 is 1. So, x 2 minus derivative of x 2 is negative 1 minus x 1 and that implies the

second derivative is going to be A minus 1 minus 1 so that is minus 2 A. 



So,  the  second  derivative  for  this  particular  expression  is  negative  2A.  So,  for

immiscibility  negative  2A plus  1 over  x 1 x 2 should be less  than or equal  to  0 or

negative A is less than or equal to negative 1 over 2 x 1 x 2 or A is greater than or equal

to 1 over 2 x 1 x 2 so, the criteria for immiscibility or instability is that the coefficient A

needs to be greater than or equal to 1 over 2 x 1 x 2. Now, that we have seen the criteria

for immiscibility let us look at how we can write the phase equilibrium relations for a

liquid liquid equilibrium.
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Essentially what we have is, two liquid phases; an alpha phase and a beta phase, each

having let us say a binary mixture. So, the composition in the beta phase is x 1 beta and x

2 beta the composition in the alpha phase is x 1 alpha and x 2 alpha.

Notice that I am using the same variable named x for both phases because we are talking

about liquid phases here,  to distinguish between the phases we're using a superscript

alpha and a beta. Now if I were to write the phase equilibrium relations for this, now

before writing the phase equilibrium relations let us identify the degrees of freedom for

this particular system, I have 2 phases 2 components plus 2 so, degrees of freedom is 2.

What it tells me is that given any two criteria just as in a vapour liquid equilibrium given

temperature and mole fraction of one of the phases I should be able to find all the other

thermodynamic  variables  etcetera.  And we do that  by  writing  the  phase  equilibrium

relations. Phase equilibrium relations for this particular system are given by equality of



fugacities for component 1 it would be f 1 in the alpha phase needs to be equal to f 1 hat

in the beta phase and the fugacity coefficient in the liquid mixture can be expressed in

terms of activity coefficients x 1 alpha the activity coefficient of 1 in the alpha phase

gamma 1 alpha times the vapour pressure of 1 we are ignoring the non idealities of the

vapour phase.

So,  we are  going to  assume that  the  vapour  phase  is  ideal  gas  like  will  ignore  the

pointing  correction  factor  as  we  have  done  earlier  for  expressing  the  liquid  phase

fugacity coefficients and for the beta phase it will be x 1 beta gamma 1 beta times the

vapour pressure again for 1 at the saturation conditions. So, notice that I have the vapour

pressure for 1 at the saturation condition on both sides, which can be cancelled. So, what

I am left with essentially for the phase equilibrium relation is that x 1 alpha gamma 1

alpha is going to be equal to x 1 beta gamma 1 beta.

And I can write a similar expression for two x 2 alpha gamma 2 alpha will be equal to x

2 beta gamma 2 beta. So, these are my two phase equilibrium relations. So, if I have an

activity coefficient model then I can use these two phase equilibrium relations along with

the  activity  coefficient  models  to  solve  for  the unknown variables  given sum of  the

thermodynamic variables of interest. With that let us stop the lecture for today, when we

come back we will solve an example on a phase equilibrium relation involving liquid-

liquid  mixture.  And  then  we  will  look  at  what  is  known  as  a  vapour  liquid-liquid

equilibrium a three phase equilibrium.

Thank you.


