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Models for Excess Gibbs free energy- Part 2

So, far we looked at Models for activity coefficients which have very little theoretical

foundation right using the Redlich Kister’s expansion. But then, there are other models

which are based on the idea of local composition.
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By local composition we mean that the mixing of the liquids is not completely random,

the there are short range interactions that are present when we mix two liquids. And also,

the  molecular  orientation  depends  on  the  neighbourhood  where  in  that  particular

molecule exists because of the influence of the other molecules surrounding it because of

this  we  call  that  the  molecular  orientation  is  non-random.  Based  on  these  concepts

models  for  local  composition  can  be  developed  and  these  concepts  can  be  used  to

propose models for the excess Gibbs free energy and the activity coefficients.

Some  of  the  models  which  utilize  these  ideas  include  what  is  known  as  Wilson’s

equation. In case of Wilson’s equation the excess Gibbs free energy G E by RT is given

by negative x 1 ln, x 1 plus x 2 lambda 12 minus x 2 ln x 2 plus x 1 lambda 21. These

parameters lambda 12 and lambda it only has 2 parameters, lambda 12 and lambda 21



and both these parameters are independent of composition. Now, if one takes the partial

derivative of the excess Gibbs free energy to obtain G 1 E by RT and hence ln gamma 1

what we end up getting is ln gamma 1 to be negative ln x 1 plus x 2 lambda 12 plus x 2

times lambda 12 by x 1 x 2 lambda 12 minus lambda 21 over x 2 plus x 1 lambda 21. 

And similarly, ln gamma 2 will be a symmetric equation which looks like x 2 plus x 1

lambda 21 plus x 1, this is of course, only for a binary mixture lambda 12 by x 1 plus x 2

lambda 12 minus lambda 21 by x 2 plus x 1 lambda 21 or rather this is plus and this is

minus.

Now, from these models we can also write the expression for ln gamma 1 infinity, turns

out to be limit of x 1 going to 0 ln gamma 1 and when x 1 goes to 0 what we end up in

here is negative ln lambda 12 plus 1 minus lambda 21. And similarly, we get expression

for the other activity coefficient, ln gamma to infinity at infinite dilution.
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So, the essential idea still remains the same, once we propose a model for the excess

Gibbs free energy we are going to differentiate it to get the partial molar property and

hence the activity coefficient for each of the species in that mixture, the infinite dilution

limits have to be obeyed etcetera.

The other model that has been proposed based on these concepts is what is known as the

NRTL equation non-random to liquid theory equation. And based on this equation G E



bar I RT x 1 x 2 is given by an expression G 21, this G 21 has nothing to do with the

Gibbs free energy it is just a convenient notation plus G 12 tau 12 divided by x 2 plus x 1

G 12. Based on this the expression for ln gamma 1 turns out to be x 2 square tau 21 G 21

by x 1 plus x 2 G 21 whole square plus G 12 tau 12 by x 1 plus x 2 plus x 1 G 12 whole

squared, all right. 

And then the infinite dilution activity coefficient that is assumed we can write a similar

expression for ln gamma 2 and the infinite dilution activity coefficient in this case turns

out to be tau 21 plus tau 12 exponential tau 12 times G 12. In this case tau 12 and tau 21

are parameters that are independent of composition but dependent on the temperature. In

fact, the temperature dependency for activity coefficients is included in this model. So,

tau 12 turns out to be b 12 by RT and tau 21 turns out to be b 21 over RT that is where

the temperature dependency for the parameters tau 12 and tau 21 comes from. In fact, G

12 is exponential minus alpha tau 12 and G 21 is exponential of negative alpha tau 21.

So, once we have tau 12 and tau 21 the only other parameter in this model is alpha. So,

the 3 parameters in this model then are going to be tau 12, tau 21 and this parameter

alpha. Once we have these 3 parameters we can calculate G 12, G 21 and once we have

G 12 and G 21 we can calculate the activity coefficients. Like I said again the parameter

star one to and tau 21 are include the temperature dependency so, in fact, this can be

extended over a range of temperatures there those parameters. In other models right the

usually the parameters are for a particular temperature the temperature dependency of the

parameters is not included in the model, but in this case it is, right.
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So, based on these concepts let us see let us try to solve a few problems. The first one it

is given that the excess partial molar Gibbs free energy in a particular model is given by

the expression G 1 bar E is G 1 plus ax 2 and G 2 bar E is G 2 plus ax 1, right. So, G 1 is

pure species 1 at the same temperature and pressure and G 2 is for pure species 2 at the

same temperature and pressure. 
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So, where G 1 and G 2 are the Gibbs free energies of pure species 1 and 2 at the same

temperature and pressure as that of the mixture. So, the question is can this model be



thermodynamically consistent. So, we are given particular set of equations for partial

molar  Gibbs  free  energies  and  we  are  asked  if  this  model  equations  are

thermodynamically consistent. Now, to answer this question what we do is check if such

a  model  satisfies  the  constraints  we  already  know.  The  first  thing  is  at  the  pure

component limits the partial molar Gibbs free energies limit x i going to 1, G i bar E

should approach G for pure one, right, that is the first requirement it needs to satisfy.

And the second requirement, now, if I look at the given expression let us work this out

and then we will go to the second one after this. Limit of x 1 going to 1 which means x 2

is going to 0 this is a binary mixture G 1 bar E over RT. So, let us look at an example. We

are given that the partial molar Gibbs free energy is G 1 bar E and G 2 bar E are related

to the pure component properties G 1 and G 2, along with a dependency in the mole

fraction x 1 or x 2.

 So, this is a binary mixture I am given the relation for G 1 bar E and G 2 bar E based on

a  proposed model,  where  the  G 1 and G 2  are  the  Gibbs  free  energies  of  the  pure

components at the same temperature and pressure and we are asked the question if this

model can be thermodynamically consistent. Let us see if we can solve this problem.
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So, for a model to be thermodynamically consistent it needs to satisfy the constraints we

already know. The first one is at the pure component limit x i going to 1, G i bar E should

approach G for pure i because it is mostly 1, so the partial molar property should be same



as the pure component property. Let us see if this particular limit is satisfied for the given

relations. Limit of x 1 going to 1, G 1 bar E is G 1 and when x 1 goes to 1 recall that x 2

will go to 0, so G 1 plus a times x 2 will be 0, so that is G for pure 1. No problem, it

satisfies the limit we want it to. And similarly, for the other expression limit of x 2 going

to 1, G 2 bar E is G 2 plus as x 2 goes to 1 x 1 will go to 0, x 1 will go to 0 and this will

be a times 0. So, that will be G for pure 2.

So,  at  both  the  pure  component  limit  its  not  enough  if  it  satisfies  only  at  1  pure

component limit, these relation we show here right needs to be satisfied at both the pure

component limits and in this case for the binary mixture and in this case it does. So, this

particular  thermodynamic  requirement  has  been  satisfied.  There  is  an  additional

requirement it needs to satisfy. 
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If you recall we said Gibbs Duhem equation needs to be satisfied. This is the second

requirement. At constant temperature and pressure, it reduces to sigma x i d mi bar is 0 in

this case for a binary mixture it will be x 1 dG 1 bar plus x 2 dG 2 bar. And at constant

temperature and pressure when we say derivative of G 1; G 1 changes only because the

composition is changing, so let us write it as dG 1 bar by dx 1 we could equivalently

write it as dG 2 bar by dx 2. Or an equivalent equation will be, so the only thing that is

changing here is composition. So, x 1 dG 1 bar by dx 1 plus x 2 dG 2 bar by dx 1 is 0 or



we can equivalently write this equation with a change in composition instead of x 1 we

could take it as x 2 plus x 2 dG 2 bar by dx 2 should equal 0. 

Notice that their derivatives have to be taken with respect to the same composition either

x 1 or x 2 it really does not matter. Once we do that, so let us say we stick with this G 1

bar is G for pure 1 plus a times x 2 is the relation given to us. So, dG 1 bar by d x 1 for

pure 1 the first term will go to 0, plus a times d x 2 by dx 1 which will be negative a. And

G 2 bar is G 2 plus a x 1 this implies dG 2 bar by d x 1 will be dG 2 by dx 1 is 0 for pure

component a times dx 1 by dx 1 is 1, so that will reduce to a.

 So, x 1 dG 1 bar by dx 1 plus x 2 dG 2 bar by dx 1 then will become x 1 times negative

a  plus  x  2  times  a  that  will  be  a  times  x  2  minus  x  1  and  unless  a  0  there  is  no

requirement for this particular value to go to 0, so which will not be equal to 0, all right.

If that is the case; if that is the case then Gibbs Duhem equation for this particular model

is not satisfied and it Gibbs Duhem equation is not satisfied it is not thermodynamically

consistent model 

So,  whatever  models  we  propose  to  fit  the  experimental  data  need  to  be

thermodynamically consistent if it is not then we cannot use such a model, right. So,

unfortunately the previous model that has been proposed to describe the experimental

data  for  G  1  bar  E  and  G  2  are  given  by  these  relations  is  unfortunately

thermodynamically inconsistent. So, we will not be able to use these equations to model

any experimental data ok. 
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So, we are given a model for the excess enthalpy H E by RT in terms of the mole fraction

for a binary mixture at 300 Kelvin and 1 bar and we need to find the minimum value

where this occurs. We also want to find the infinite dilution activity coefficients H 1 bar

E infinity and H 2 bar E infinity. And finally, we want to draw qualitatively draw the 3

curves H E H 1 bar E and H 2 bar E.

To solve this particular problem what we are going to do first is use the given expression

for H E by RT. I am going to skip the numbers and write it as c x 1 square plus b x 1 plus

a, use this to derive the expressions and we will substitute the numerical values at the

end. Now, to find the minimum value if it occurs at that particular minima the derivative

with respect to either x 1 or x 2 will be equal to 0. So, what we will do is we will take the

derivative of H E by RT with respect to x 1 of course, when we take the derivative we

automatically mean temperature and pressure are constant is going to be 2072 x 1 minus

1118 which implies at minima 2072 x 1 minus 1118 will be equal to 0 or x 1 is going to

be 1118 over 2072, which is about 0.58. 

So, the minima is going to occur for this particular curve at a mole fraction of about 0.58.

We can find the value of that particular minima. It is going to be simply 0.58 square

minus 1118 times 0.58 minus 524 and that value turns out to be about negative 200, well

Joules per mole. 



So, in this problem were given a expression for H E and we are asked to find at a given

temperature and pressure and we are asked to find a minimum value for H E, at what

composition it occurs and the infinite dilution activity coefficients H 1 bar E infinity H 2

bar E infinity and we are also required to draw qualitatively the curves for H E H 1 bar E

and  H 2  bar  E.  In  fact,  since  we  are  given  the  numbers  we  can  actually  draw the

numerical value itself. This particular data is at a particular temperature and pressure 300

Kelvin and 1 bar.

So, finding the minimum is pretty straightforward what we will do is we will take the

derivative like I have shown here, we will take the derivative with respect to x 1 and the

derivative needs to go to 0 for the extrema. So, in this case minima and once we equate

the derivative to 0 we can get the x 1 at which this minima occurs in this case it turns out

to be about 0.58. Once we have that number we can go back and substitute it back in the

expression  given  to  us  to  get  he.  So,  that  is  a  pretty  straightforward  mathematics

problem, all right.

Now, the second part is a little bit more involved we want to find the infinite dilution

enthalpies H 1 bar E and H 2 bar E. To be able to do that the first thing we need to do is

find H 1 bar E and H 2 bar E.
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Now, if you recall H 1 bar E is the derivative of H E with respect to n 1 at pt and n 2,

right. H E given to us like I said is cx 1 squared plus bx plus a will omit the numerical



values  will  just  show use  coefficients  a  b  and c  for  now, it  is  easier  to  handle  the

derivatives in this fashion. And n times H E as we do usually is going to be c n 1 squared

over n plus b times n 1 plus a times n, plus a times n that should have been bx 1. So, it

will be b times n 1 a times n. So, we have converted everything in, instead of x’s we have

converted into the moles n ones and n’s. 

And this derivative once we take the derivative and substitute it back what we end up

getting is H 1 bar E to be x 2 squared a plus 2 b x 1 plus 3 c x 1 squared, right. And we

can do a similar exercise to get H 2 bar E and the final expression turns out to be H 2 bar

E is x 1 squared a plus bx 1 minus x 2 plus cx 1 square minus 2 x 1 x 2. And so and once

we have these two expressions it is pretty easy to find H 1 bar E infinity. This will be

limit of x 1 going to 0 H 1 bar E and x 1 goes to 0, remember that x 2 will go to 1 and

that will be simply a and in this case the value of a given to us is 524. 

And similarly, H 2 bar E will be limit of x 2 going to 0, x 1 going to 1, H 2 bar E and as x

2 goes to 0 it will be a plus b plus c and that value turns out to be negative 606, whatever

the units are sorry. So, that is a plus b plus c which is negative 606 in the given units for

the particular problem. 
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Now, in the third part we are required to draw how the 3 properties H E, H 1 bar E and H

2 bar E look as functions of the mole fraction x 1. To be able to do that we will take the



given expressions and tabulate the values in excel and then maybe we can plot, but very

briefly this is how it is going to look once we do that exercise. 

This is x 1 and this is H E let us use a different colour. For a H E we will use yellow and

remember that about at 0.58 or so, it goes through a minima. So, it looks something like

that for H E at both the ends it will go to 0 and it will go through the minima at about a

0.58, right. And at both the ends the excess properties they approach the pure component

limit, so the excess enthalpy will go to 0. 

Similarly, if I want to plot H 1 bar E recall that at its pure component limit it will go to 0.

So, at this end which is the pure component limit for H 1 bar E or x 1 going to 1 will go

to 0 and it will go through this point and curve off the wall, that will go through this

point like that and then curve off to its infinite dilution value H 1 bar infinity. And for the

other component H 2 bar E it will start here at 0 value at its pure component limit H 2 the

pure component limit is x 2 going to 1 or x 1 going to 0. 

So, we will usually go through the same point and then approach the wall. It is pure

component infinite dilution value is a little higher. So, let us change the slope a little bit

probably it will look something like this. It will look something like that I do not like that

shape. So, for H 2 bar E it will start off at its pure component limit the value will be 0

and then it should go through the same point of intersection through the minima and then

reach its infinite dilution value somewhere there. 

So, although the curves are not perfect, I am drawing it by hand, but then once you plot

in excel you will see a shape that looks something like that that is the infinite dilution

value a little lower than H 1 bar infinity, right. So, that completes this problem. 
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Let us try to solve one more problem ok. In this problem we are given the data for G E

and  H  E  as  a  function  of  temperature  for  a  particular  mixture.  And  at  3  different

temperatures 280, 332 Kelvin and we are asked to find all the 3 values, all the 3 excess

properties G E, H E and S E at 310 Kelvin. 

The only information that is given to us is that H E is a linear function of temperature.

So, if H E is a linear function of temperature then probably we can calculate a H E at 310

Kelvin  but  the  other  two are  still  a  challenge  and we should not  be  interpolating  it

linearly this is where we will use our knowledge of thermodynamics to be able to solve

the problem, right. 

So, what we will do is this. The first thing we are going to do is since H E is a linear

function of temperature. In fact, you can see that, but what we could do is we can we

could plot the 3 values for the given H E at 280, 300 and 320, this is 320, this is 280. We

can plot those 3 values fit a straight line because its linear function of temperature and

find the equation of this straight line. In this case it turns out the slope will be negative 2,

the intercept is going to be a 1200. 

Once we have these two values for the slope and intercept  for H E as a function of

temperature, in fact, we can straight away find H E at 310 Kelvin we will come back to

that final solution later. Let us also think about how to get G E and S E. Once we have

the slope and intercept now the challenge is to be able to find G E and S E. But first let



us write the functionalities. Since, H E is a linear function of the temperature we are

going to write it as a plus bT and in this case what we have is a is 1200 and b is negative

2 by feeding the given experimental data that is what we have.

Now, once H E is known how do we find G E? Now, recall that the derivative of G E

over RT with respect to the temperature at a constant pressure and mole fraction x is

negative  H E over RT square.  This is  relation  not  just  between excess properties  its

between residual properties is for the total property all of those things, but for now since

we are looking at excess properties let us write this equation of course, it has to be RT

square. Once we do that and notice that R is a constant which can cancel out from both

sides of this particular expression. So, what if this equation looks like is the derivative of

G E by T with respect to T at constant p and x is negative H E by T square. 
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And since for the given model we are looking at H E is a plus b. I am going to write

these particular set of equations at constant p and x only, so the derivative of G E by T

with respect to T is negative H E by T square that is a plus bT negative of that over T

square or negative a by T square negative b by T. Now, what this means is I can integrate

this particular equation to get G E over T, G E over T as a by T minus b times ln T plus c.

And what this means is G E is a minus bT ln T plus CT. This C is a constant addition

constant because of the integration we are doing and then that carries on to the next



expression. So, G the functionality for G E if H E is a linear function of temperature then

the functionality for G E will look something like this.

Now, in this particular equation recall that I already know a and b the only thing I do not

know is c. So, one of the things I can do is take this particular equation rewrite it as G E

minus a plus b times T ln T is C times T, right. And then now C can be G E minus a plus

bT ln T over the temperature, right. So, write c times T and what I can do from there is

take the given experimental values right for G E at 3 different temperatures. So, let us go

to the previous slide. We are given G E at 3 different temperatures here. I will take these

values use the value of a and b from here and calculate the left-hand side of this equation

right. 
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So, I take the G E values from the table and in each of the temperatures 280, 300 and

320.  This is  the temperature  the values  of G E I  can take from the table  and I  can

calculate G E minus a plus bT ln T right, since a and b are known a is 1200 b is negative

2. So, I can calculate these values and these values and then plot this value here versus

temperature, right. And the plot will look something like this for the 3 different values.

And the slope of this plot will equal the value of C I am looking for. And once I do this

exercise it turns out that the value of C I will get is negative 14. 
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Once I have C, I have a b and c all the 3 parameters I need. So, from HD data I get the

values of a and b, a is a 1200, b is negative 2. From G E data I get the value of C to be

negative 14 and once I have this H E is a plus bT, G E is like we said a minus bT ln T

plus CT, a minus bT ln T plus CT and S E recall is H E minus G E over temperature.

Find at 310 Kelvin, that is the temperature of interest at 310 Kelvin we can find all the 3

values and it turns out that H E since it is a linear function anyway is going to be 580. G

E is going to be 416.7 and S E is going to be 0.527, whatever the units that are given for

those particular expressions are, right.

So, this is how we calculate the 3 thermodynamic variables H E, G E and S E. The only

thing we need to appreciate in this particular problem is that I cannot do a simple linear

interpolation  for  each  temperature.  We  know  certain  functionalities  that  these

thermodynamic variables have to obey, we are going to work around those equations

obtained,  how they depend on temperature,  they dependent  composition  etcetera  and

based on those concepts we will interpolate suitably and calculate those numbers. So, it

is not going to be simple linear interpolation for each and every variable. In this case the

only thing that is given to us is H E is a linear function of temperature. So, the others we

need to use suitable equations to obtain values at intermediate temperatures. 



With that we will end the discussion on excess properties. When we come back in the

next lecture what we will do is we will start working on using the activity coefficient

models and apply it to phase equilibrium problems.

Thank you. 


