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Activity Coefficients

Hello  and  welcome  back. In  the  previous  lectures,  we  were  looking  at  solution

thermodynamics and how we can model various thermodynamic properties for a mixture

of chemical species. Along that discussion we introduced the concept of ideal solution

and we said to account for non ideality we use what are known as activity coefficients,

one of the ways to account for non ideality that is.
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And, these activity coefficients if you recall we have defined it as gamma i for species i

is the ratio of fugacity of that species in the solution or the mixture over the fugacity if

that solution were ideal. So, it is ratio of f i hat over f i hat for an ideal solution of an

ideal  solution,  right  and  it  turns  out  because  of  this  definition  and  the  relationship

between the fugacity of species in the mixture to the chemical potential or the partial

molar Gibbs free energy. This ratio will actually yield the relation that the logarithm of

the  activity  coefficient  is  partial  molar  excess  Gibbs  free  energy  over  RT for  that

particular species G i bar E over RT. Moreover because of this summability relation the

total excess Gibbs free energy of the solution G E over RT is sigma x i G i bar E over RT



and because G i bar r E over RT is related to the activity coefficient this equation will

become sigma x i ln gamma i.

In addition to this,  we have also derived the criteria  for phase equilibrium using the

equality of chemical potentials and hence the fugacities. And, we expressed fugacities in

terms of fugacity coefficients and the activity coefficient and the final relation we and

yesterday was for the liquid phase the fugacity of species in the mixture is x i gamma i P

i sat where it P i sat is the vapor pressure at the temperature we are interested in times phi

i sat that is the fugacity coefficient for the pure species at the temperature of interest.

And, this will be equal to the fugacity of the vapor phase which is y i times P, the partial

pressure, multiplied by the fugacity of species i; fugacitycoefficient for species i in the

vapor phi i hat, right. On the left hand side we have fugacity of the liquid phase on the

right hand side I have fugacity of the vapor phase. Of course, this relation ignores the

pointing correction factor for the liquid phase and if the total pressure of the mixture is

not too far away from the vapor pressure P i sat then this is a fair approximation, right.

Let me reemphasize each of these terms here. This is the liquid phase mole fraction and y

i is the vapor phase mole fraction total pressure and this is the fugacity coefficient for

species i in the vapor mixture. So, if I were to write the functionalities for the vapor

phase; this will be a function of the temperature T, the pressure P as well as the mole

fraction y i. I can use any suitable equation of state be it we virial equation of state or a

cubic equation of state to obtain the vapor phase fugacity.

Now, for the liquid phase I have x i which is the liquid phase mole fraction, let us see P i

sat is the vapor pressure of pure liquid in this case i at temperature T. It will be only the

function  of  temperature  because  it  is  pure  liquid.  So,  P i  sat  is  only  a  function  of

temperature there is the vapor pressure of that species i and phi i sat is the fugacity

coefficient at the saturation conditions and so, it will be a function of the temperature and

the corresponding vapor pressure which is P i sat, but this is still for pure species i alone,

it is not in the mixture. So, it is independent of that composition x i.

And, gamma i is the activity coefficient as in case of all other thermodynamic properties

this activity coefficient because it is related to partial molar Gibbs free energy in strict

sense it will be a function of the temperature, the pressure, as well as the liquid phase

composition x, but in real life the effect of pressure is somewhat weak it does not affect



the liquid phase activity coefficients that much. So, usually we ignore that functionality

of  pressure,  but  nevertheless  thermodynamically  it  is  a  function  of  the  temperature

pressure as well as the liquid phase mole fraction.

So, this is the phase equilibrium relation we have looked at yesterday.
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Now, one can simplify this phase equilibrium relation by making certain assumptions. It

turns out that if the vapor phase is ideal well let me write what we had in the previous

slide y i P phi i hat is x i gamma i P i sat times phi i at the saturation condition.

Now, if the vapor phase is ideal gas line then phi i hat will be 1, phi i sat we will also be

equal to 1 and I can write it that equation reduces to y i P is x i gamma i P i sat and in

addition to this if we have an ideal solution recall for an ideal solution gamma i will be f

i hat over f i hat for the ideal solution and because it is an ideal solution in itself this will

both of them will be f i hat ideal or that ratio will turn out to be 1 which means y i P is

going to be equal to x i P i sat. This is for an ideal solution and the vapor phase behaving

as an ideal gas. This equation at the end is more commonly known as Raoult’s law. Of

course, we know the underlying assumptions to be able to use Raoult’s law, right.

So,  in  any of  these equations  we have seen  here all  of  them relate  on one  side the

fugacity  of  the  liquid  phase  to  the  fugacity  of  the  vapor  phase  on  the  other  side.

Depending on the conditions we are at, the temperature, the pressure conditions we are at



we can use one or the other form of these equations. Of course, neglecting the activity

coefficients  or  assuming  the  solution  to  be ideal  off  also  requires  knowledge of  the

chemical species and if those chemical  species do form an ideal solution or an ideal

mixture or not.

So, with that what we will look at next is how I can use the vapor liquid equilibrium

information to calculate the excess Gibbs free energy.
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If you recall one of the equations we have written for ideal gas like behavior for phase

equilibrium is x i gamma i P i sat. For now for sake of simplicity let us assume that this

equation is valid, the solution is not ideal. We have an activity coefficient that is not

equal to unity. If I have this relation what I can do is rewrite this equation to get the

activity coefficient in terms of the mole fractions of the vapor and the liquid phases and

the vapor pressure of the species i.

So, activity coefficient is going to be related to them via this equation. We can perform

an  experiment  like  we  discussed  yesterday.  A vapour  liquid  equilibrium  experiment

obtain the composition of the liquid phase, obtain the composition of the vapor phase,

the total pressure and hands calculate the activity coefficient at equilibrium conditions

for each of the species i. If I perform this at various mole fractions then I get activity

coefficient as a function of the mole fraction x i. Once I have the activity coefficient

recall that the excess Gibbs free energy G E by RT is sigma x i ln gamma i.



So, once I have the activity coefficients I can go back and calculate the excess Gibbs free

energy  for  that  particular  mixture.  The  excess  Gibbs  free  energy  or  the  activity

coefficients  indicate  that the solution is  ideal,  then things  are  simpler. if  then;  if  the

solution is not ideal then we need to build a model that represents the behavior of that

particular solution. When we see a model if you recall we said activity coefficients are

functions and G by RT for that matter are functions of temperature pressure and the mole

fraction x the functionality on pressure is weak.

So, what I am looking at is a is a model for activity coefficients in terms of temperature

and  x  or  at  constant  temperature  what  we  are  looking  for  is  an  model  for  activity

coefficient in terms of the mole fraction x that is applicable at that particular temperature

or pressure of interest;  once the temperature changes then that model of course,  will

change.  So,  we can  do experiments  at  constant  temperature  and pressure  conditions

obtain how G E by RT or the activity coefficients behave as a function of composition

and then try to model such a behavior, right.

Now, before we talk about the models let us first look at broad behavior of these activity

coefficients especially as we have done in the other cases, at the ends of the or especially

as we have done in the other cases when the composition approaches pure component

limits.
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So, to for sake of discussion let us consider a binary mixture. So, I have x 1, I have x 2

and then G E by RT is going to be x 1 ln gamma 1 plus x 2 ln gamma 2. As we approach

the pure component limit, let us consider a mixture which is like this and most of it is

component 1, except I have a very small amount of component 2. At such limit x 1 going

to 1 which means x 2 is going to 0. At this limit of pure component 1 what we will see is

that the mixture is fairly ideal because most of it is made up of only one component and

the excess Gibbs free energy G E by RT will be equal to 0.

Also, if you want to look at the partial molar Gibbs free energy right I will drop the color

code for now G 1 E by RT will be equal to G 1 bar by RT minus G 1 bar in an ideal

solution over RT and in both cases because I am approaching the pure component limit

both these terms G 1 bar as well as G 1 bar ideal will equal that of the pure component at

this limit, right pure component values which is G 1 by RT minus G 1 by RT. So, that

will be 0.

So, at the pure component limit the total Gibbs free energy as well as the partial molar

Gibbs free energy for 1 will be equal to 0. If this is 0 what this means is ln gamma 1

which is G 1 bar E over RT equals 0 or gamma 1 equals 1, it is approaching an ideal

solution behavior. So, the activity coefficient for that species will approach 1. Now, what

happens to the activity coefficient of the other species 2 at this particular limit?

Now, recall that at this particular limit we said that it is the limit of pure component 1 or

infinitely dilute 2; 2 is in such a small quantity that we call it as infinitely dilute. At this

infinite dilution limit for 2 what happens to its activity coefficient is what I am interested

in. What I will do is I will resort to the Gibbs-Duhem equation which relates a sigma x i

d M i bar equals a 0 at constant temperature and pressure. This is the Gibbs-Duhem

equation.

I will use this equation and I will use the partial molar Gibbs free energy G i bar E in this

particular equation. So, this will read x 1 d G 1 bar E over RT plus x 2 d G 2 bar E over

RT; I am just using it for a binary solution will equal 0 and recall that G 1 bar E over RT

ln gamma 1. So, this is x 1 d ln gamma 1 plus x 2 d ln gamma 2 will be equal to 0 at

constant temperature and pressure. This is Gibbs-Duhem equation written in terms of

activity coefficients 1 and 2.
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Now, for this particular equation, let me rewrite that again. x 1 d ln gamma 1 plus x 2 d

ln  gamma  2  will  equal  0  at  constant  temperature  and  pressure.  Now, and  constant

temperature and pressure recall that we said activity coefficient will only be a function of

composition that is the only thing that is left; temperature and pressure or any way have

constant. So, that derivative then is taken with respect to the composition or the mole

fraction.

 Let us take it with respect to mole fraction of species 1. It does not matter it is a binary

we could equivalently take it with respect to mole fraction of component 2 , but for now

let us say it is with respect to component 1. So, this is the Gibbs-Duhem equation written

in terms of activity coefficients in a binary mixture at constant temperature and pressure.

Now, if you look at this equation we said that at the limit x 1 going to 1 and x 2 going to

0, which is the infinite dilution limit for 2, the first term gamma 1 will go to 1 which

means d ln gamma 1 it will go to a constant value. So, d ln gamma 1 over d x 1 will be 0

which means the first term drops out. And, if that drops out then the limit of x 1 going to

1 and x 2 going to 0 for the second term which is x 2 d ln gamma 2 over d x 1 will be

equal to 0.

Now, as x 2 goes to 0 if the product of x 2 multiplied with another term in this case d ln

gamma 2 by d x 1 should equal 0 then it automatically means that the second term here

should be finite because x 2 is going to 0 and the product is going to 0. The only way that



happens is if the second term in this product will be a finite quantity, right. And, that

finite quantity then is what we are going to call it as gamma to infinity.

So, limit of x 1 going to 1 and x 2 going to 0, right ln gamma 2 will be what we call as ln

gamma to infinity or gamma 2 will be what we call as gamma to infinity. This is infinite

dilution activity coefficient for species 2. So, gamma 2 will be gamma to infinity or the

infinite dilution activity coefficient for species 2.
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So, at the pure component limit; so, let us summarize then what we just did; all we did

was  we  have  use  gives  you  an  equation  to  obtain  this  at  the  infinite  at  the  pure

component limit x 1 going to 1, x 2 going to 0, gamma 1 will be 1 and at the same limit x

1 going to 1, x 2 going to 0 gamma 2 will be at infinite dilution condition. So, its activity

coefficient will be gamma to infinity.

Similarly, at the other limit of x 2 going to 1, x 1 going to 0 gamma 1 will be at it is

infinite dilution condition. So, it will be gamma 1 infinity and at the same limit x 2 going

to 1 x 1 going to 0 gamma 2 will be pure component 2. So, gamma 2 will be equal to 1.

So, this is the summary of how the activity coefficients behave in a binary system as we

approach the pure component limits.
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Now, that we know how they behave at the ends of the phase diagram and to make sure

that this behavior holes it turns out that the limit of x 1 going to 0 G E by RT x 1 x 2 will

be equal to ln gamma 1 infinity and limit of x 2 going to 0 G E by RT x 1 x 2 will be

equal  to  ln  gamma  2  infinity,  right  and  we  can  show  this  based  on  our  previous

discussion.

So, what we usually do is to be able to model the behavior of activity coefficients 1 and 2

with  respect  to  composition  we rather  model  the  behavior  of  the  excess  Gibbs  free

energy because it  incorporates  both gamma 1 and gamma 2 and then take its  partial

derivative with respect to n 1 or n 2 to get the partial molar Gibbs free energies or the

activity coefficients. In general, in a power series type of expansion the way we represent

G E by RT x 1 x 2 is a function of power series either in x 1 or x 2 in a binary mixture it

does not matter plus so on.

We can reduce it into a more mathematically convenient form as G E by RT x 1 x 2 is A

plus B x 1 minus x 2 plus C x 1 minus x 2, let us use capital letters whole square plus so

on.  These  expansions  for  G  by  RT  where  x  1  x  2  are  known  as  Redlich-Kister

expansions. These are expansions for the excess Gibbs free energy at a given temperature

and pressure. So, it is only function of the mole fraction.



Now, out  of  these  Redlich-Kister  expansions  then  depending on our  requirement  we

choose the first term, two terms, three terms etcetera. We can choose as many terms as

we want out of this power series expansion.
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So, let us start with the simplest scenario where G E by RT let me demonstrate how we

calculate the activity coefficients based on this model G E by RT x 1 x 2 is only A; every

other term after be including B is 0. If this is the case then G E by RT x 1 x 2 will simply

be A or G E by RT will be A x 1 x 2.

Now, if I want to find the activity coefficients from this particular model then what we

do is take the derivative of all; we want to obtain G 1 bar E and G 2 bar E. So, what I

will do is I will multiply it with and the total number of moles in the binary mixture and

what I get on this side is n 1 n 2 over n. Recall that when we take the partial derivatives

to obtain when to obtain the partial molar properties. We want to convert all the mole

fractions into number of moles of each of the species.

So, when I multiply it with 1 n x 1 will change to n 1, but x 2 will remain as such. So, I

am rewriting it as n 2 by n of course, remember that n is n 1 plus n 2 and derivative of n

with respect to n 1 is going to be hence 1. Now, with that in mind what I will do is I will

take the derivative of n G E over RT with respect to n 1 at constant temperature pressure

and n 2. If I do that what I will get on this side is A; let us say it is written only for a

particular temperature and pressure. So, A is A and n 2 is constant, derivative of n 1 over



n is n minus n 1 divided by n square and if we simplify this; this is A x 2 and that will be

1 minus x 1. So, that will be A x 2 squared, right.

So, the quantity on the left hands if you recognize is partial molar Gibbs free energy

excess partial molar Gibbs free energy for component 1 which we will call; which is

related to the activity coefficient as ln gamma 1. So, ln gamma 1 using this model will be

A x 2 square. We can go through a similar exercise and also show that ln gamma 2 will

be  A x  1  square.  So,  this  is  the  simplest  model  we  get  using  the  Redlich-Kisters

expansions for excess Gibbs free energy.

Now, if I ask a question what is gamma 1 infinity? Then we can use this model and say

that gamma 1 infinity is nothing, but the limit of x 1 going to 0 for gamma 1 and as x 1

goes to 0 x 2 will go to 1. So, A times 1 squared would be simply A. So, in this model

gamma 1 infinity will be A and if we actually write gamma 2 infinity this will also equal

A. So, for this particular model gamma 1 infinity equals gamma 2 infinity will be equal

to A. So, the infinite dilution activity coefficients are what this term A represents in this

particular model. Rather, this is logarithm of infinite dilution activity coefficients to be

more specific, but then that is what it is.
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Now, now let us look at a model which is slightly complicated than this and we call this

as modules equation. What we will do is we will take Redlich-Kisters expansion up to

two terms. A plus B x 1 minus x 2 and we will drop all the other terms from C onwards



in the infinite series. If that happens we will readjust this a little bit and this will be A x 1

plus x 2 plus B x 1 minus x 2 x 1 plus x 2 anyways 1. So, it does not matter and then I

can write it as A plus B times x 1 plus A minus B times x 2, right and we will give a

name to this A plus B quantity we will call it as A 2 1 x 1 plus A 1 2 x 2.

So, I can rewrite the model equation Redlich-Kisters expansion containing 2 terms in this

fashion G E by RT x 1 x 2 will be A 2 1 x 1 plus A 1 2 x 2. Now, we want to get the

activity coefficient for this particular model. So, what we need to do is first get the partial

molar quantities out of G E by RT; n G E by RT will be A 2 1 x 1 square x 2 plus A 1 2 x

2 squared x 1, right well this is still G E by RT not n G E by RT.

Now, if I make it n G E by RT then this will be A 2 1 n 1 squared n 2 over n squared plus

A 1 2 n 2 squared n 1 over n squared. Notice that I am multiplying only with one n and I

have a cubic in decomposition on the right hand side. So, I still need to multiply and

divide with n square so that everything is converted in terms of n and we do not leave

any compositions in there.

Now, once we have it in this form I can calculate the partial molar enthalpy. Now, once

we have it in this form I can take the derivative of this quantity with respect to n 1 and

obtain G 1 bar E by RT. So, the derivative of n G E by RT with respect to n 1 at P t and n

2 will be equal to A 2 1 times n 2 is constant and I have n 1 square whose derivative will

be 2 n 1 times n squared minus 2 n n 1 squared over n to the power 4 and for the second

term it will be A 1 2 and 2 square is constant n squared minus 2 n n 1 over n to the power

4, right.

So, this will be 2 A 2 1 x 2 multiplied with x 1 minus x 1 square plus A 1 2 x 2 squared

multiplied with 1 minus 2 x 1. So, this will be 2 A 2 1 x 1 x 2 squared plus A 1 2 x 2

squared multiplied with x 2 minus x 1, right. So, that will be derivative of n G E by RT

with respect to n 1.



(Refer Slide Time: 30:44)

I can simplify this and rewrite it in a more convenient form it turns out that G 1 bar E by

RT will be equal to ln gamma 1 and the simplified form of that will be x 2 squared A 1 2

plus 2 times A 2 1 minus A 1 2 times x 1. And, similarly if I take the derivative with

respect to n 2 at constant n 1 I will get ln gamma 2 which will be x 1 squared A 2 1 plus

2 times A 1 2 minus A 2 1 times x 2 this is ln gamma 2.

Now, if I ask a question what we will be gamma 1 infinity; if we want to know what the

infinite  dilution  activity  coefficients  are  we  simply  need  to  take  the  limit  as  x  1

approaches 0; ln gamma 1 will give us ln gamma 1 infinity and that quantity will be

simply A 1 2 and similarly, if we take the limit as x 2 approaches 0 for ln gamma 2 we

get  ln  gamma 2 infinity  and that  quantity  as  x 2 approaches  0,  notice  that  x  1 will

approach 1 this term drops out and we are left with A 2 1.

So, as you can see in this case the infinite dilution activity coefficients for species 1 and

2 are not same, they are different. One of them is A 1 2 the other one is A A 2 1. So, once

I  have a  model  for  G E over  RT then I  can  use that  model  and obtain  the activity

coefficients from that information.
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The other popular  model is what is  known as Van Laar  model and in this particular

model what we do is we write a power series for the inverse of G by RT x 1 x 2 and that

looks like A prime plus B prime x 1 minus x 2. We can rewrite this as A prime plus B

prime x 1 plus A prime minus B prime x 2 just like we did it in the Margules equation

case and when we do that what we have is A 2 1 prime x 1 plus 1 by A 1 2 prime x 2.

So, this is the model equation we start with and then we take partial molar derivatives

and do the regular exercise and finally, what we get is an expression for ln gamma 1 as A

1 2 prime 1 plus A 1 2 prime x 1 over A 2 1 prime x 2 to the power negative 2 and ln

gamma 2 will be A 2 1 prime 1 plus A 2 1 prime x 2 by A 1 2 prime x 1 also raised to the

power negative 2.

And, if I want to know what the infinite dilution activity coefficients are ln gamma 1

infinity will be the limit of x 1 going to 0 ln gamma 1 and that quantity if i put x 1 to be 0

and x 2 to be 1 in this particular equation what I get is simply A 1 2 prime. And, similarly

ln gamma 2 infinity will be the limit as x 2 going to 0 x 1 going to 1 ln gamma 2 and if I

put the limits in this particular equation what I will get is A 2 1 prime.

So, again using the model I can calculate the activity coefficients and what will be the

activity coefficients at the infinite dilution limits. Now, all these models we have looked

at so far are based on power series expansion they have very little a theoretical basis

behind them.
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The next set of models that have been developed for activity coefficients or excess Gibbs

free energies are based on the concept of Local Composition. What local composition

essentially  means  is  that  the  liquids  are  not  completely  randomly  mixed,  but  on  a

molecular  level  there  is  an  influence  of  the  short  range  interactions  between  the

molecules and the molecular orientation itself is not completely random. It is based on

what it is neighboring molecule or how it is neighboring molecule is oriented.

Based on these concepts are several models have been developed some of the popular

ones  include  what  are  known as Wilsons  equation;  the  nonrandom two-liquid theory

model  or  NRTL model,  the  universal  quasi  chemical  approach  which  is  known  as

UNIQUAC  model  and  finally,  the  universal;  the  UNIQUAC  model  and  finally,  a

functional group type of approach known as the UNIFAC model.

Now, the approach behind calculating activity coefficients from the excess Gibbs free

energy models in all these; now, the approach behind calculating the activity coefficients

using any of the models is essentially the same as we have looked at in the previous

scenarios when we use the Redlich-Kisters type of expansions. The only difference in

using these models is there is some theoretical basis behind them and we can sort of

relate the model parameters to the physics behind the interactions between molecules of

various types.



So, for example, in case of NRTL equation I will just illustrate one of them for sake of an

example. The NRTL equation; in case of NRTL equation G E by RT x 1 x 2 is given as

and using this model for excess Gibbs free energy one can derive the relation for activity

coefficient 1 as x 1 plus x 2 G 2 1 and the parameters G notice that G 1 2 here within the

model equation has nothing to do with the Gibbs free energy and this G 1 2 and G 2 1 are

written in terms of alpha and tau 1 2  and tau 2 1. And, tau 1 2 itself is written as a

function of temperature B 1 2 and temperature B 1 2 is a parameter that is independent of

temperature.

So, in addition to representing the composition dependency because the parameter is tau

1 2 and tau 2 1.


